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Methanotrophs, in particular methane-oxidizing bacteria (MOB), regulate the release 
of methane from lakes, and often co-occur with methylotrophs that may enhance 
methane-oxidation rates. Assessing the interaction and physiological status of these 
two microbial groups is essential for determining the microbial methane buffering 
capacity of environmental systems. Microbial membrane lipids are commonly 
used as taxonomic markers of specific microbial groups; however, few studies 
have characterized the changes of membrane lipids under different environmental 
conditions. For the case of methane-cycling microorganisms, this could be useful 
for determining their physiological status and potential methane buffering capacity. 
Here we investigated the changes in membrane lipids, bacteriohopanepolyols 
(BHPs) and respiratory quinones, produced by MOB and methylotrophs in an 
enrichment co-culture that primarily consists of a methanotroph (Methylobacter 
sp.) and a methylotroph (Methylotenera sp.) enriched from a freshwater lake under 
different methane concentrations, temperatures, and salinities. To assess whether 
the lipid response is similar in methanotrophs adapted to extreme environmental 
conditions, we also characterize the BHP composition and respiratory quinones 
of a psychrotolerant methanotroph, Methylovulum psychrotolerans, isolated from 
an Arctic freshwater lake and grown under different temperatures. Notably, in the 
Methylobacter-Methylotenera enrichment the relative abundance of the BHPs 
aminobacteriohopanepentol and aminobacteriohopanepolyols with additional 
modifications to the side chain increased at higher temperatures and salinities, 
respectively, whereas there was no change in the distribution of respiratory 
quinones. In contrast, in the Methylovulum psychrotolerans culture, the relative 
abundance of unsaturated BHPs increased and ubiquinone 8:8 (UQ8:8) decreased 
at lower temperatures. The distinct changes in lipid composition between the 
Methylobacter-Methylotenera enrichment and the psychrotolerant methanotroph 
at different growth temperatures and the ability of the Methylobacter-Methylotenera 
enrichment to grow at high salinities with a singular BHP distribution, suggests 
that methane-cycling microbes have unique lipid responses that enable them to 
grow even under high environmental stress.
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1 Introduction

Methane-oxidizing bacteria (MOB) modulate the natural release 
of methane (CH4), a potent greenhouse gas, through aerobic methane 
oxidation (see Hanson and Hanson, 1996 for a review). MOB belong 
to the phylum Proteobacteria in the classes Gammaproteobacteria 
(Type I and Type X methanotrophs) and Alphaproteobacteria (Type 
II methanotrophs; Hanson and Hanson, 1996; Bowman, 2006), and 
were also identified in the phyla Verrucomicrobia (Dunfield et al., 
2007; Pol et al., 2007; Islam et al., 2008) and NC10 (Raghoebarsing 
et  al., 2006; Ettwig et  al., 2009). Type I  members of 
Gammaproteobacteria are widespread in both terrestrial and marine 
environments (Knief, 2015). In lakes, for instance, Type 
I methanotrophs are the primary methane-oxidizers in both the water 
column and surface sediments (Hanson and Hanson, 1996). Members 
of the methylotrophic (i.e., microorganisms that consume single 
carbon compounds) Methylotenera genus are known to co-occur with 
methanotrophs, and under nitrate-rich conditions are thought to play 
a role in enhancing methane oxidation rates by the removal of toxic 
products (e.g., methanol and formaldehyde) that inhibit 
methanotrophy (Mustakhimov et al., 2013; Krause et al., 2017; Yu and 
Chistoserdova, 2017; van Grinsven et  al., 2020). The capacity for 
methanotrophs to regulate methane emissions from lakes is, thus, 
linked to microbial interactions with methylotrophs, as well as the 
physiological ability of both methanotrophs and methylotrophs to 
cope with environmental stress. In microbes, the physiological 
response to external stress is regulated by membrane lipids, such as 
bacteriohopanepolyols (BHPs; see Belin et al., 2018 and Newman 
et al., 2016 for a review) and respiratory quinones (see Franza and 
Gaudu, 2022 for a review); therefore, membrane lipids are crucial for 
understanding the functional potential of methane-cycling microbes.

In gram-negative bacteria, BHPs are found in the inner and outer 
membrane (e.g., Jahnke et al., 1992; Jürgens et al., 1992; Doughty et al., 
2009; Wu et al., 2015), and play an important physiological role in 
regulating the permeability and rigidity of the cell membrane in 
response to external environmental stress (Welander et  al., 2009; 
Doughty et al., 2011; Schmerk et al., 2011). BHPs are structurally 
diverse compounds with unique side-chain modifications that are 
thought to be specific to certain microbes (Rohmer et al., 1984; Talbot 
et al., 2003; Talbot and Farrimond, 2007; Kusch and Rush, 2022). For 
instance, 35-aminobacteriohopane-30,31,32,33,34-pentol 
(aminopentol from herein) and 35-aminobacteriohopane-31,32,33,34-
tetrol (aminotetrol from herein) are considered specific to Type I and 
Type II methanotrophs, respectively (Neunlist and Rohmer, 1985; 
Cvejic et al., 2000; Talbot et al., 2001). Incubation experiments with 
methanotrophs further suggest that concentrations and relative 
abundances of aminotetrol, aminopentol, and their unsaturated 
counterparts vary in relation to temperature (Jahnke et  al., 1999; 
Osborne, 2015; Osborne et al., 2017; Bale et al., 2019; van Winden 
et al., 2020), and, therefore, might be  involved in maintaining the 
fluidity of the cell membrane. Further work is needed, however, to 
determine whether the BHP response in methanotrophs is the same 
across different species and various environmental factors.

Respiratory quinones are isoprenoidal-based membrane lipids 
associated with metabolic processes in eukaryotes, bacteria, and 
archaea, as they are essential components of electron transport chains 
involved in electron and proton shuttling within the cytoplasmic 
membrane (Anraku, 1988). Respiratory quinones are characterized by 

a polar cyclic headgroup and isoprenoid side chain that imparts a 
redox potential and can be adapted to certain metabolic processes 
(Nowicka and Kruk, 2010). As such, respiratory quinones have been 
used as metabolic markers for redox processes (e.g., Dupont et al., 
2014; Becker et al., 2018), quantitative measures of bacterial biomass 
(Hiraishi et al., 1998; Saitou et al., 1999), and as chemotaxonomic 
biomarkers (Collins and Green, 1985; Hiraishi, 1999). Further studies 
suggest that respiratory quinones might also be involved in regulating 
membrane fluidity under osmotic stress (Sévin and Sauer, 2014; 
Eriksson et al., 2019), oxidative stress (Søballe and Poole, 1999), and 
at low temperatures (Seel et al., 2018). So far, the role of respiratory 
quinones in stress resistance for methane-cycling microbes has not 
been evaluated.

Continuous advancements in analytical techniques and their 
application to environmental samples and cultures has led to the 
discovery of many new membrane lipids (e.g., Talbot et al., 2016; 
Hopmans et al., 2021). For instance, the analysis of underivatized 
BHPs using ultra high pressure liquid chromatography (UHPLC) 
coupled to electrospray ionization (ESI)-high resolution dual-stage 
mass spectrometry (HRMS2) led to the identification of many novel 
BHPs (Hopmans et al., 2021). Similarly, sample analyses for respiratory 
quinones using an UHPLC system equipped with ESI revealed a wide 
array of respiratory quinones in environmental samples (e.g., Becker 
et al., 2018). The application of these analytical techniques to study 
membrane lipids, has the potential to uncover novel lipids that could 
provide new insights into environmental stress resistance.

In this study, we use UHPLC-HRMS2 to characterize how BHP and 
respiratory quinone distributions in an enrichment culture, consisting 
of a dominant methanotroph (Methylobacter sp.) and a methylotroph 
(Methylotenera sp.) that metabolically interact and were obtained from 
a eutrophic lake (van Grinsven et al., 2020), vary in response to changing 
environmental conditions. We use an enrichment co-culture to assess 
how the microbial community responds to external environmental stress 
and provide context for how this might influence microbial interactions 
in a lake environment. Further, we evaluate BHPs for their biomarker 
potential in methanotrophs, and we  assess changes in respiratory 
quinones to understand how the redox status of the cells varies in 
response to external stress. To determine whether methanotrophs 
adapted to extreme environments have a similar physiological response 
to changing temperatures, we also analyzed the lipid composition of a 
psychrotolerant methanotroph, Methylovulum psychrotolerans, isolated 
from an Arctic freshwater lake (Oshkin et al., 2016; Bale et al., 2019).

2 Methods

2.1 Methylobacter-Methylotenera 
enrichment culture

The enrichment co-culture was previously isolated from a 
hypereutrophic, monomictic lake (Lacamas Lake, WA, United States; 
van Grinsven et al., 2020). Prior to setting up the incubation experiments 
the enrichment was grown at 15°C in oxic and dark conditions with 
nitrate mineral salts (NMS) media (Whittenbury et  al., 1970). 
Incubation experiments were set up to observe how methane 
concentration, temperature, and salinity affect the BHP lipidome of the 
enrichment co-culture (see Supplementary Table S1 for experimental 
conditions). All experiments were set up in triplicate in 580 mL 
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acid-washed and autoclaved glass bottles with butyl rubber stoppers and 
total volume of 250 mL of NMS medium. Each incubation was 
inoculated with the same amount of concentrated enrichment culture, 
closed and crimp sealed. For abiotic controls (heat killed), the inoculated 
enrichment co-culture was autoclaved. All bottles (except for the 
unamended experiments) were supplemented with methane (CH4, 
99.99% pure) corresponding to a percentage of the headspace volume 
(0.5, 5, 10%). Time zero samples were also taken at the start of each 
experiment and filtered onto muffled glass fiber filters (GF/F 47 mm 
diameter with 0.3 μm pore size; Whatman) and frozen at −80°C until 
analysis. The bottles were then shaken for 10 s to establish an equilibrium 
between the gas and water phase. The resulting CH4 concentration in 
the headspace was measured by piercing the butyl septum with a syringe 
to retrieve a gas sample that was analyzed with gas chromatography-
flame ionization detection (GC-FID; Thermo Scientific Focus GC). The 
bottles were incubated under oxic conditions in the dark at 15°C unless 
other temperatures are specified. For the salinity experiments, the initial 
enrichment co-culture was gradually adapted to higher sodium chloride 
(NaCl) additions to NMS media over a period of 6 months. The 
resulting experiments were conducted as previously described with 
unamended controls (CH4 0%). Methane concentrations in the 
headspace were regularly monitored throughout the experiment. The 
incubations were ended when the CH4 concentration in the headspace 
was <10% of the initial CH4 concentration, and incubations reached a 
stationary phase based on the reduced rate of decrease in CH4 
concentrations. The incubations lasted from 6 days to 48 days depending 
on the growth conditions. The methane oxidation rates for each 
individual treatment were calculated from fitted slopes spanning the 
linear phase of methane removal after the initial lag phase. Experiments 
were ended by filtering the cultures onto muffled glass fiber filters (GF/F 
47 mm diameter with 0.3 μm pore size; Whatman) and were 
immediately frozen at −80°C until lipid and/or DNA extractions.

2.2 Methylotenera mobilis

Biomass of Methylotenera mobilis (DSM 17540) from the Deutsche 
Sammlung von Mikroorganismen und Zellkulturen (DSMZ) was 
previously analyzed for intact polar lipids (Richter et  al., 2023). 
Existing UHPLC-HRMS data was used in this study for the 
identification of quinones.

2.3 Methylovulum psychrotolerans

Methylovulum psychrotolerans (Sph56, NCBI Accession number 
MH701868) was grown in NMS media at different temperatures (4, 
10, and 20°C) as described by Bale et al. (2019). Existing UHPLC-
HRMS data for intact polar lipids was used for the identification of 
BHPs and quinones in this study.

2.4 Lipid extractions

All filters from the Methylobacter-Methylotenera enrichments 
were divided in half, freeze-dried, and extracted using a modified 
Bligh-Dyer method (Bligh and Dyer, 1959; Bale et al., 2021). The filters 
were ultrasonically extracted twice using methanol (MeOH), 

dichloromethane (DCM), and phosphate buffer (2:1:0.8, v:v:v). DCM 
and phosphate buffer was added to the resulting solvent in a separate 
flask for a new volume ratio of 1:1:0.9 (v:v:v). The DCM layer was 
collected and the remaining aqueous layer was washed twice using 
DCM. The filters were ultrasonically extracted two more times using 
MeOH:DCM:aqueous trichloroacetic acid (TCA) solution (2:1:0.8, 
v:v:v). The same procedure as described above was used to collect the 
DCM layers. The combined DCM layers were then dried using N2 gas 
and stored at −20°C. Before analysis, an internal standard (deuterated 
diacylglyceryltrimethylhomoserine; DGTS-d9; Avanti® Polar Lipids, 
United  States) was added to the total lipid extracts (TLEs). The 
samples were dissolved in MeOH:DCM (9:1, v:v) and filtered through 
0.45 μm regenerated cellulose syringe filter (4 mm diameter, Grace 
Alltech, Deerfield, IL).

2.5 Lipid analysis

TLEs for the Methylobacter-Methylotenera incubation experiments 
were analyzed after Hopmans et al. (2021) to identify BHPs. All samples 
were analyzed on an Agilent 1290 Infinity I  UHPLC coupled to a 
quadrupole-orbitrap (Q-Exactive) HRMS equipped with an Ion Max 
source and heated electrospray ionization (HESI) probe (ThermoFisher 
Scientific, Waltham, MA). An Acquity C18 BEH column (2.1 × 150 mm, 
1.7 μm particle; Waters) and pre-column was used for separation with 
a solvent system of (A) MeOH:H2O (85:15) and (B) MeOH:isopropanol 
(1:1) containing 0.12% (v/v) formic acid and 0.04% (v/v) aqueous 
ammonia in both solvents. A positive ion monitoring mode of m/z 
350–2,000 (resolution 70,000 ppm at m/z 200) and an inclusion list of 
357 calculated exact masses of BHPs was used for lipid detection. 
We  used a data dependent MS2 with an isolation window 1 m/z; 
resolution 17,500 ppm at m/z 200 of the 10 most abundant ions for a 
total cycle of ca. 1.2 s and dynamic exclusion (6 s) with a 3 ppm mass 
tolerance to identify BHPs. A stepped normalized collision energy of 
22.5 and 40 was used for optimal fragmentation of BHPs. Every 48 h a 
mass calibration using a Thermo Scientific Pierce LTQ Velos ESI Positive 
Ion Calibration Solution was performed. BHPs for Methylovulum 
psychrotolerans (Sph56) and quinones for all samples were analyzed 
using the same method as described above, but with a stepped 
normalized collision energy of 15, 22.5, and 30 (Bale et al., 2019).

All peak areas were corrected for matrix effects and variability in MS 
performance with an internal standard, DGTS-d9. Authentic standards 
to determine absolute BHP and quinone concentrations currently do 
not exist, therefore all lipids are reported using their relative peak area 
as response units (RU). Lipids from the co-culture enrichments and the 
Methylotenera mobilis biomass sample are additionally normalized to 
liters of media filtered and grams of freeze-dried biomass, respectively. 
Therefore, all reported lipid concentrations are expressed as response 
units per liter (RU/L) or response units per gram (RU/g).

2.6 DNA extraction and 16S rRNA gene 
amplicon sequencing

A subset of samples was extracted for DNA to confirm that 
Methylobacter sp. and Methylotenera sp. were the primary bacteria 
present in the enrichment culture and that there were no major changes 
in its composition under different incubation conditions. Time 0 samples 
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were taken at the start of the different experimental set ups and extracted 
for DNA. Triplicate incubations that were grown under standard 
conditions (CH4 5%, 15°C, 0 g/L NaCl in NMS media and in the dark), 
as well as triplicate incubations with large changes in lipid composition 
(i.e., temperature 30°C and 10 g/L NaCl addition) were also extracted.

A quarter of the filters were extracted for DNA using the DNeasy 
PowerSoil Pro Kit (Qiagen). A negative extraction blank and mock 
culture sample (ZymoBIOMICS® Gut Microbiome Standard, Zymo 
Research Copr.) were included in the extractions as negative and positive 
controls, respectively. The universal (bacterial and archaeal) primer pairs, 
515F and 806RB, were used to target the V4 region of the small subunit 
ribosomal RNA region (Caporaso et al., 2011; Apprill et al., 2015; Parada 
et al., 2016). PCR reactions were performed in Phusion buffer (Qiagen) 
with dNTPs and InvitrogenTM PlatinumTM SuperFiTM Polymerase 
(Thermo) with the following conditions: 98°C for 30 s, 98°C for 10 s, 
30 cycles of 98°C for 10 s, 50°C for 15 s, and 72°C for 30 s, followed by 
72°C for 5 s, and 4°C for 5 s. The resulting PCR products were pooled in 
equimolar amounts and loaded on a 1% agarose gel. The target bands 
were cut out and purified using QIAquick® PCR gel extraction kit 
(Qiagen). Samples were sent to the University of Utrecht Sequencing 
Facility (USEQ, the Netherlands) for Truseq DNA nano library 
preparation and sequencing on an Illumina NextSeq2000 (Illumina, San 
Diego, CA) 2 × 300 bp sequencing platform. All sequences are available 
at the sequence read archive under the BioProject PRJNA1149959.

16S rRNA gene amplicon sequences were analyzed using the 
Cascabel pipeline (Abdala Asbun et al., 2020). This included quality 
assessment using FastQC (Andrews, 2010), paired-end reads assembly 
with PEAR (Zhang et al., 2014), library demultiplexing using QIIME 
(Caporaso et al., 2010), and picking and taxonomy assignment of 
amplicon sequence variants (ASVs) using DADA2 (Callahan et al., 
2016). Taxonomy was assigned using Silva 138.1 as a reference 
database (Quast et al., 2013; Yilmaz et al., 2014).

2.7 Statistical analyses

We applied a Hellinger transformation and scaling to the BHP 
dataset prior to performing a principal component analysis (PCA) to 
determine what drives the largest variations in BHPs under different 
treatments for the Methylobacter-Methylotenera co-culture experiments. 
All analyses were performed in R (version 4.3.2; R Core Team, 2023) 
using the vegan package (version 2.5–7; Oksanen et al., 2022), ggplot2 
(version 3.4.0; Wickham et al., 2023), FactoMineR (version 2.7; Lê et al., 
2008), and factoextra (version 1.0.7; Kassambara and Mundt, 2020). 
Methane oxidation rates in the experimental conditions were statistically 
compared to those of the unamended and heat killed incubations using 
a one-way ANOVA test and Tukeys Honest Significant Differences (HSD).

3 Results

3.1 Methane-oxidation rates in 
Methylobacter-Methylotenera enrichment 
incubations

Methylobacter-Methylotenera enrichments were grown in 
triplicate under different methane concentrations, temperatures, and 
salinities. Methane concentrations in the headspace were regularly 

measured until the enrichment reached the stationary phase when the 
rate of methane consumption slowed. The resulting methane-
oxidation rates were calculated over the period of maximum methane 
consumption. The methane-oxidation rates for the experimental 
conditions were corrected using the heat killed controls to account for 
any potential loss of methane during the experiments through the 
rubber stoppers (Figure  1; Supplementary Table S1). Methane-
oxidation rates in the unamended controls were close to zero, 
indicating there was no methane production or consumption without 
the addition of methane. In general, we observe the highest methane-
oxidation rates at 10% methane concentrations, temperatures of 15 
and 20°C, and lower salinities (0–4 g/L NaCl).

3.2 Verification of the 
Methylobacter-Methylotenera enrichment 
culture composition

The original co-culture of Methylobacter sp. and Methylotenera sp. 
was enriched from a lake (van Grinsven et al., 2020). The 16S rRNA 
gene amplicon results confirmed that Methylobacter spp. remains the 
primary methanotroph present in the time 0 samples (i.e., representing 
79% of the total 16S rRNA gene reads; Table 1) and the incubations 
grown at 5% CH4 and 15°C with 0 g/L NaCl (84% of the total 16S 
rRNA gene reads). However, the relative abundance of Methylobacter 
spp. decreased in the incubations grown at 30°C (61% of the total 16S 
rRNA gene reads) and at 10 g/L NaCl (63% of the total 16S rRNA gene 
reads). Methylomonas spp. was the only other methanotroph detected 
but was present in low abundance (0.1% of the total 16S rRNA gene 
reads) at standard conditions (i.e., 5% CH4 and 15°C with 0 g/L NaCl). 
The methylotroph, Methylotenera spp., increased in relative abundance 
at 30°C (26% of the total 16S rRNA gene reads), but decreased at 
higher salinities (0.1% of the total 16S rRNA gene reads). Methylophilus 
spp., a methanol-utilizing bacteria, increased in relative abundance 
(15% of the total 16S rRNA gene reads) at 10 g/L of NaCl relative to 
experiments with 0 g/L of NaCl (0.3% of the total 16S rRNA gene 
reads). In addition, 16S rRNA gene sequences attributed to other 
non-methanotrophs increased in the experiments grown with 10 g/L 
of NaCl (22% of the total 16S rRNA gene reads) relative to the 
experiments grown with 0 g/L of NaCl (10% of the total 16S rRNA 
gene reads) with the most abundant 16S rRNA gene reads being 
attributed to the families: Chitinophagaceae, Flavobacteriaceae, 
Devosiaceae, and Optiutaceae.

3.3 Variations in respiratory quinone 
distributions

Respiratory quinone distributions for the Methylobacter-
Methylotenera co-culture experiments are shown as averages of the 
triplicate incubations grown at different temperatures (Figure 2A) and 
salinities (Figure  2B). Note, that respiratory quinones were not 
detected in Methylobacter-Methylotenera enrichments grown with 0, 
5, and 10% methane additions at temperatures of 15°C and salinities 
of 0 g/L NaCl. We speculate this might be related to the lipid extraction 
procedure, but we are unsure why this was the case. To determine 
which respiratory quinones are likely being produced by Methylotenera 
spp. in the enrichment experiments, the quinone distributions of a 
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pure culture from a closely related strain to that of Methylotenera sp. 
in the enrichment, i.e., Methylotenera mobilis, were also analyzed 
(Figure 2C).

To evaluate whether methanotrophs adapted to extreme 
environmental conditions have a similar metabolic response to 
environmental stress, we also report changes in respiratory quinones 
for a psychrotolerant methanotroph, Methylovulum psychrotolerans, 
grown at different temperatures (Figure 2D). Note, Methylovulum 
psychrotolerans were not grown in triplicate, so lipid results reflect 
single incubation experiments.

In all cultures, ubiquinones with 8 isoprenoid units and 8 
unsaturations (UQ8:8), followed by UQ7:7 were the most abundant 
quinones. In the Methylobacter-Methylotenera enrichment, 
methylene-ubiquinone (MQ8:7) was also detected. A UQ8:8 with an 
additional methoxy group on the unsaturated isoprenoidal chain 
(UQ8:8 + OCH3) was identified in both the enrichment and 
Methylotenera mobilis. Further, a UQ8:8 with an additional methoxy 
group and additional hydroxyl group on the side chain 
(UQ8:8 + OCH3 + OH) was observed in the enrichment (see 
Supplementary material S3.2). UQ9:9 and UQ10:10 were identified in 
all samples, but in low relative abundance. Menaquinones (i.e., 
MK6:6, MK7:7, and MK8:8) were only found in the Methylobacter-
Methylotenera enrichment incubations, but in minor proportions 
(i.e., <1%). The full list of quinones identified in the Methylobacter-
Methylotenera enrichments, Methylotenera mobilis, and 
Methylovulum psychrotolerans are listed in Supplementary Tables 
S3–S5.

3.4 BHP distributions in methanotroph 
culture experiments

BHP distributions are reported as averages of triplicates for the 
Methylobacter-Methylotenera enrichment grown under different 
methane concentrations, temperatures, and salinities (Figures 3A–C). 
Methylotenera mobilis (DSM 17540), a phylogenetically closely 
related species of the methylotroph identified in the enrichment 
co-culture, was previously analyzed to confirm that the methylotroph 
does not produce any BHPs (Richter et  al., 2023). The BHP 
distributions for Methylovulum psychrotolerans grown under 

FIGURE 1

Average methane oxidation rates (μmol CH4 L−1 day−1) and 
standard deviations (where n = 3) for Methylobacter-
Methylotenera experimental set ups. Experiments were grown 
with (A) different methane concentrations (expressed by the 
amount of methane (%) added to the headspace), 
(B) temperatures, and (C) variations in salinities. At standard 
conditions, the Methylobacter-Methylotenera enrichment was 
amended with 5% CH4 and grown at 15°C with 0 g/L NaCl. For 
each experimental set up, only one parameter was varied (i.e., 
methane concentrations, temperature, or salinity) while the other 
parameters remained constant. Methane oxidation rates were 
corrected using heat killed controls (see Supplementary Table S1 
for all methane oxidation rates and experimental conditions).

TABLE 1 Results from 16S rRNA gene amplicon sequencing reported as average relative abundance (% of total) and standard deviation (n = 3) of 16S 
rRNA gene reads for methanotrophs and methylotrophs detected in the Methylobacter-Methylotenera enrichment (where Temp. = temperature and 
n.d. = not detected).

Growth conditions Relative abundance of 16S rRNA gene reads (% of total)

Experiment CH4 
(%)

Temp. 
(°C)

Salinity 
(g/L 

NaCl)

Methylobacter 
spp.

Methylomonas 
spp.

Methylotenera 
spp.

Methylophilus 
spp.

Other

Time 0* – 15 0 78.8 ± 2.3 0.1 ± 0.1 9.4 ± 2.5 1.2 ± 1.2 10.5 ± 2.2

Methane 5 15 0 83.6 ± 0.9 0.1 ± 0.1 2.6 ± 0.4 0.3 ± 0.1 13.3 ± 0.7

Temp. 5 30 0 60.7 ± 5.6 n.d. 25.6 ± 2.6 2.6 ± 1.1 11.0 ± 3.5

Salinity 5 15 10 62.9 ± 5.4 n.d. 0.1 ± 0.0 15.3 ± 3.3 21.7 ± 2.2

Total reads per sample are reported in Supplementary Table S2.
*Time 0 samples were grown under standard conditions (15°C with 5% CH4 and 0 g/L NaCl) and taken at the start of each experiment except for the salinity cultures, as these were slowly 
adapted to higher salinities over several months and time 0 samples could not be grown at standard conditions.
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different temperatures are also reported (Figure 3D). All the BHPs 
identified in this study are listed in Supplementary Tables S6, S7.

In the Methylobacter-Methylotenera enrichment experiments, 
35-aminobacteriohopane-32,33,34-triol (aminotriol from herein) and 
aminopentol were the most abundant BHPs (Figures 3A–C). The PCA 
of the BHP data confirms that the BHPs extracted from our triplicates 
were consistent with each other and cluster together in the biplot, with 
the exception of one of the triplicates grown at a temperature of 30°C 
(Figure 4). Further, this highlights that the largest variability observed 
in the BHP distributions occurred in incubations grown at higher 
salinities (i.e., PC1 42.6%).

Using new analytical techniques, we were able to detect a much 
broader diversity of BHPs in our samples (Hopmans et  al., 2021; 

Figures 3A–C) than observed using previous analytical techniques 
(Schulenberg-Schell et al., 1989; Moreau et al., 1995; Talbot et al., 2001, 
2016; Kusch et al., 2018). Notably, BHPs with an ethyl group attached 
to the carbamate moiety of the side chain were detected in the 
Methylobacter-Methylotenera enrichments grown at higher salinities 
(Figure 3C; Supplementary Figure S8). We refer to these BHPs as 
ethylcarbamate (EC)-aminoBHPs: EC-aminotriol, EC-aminotetrol, 
and EC-aminopentol (see Supplementary material S4.2.1). In addition, 
an unknown composite BHP was also detected in Methylobacter-
Methylotenera enrichments adapted to higher salinities 
(Supplementary material S4.2.2; Supplementary Figure S7).

The most abundant BHPs detected in Methylovulum 
psychrotolerans were aminotriol and Δ11-aminotriol, followed by 
aminotetrol, aminopentol, and their unsaturated versions (Figure 3D). 
In addition, methylcarbamate-aminoBHPs, ethenolamine-BHPs, 
N-formylated-aminoBHPs, and a novel unknown composite BHP 
were also detected in the Methylovulum psychrotolerans cultures 
(Supplementary material S4.2.3; Supplementary Figure S8).

4 Discussion

4.1 Lipid response of 
Methylobacter-Methylotenera to increasing 
methane concentrations

In the Methylobacter-Methylotenera enrichment experiments, 
methane oxidation rates increased with increasing methane 
concentrations (Figure  1). In good agreement with these results, 
methane concentrations in lakes are usually positively correlated with 
methane oxidation rates (Kankaala et al., 2006; Guérin and Abril, 
2007; Martinez-Cruz et al., 2015), suggesting that methanotrophs are 
sensitive to changes in methane availability and thereby actively 
regulate the amount of methane emitted from lakes.

The 16S rRNA gene amplicon sequencing results showed that 
Methylobacter spp. was the most abundant methanotroph in the 5% 
CH4 amended experiments (83% of the total 16S rRNA gene reads; 
Table 1). The BHP distributions of all methane amended enrichment 
experiments are characterized by a high abundance of aminotriol and 
aminopentol (Figure 3A); this is consistent with the BHP distributions 
observed in other Methylobacter strains (Osborne, 2015; Rush et al., 
2016). We observed no major changes in the overall BHP distributions 
in the 0, 0.5, 5, and 10% CH4 amended enrichment experiments 
(Figure  3A). This is confirmed by a PCA, where the methane 
concentration experiments all clustered together with our time zero 
samples (Figure  4). Overall, these results point to the utility of 
aminotriol and aminopentol as chemotaxonomic biomarkers for 
Methylobacter methanotrophs, which are an important component of 
the methanotrophic community contributing to methane oxidation in 
freshwater systems (Knief, 2015).

The total BHP concentrations in the enrichments (not corrected 
for cell density) increased with increasing CH4 and higher methane 
oxidation rates, which reflects an increase in aminotriol, 
aminotetrol, aminopentol in the CH4 amended experiments relative 
to the unamended CH4 experiments (Figure  3A). In previous 
enrichment incubations for methanotrophs, only aminopentol 
concentrations increased with increasing methane concentrations, 
likely reflecting increased growth or activity of Methylobacter sp. 

FIGURE 2

Quinone distributions from the Methylobacter-Methylotenera 
enrichment for the (A) temperature experiments and (B) salinity 
enrichments. Quinone distributions are also shown for (C) biomass 
from Methylotenera mobilis (DSMZ 17540) and (D) Methylovulum 
psychrotolerans grown at different temperatures where 
UQ = ubiquinone and MK = menaquinone, and where “b” and “c” refer 
to isomers. Quinone isomers were named as “a,” “b,” and “c” based on 
the retention times for all quinones identified in the three cultures. 
UQ7:7, UQ8:8 + OCH3, UQ10:10 represent sums of all the isomers. “UQ 
other” is a sum of all other ubiquinones detected and “MK” is a sum of 
all menaquinones detected. See Supplementary Tables S3–S5 for the 
full list of respiratory quinones. Panels (A,B) represent an average of 
triplicate experiments. Triplicates were not available for panels (C,D) 
and reflect single experiments. Also, note that in Methylobacter-
Methylotenera enrichments grown at temperatures of 15°C and a 
salinity of 0 g/L NaCl with 0, 5, and 10% methane additions quinones 
were not detected and therefore are not included in this figure.
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present in the microcosm experiments (Osborne, 2015; Sherry 
et  al., 2016). An increase in aminoBHP abundance is often 
interpreted as evidence for increased methane-oxidation by MOB 
in the environment, particularly in paleo-records (Coolen et al., 
2008; Blumenberg et al., 2013; Talbot et al., 2014). Further work 
with pure MOB cultures and exact concentrations of BHPs per cell 
are needed to confirm whether the increase in the total absolute 
abundance of aminoBHPs at higher methane concentrations reflects 
an increase in cells oxidizing methane or a higher concentration of 
aminoBHPs in a small percentage of cells performing 
methane oxidation.

4.2 Methanotroph lipid response to 
temperature

The highest methane oxidation rates for the Methylobacter-
Methylotenera enrichments occurred at 15 and 20°C (Figure 1). This 

reflects the optimal growth temperatures for the mesophilic members 
of the Methylobacter and Methylotenera genus at 23–35°C and 
18–21°C, respectively (Afshin et  al., 2021; Collins et  al., 2017). 
Methylovulum psychrotolerans is considered psychrotolerant and can 
grow at temperatures from 2 to 36°C, but with optimal growth also 
occurring between 20 and 25°C (Oshkin et al., 2016).

Methylovulum psychrotolerans and Methylotenera mobilis both 
have a similar quinone distribution to that of the Methylobacter-
Methylotenera enrichment, where UQ8:8 is the most abundant 
quinone, followed by UQ7:7 (Figure  2). Proteobacteria, including 
Betaproteobacteria and Gammaproteobacteria, are known to produce 
UQ8:8 and UQ7:7 in high abundance (Collins and Green, 1985; 
Hiraishi, 1999; Kersters et al., 2006). In Methylovulum psychrotolerans, 
the relative abundance of UQ8:8 increases with temperature from 4 to 
20°C. Similarly, the relative abundance of UQ8:8 increases at 20°C in 
the Methylobacter-Methylotenera co-culture compared to the 
incubations at 4 and 30°C (Figure 2A). Increased relative abundance 
of UQ8:8 at 20°C suggests that production of this quinone is associated 

FIGURE 3

BHP distributions and total BHP concentrations (response units per liters) for the Methylobacter-Methylotenera enrichment for (A) methane 
concentration experiments, (B) different temperature treatments, and (C) salinity enrichments. Panels (A–C) are averages of triplicate experiments. BHP 
distributions are also shown for (D) Methylovulum psychrotolerans that reflects single culture experiments where unsat. = unsaturated, 
MC = methylcarbamate, and EC = ethylcarbamate. N-acyl-aminotriols, N-acyl-aminopentols, aminohexols, MC-aminoBHPs, EC-aminoBHPs, N-
formylated-aminoBHPs, and ethenolamine-BHPs represents a sum of BHPs with similar functional groups. “Other BHPs” is a sum of all other BHPs that 
were detected in low abundance, including unknown composite BHPs. See Supplementary Tables S5, S6 for the full list of BHPs.
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with optimal growth conditions due to either an increase in biomass 
or an increase in UQ8:8 production per cell. In the Methylobacter-
Methylotenera enrichment both menaquinones and UQ8:8 with 
methoxy groups increase at lower temperatures (Figure 2A); however, 
this does not occur in Methylovulum psychrotolerans. It was 
previously demonstrated that in Listeria moncytogenes the 
menaquinone content in the cell membrane increases at lower 
temperatures to improve membrane fluidity (Seel et al., 2018; Flegler 
et al., 2021). This might also explain the increase in menaquinones in 
the Methylobacter-Methylotenera enrichments. Alternatively, the 
changes in quinone distributions observed in the Methylobacter-
Methylotenera enrichment could be  attributed to a shift in the 
microbial community composition at lower temperatures.

In the Methylobacter-Methylotenera enrichment, Methylobacter 
spp. is the most abundant methanotroph in the 15 and 30°C 
temperature experiments (Table  1) and also the primary BHP 
producer, as Methylotenera spp. does not produce BHPs (Richter 
et al., 2023). In addition, all other species detected in the culture 
are present in low relative abundance (Table  1). In the BHP 
distributions, aminotriol decreases at higher temperatures, whereas 
the relative abundances of aminopentol and adenosylhopane both 
increase (Figure 3C). In the Type I methanotroph, Methylovulum 
psychrotolerans, the relative abundance of aminotetrol and 
aminopentol increase with temperature from 4 to 20°C 
(Figure  3D). A similar increase in aminoBHPs at higher 

temperatures was previously observed in the River Tyne microcosm 
experiments where the highest concentrations of aminotriol and 
aminotetrol occurred between 4 and 21°C and aminopentol 
increased from 4 to 40°C (Osborne et  al., 2017). However, 
community succession of different species of Methylobacter sp. in 
the River Tyne experiments explained some of the differences in 
aminoBHP production at different temperatures (Sherry et  al., 
2016; Osborne et al., 2017). Pure culture experiments with another 
Type I methanotroph (strain CEL 1923) did not show the same 
trends observed in our cultures, where only aminotetrol increased 
with temperature and aminopentol decreased at higher 
temperatures (Jahnke et  al., 1999). This could indicate species-
specific adaptations of BHP production at different temperatures. 
In mesocosm experiments in Sphagnum peat bogs that were likely 
dominated by Type II methanotrophs, aminotriol, aminotetrol, and 
aminopentol concentrations also increased in response to 
increasing temperatures from 5 to 25°C (van Winden et al., 2020). 
These studies suggest that changes in aminoBHPs could reflect 
either community succession or a physiological adaptation at 
different temperatures. In the case of the Methylobacter-
Methylotenera enrichment and in Methylovulum psychrotolerans, 
the increase in aminotetrol and aminopentol reflects an increase in 
hydroxyl groups likely promoting increased hydrophilic 
interactions among lipids in the lipid membrane. An increase in 
the number of hydroxylations at higher growth temperatures was 

FIGURE 4

Biplot visualization of PC1 and PC2 for the BHP dataset from the Methylobacter-Methylotenera enrichment culture. The experiments are colored by 
treatment type (for details see Supplementary Table S1). The BHP loadings are colored by their average contribution to PC1 and PC2 where unsat. = 
unsaturated (unknown double bond position), MC = methylcarbamate, and EC = ethylcarbamate.
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previously observed in membrane lipids in Rhizobium tropici and 
Burkholderia cepacian to increase the lateral interactions 
between lipid molecules in response to stress (Taylor et al., 1998; 
Vences-Guzmán et  al., 2011). Thus, an increase in aminoBHPs 
with more hydroxyl groups could be  a stress related response 
in the Methylobacter-Methylotenera enrichment and in 
Methylovulum psychrotolerans.

PCA results from the Methylobacter-Methylotenera enrichment 
experiments show that Δ6- and Δ11-aminotriol have a minor 
contribution to temperatures below 30°C (Figure 4). We observed a 
slight increase in Δ6-aminotriol at lower temperatures. However, this 
response in the Methylobacter-Methylotenera enrichment was much 
smaller than that observed in Methylovulum psychrotolerans, where Δ11-
aminotriol, Δ11-aminotetrol, Δ11-aminopentol, unsat. MC-aminotriol, 
unsat. ethenolamine-bacteriohopanetetrol, and unsat. N-formylated-
aminotriol all increase with decreasing temperatures relative to their 
saturated counterparts (Figure 3D). So far, the increase in unsaturated 
BHPs at colder temperatures has not been observed in other 
methanotroph cultures (Jahnke et al., 1999; Osborne et al., 2017; van 
Winden et al., 2020). In the River Tyne enrichment experiments, for 
instance, unsaturated BHPs were only observed at high temperatures 
(i.e., 40 and 50°C) and corresponded to a shift in the methanotroph 
community to a different species of Methylobacter and the thermophilic 
genus Methylocaldum (Sherry et al., 2016; Osborne et al., 2017). This 
suggests that mono-unsaturated aminoBHPs, in particular Δ11-
aminopentol, could be a unique temperature adaptation in certain 
methanotrophs, such as Methylovulum spp. and Methylocaldum spp., 
for maintaining membrane homeostasis under colder conditions 
(Cvejic et al., 2000; van Winden et al., 2012; Bale et al., 2019). The 
differences in BHP response to temperature in the Methylobacter-
Methylotenera enrichment compared to Methylovulum psychrotolerans 
and previous culture studies (i.e., Jahnke et al., 1999; Osborne et al., 
2017; van Winden et al., 2020) suggests species specific adaptations in 
BHPs to changes in temperature. In general, this highlights the need for 
more environmental and culture studies to understand how 
temperature affects BHP distributions in MOB.

4.3 Salinity effects on 
methanotroph-associated BHPs and 
quinones

Adapting the Methylobacter-Methylotenera enrichment to 
different salinities resulted in a notable decrease in methane 
oxidation rates at 10 g/L NaCl and total BHP concentrations (not 
corrected for cell density; Figure  1C), likely because this 
enrichment was originally isolated from a freshwater lake and not 
accustomed to large changes in salinity (van Grinsven et al., 2020). 
In these experiments, Methylobacter spp. remains the primary 
methanotroph at 10 g/L NaCl and other methanotrophs present at 
0 g/L NaCl are absent from our 16S rRNA gene amplicon results. 
For the methylotrophs, however, Methylophilus spp. increased in 
abundance, whereas Methylotenera spp. is largely absent indicating 
a change in the microbial interactions (Table 1). In pure culture 
experiments with a haloalkaliphilic Type I  methanotroph, 
Methylotuvimicrobium alcaliphilum, growth rates and hopanoid 
absolute abundance decreased at higher salinities (Cordova-
Gonzalez et al., 2021), suggesting that an increase in salinity could 

also lead to lower methane oxidation rates and BHP abundance in 
a Methylotuvimicrobium-rich community. Similarly, previous 
enrichment experiments with River Tyne sediments led to a 
decrease in methane oxidation rates at higher salinities; however, 
there was no corresponding decrease in total BHP concentrations 
(Osborne, 2015; Sherry et al., 2016). This lack of change in BHP 
concentration in the River Tyne enrichments, could be explained 
by a shift in the methanotroph community from Methylobacter to 
Methylomicrobium spp., which was better adapted to growing at 
higher salinities (Sherry et al., 2016). These results seem to suggest 
that methane oxidation rates generally decrease at higher salinities, 
although it is unclear whether this is driven by a decrease in the 
number of cells or in methanotroph activity.

In the Methylobacter-Methylotenera enrichments, the only notable 
change in quinone distribution with increasing salinity is an increase 
in UQ10:10. Previous studies demonstrated that UQ10:10 is directly 
involved in regulating membrane permeability and elasticity under 
osmotic stress in an Escherichia coli strain (Eriksson et al., 2019). It is 
likely that UQ10:10 plays a similar role in the enrichment culture. 
However, the increase in UQ10:10 could also be  linked to 
non-methanotrophs at 10 g/L NaCl relative to the enrichments grown 
at 0 g/L NaCl, as shown by the change in the 16S rRNA gene read 
distribution and a change in dominance in the methylotroph from 
Methylotenera spp. to Methylophilus spp. (Table 1).

Salinity accounts for the largest variability of BHPs in the 
Methylobacter-Methylotenera experiments (PC1 42.6%; Figure  4). 
We  observe an overall decrease in the relative abundance of 
aminopentol relative to 0 g/L NaCl (Figure  3C). The relative 
abundances of MC-aminotriol, MC-aminotetrol, and 
MC-aminopentol, as well as their ethylcarbamate forms all increase 
at higher salinities (Figure 3C). In contrast, there are no significant 
changes in individual BHP concentrations in the River Tyne 
incubations at salinities from 1 to 70 g/L NaCl, and only at 120 g/L 
NaCl do individual BHP concentrations significantly decrease 
(Osborne, 2015). Incubations at different salinities with the 
haloalkaliphilic Methylotuvimicrobium alcaliphilum, led to either a 
decrease or no change in individual BHP concentrations at higher 
salinities (Cordova-Gonzalez et al., 2021). As we are working with an 
enrichment co-culture (see van Grinsven et al., 2020), the individual 
changes in BHP abundances could either be  explained as a 
physiological adaptation by Methylobacter or a change in the 
microbial community. As demonstrated by the 16S rRNA gene 
sequencing results, the relative abundance of 16S rRNA gene reads of 
non-methanotrophs, such as Methylophilus spp., increase at 10 g/L 
NaCl in the Methylobacter-Methylotenera co-culture (Table  1); 
suggesting that other microbes might also be responsible for BHP 
production in the enrichments. A protein blast search (NCBI, 
National Center for Biotechnology Information) for the squalene-
hopene cyclase gene of Bradyrhizobium japonicum (accession no. 
WP_038942977.1) did not yield any hits for Methylophilus spp. 
Although this suggests that the Methylophilus spp. present in the 
enrichment might not be  responsible for BHP production in the 
enrichment, it does not rule out the possibility of BHP production by 
other microorganisms present. As a physiological adaptation, the 
increase in BHPs with additional modifications to the sidechain was 
previously proposed to promote intracellular associations that might 
lead to lipid raft-like domains and tighter packing of saturated 
phospholipids in a liquid-ordered phase (Sáenz, 2010). More work, 
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however, is needed to test whether this holds true for BHPs with 
amine functional groups. To simulate natural methanotroph 
adaptations to changes in salinity, culture experiments with halophilic 
methanotrophs and/or enrichments from marine sites are needed, 
and further modifications in membrane lipids should be evaluated.

5 Conclusion

Lipid analyses of Methylobacter-Methylotenera enrichment 
from a freshwater lake and from preliminary experiments with an 
extremophile, Methylovulum psychrotolerans, highlight several 
distinct membrane lipid responses of MOBs to environmental 
stress. In the Methylobacter-Methylotenera enrichments grown at 
higher methane concentrations both methane-oxidation rates and 
total BHP concentrations (not corrected for cell density) increased. 
The increase in BHPs was driven by an increase in aminoBHPs, 
which should be  explored further as potential biomarkers for 
methane oxidation. In the enrichments and Methylovulum 
psychrotolerans, the relative abundance of aminopentol increased 
at higher temperatures. In contrast, the relative abundances of 
unsaturated BHPs increased in the Methylovulum psychrotolerans 
culture at lower temperatures. For Methylovulum psychrotolerans 
and the Methylobacter-Methylotenera enrichment, UQ8:8 increased 
in relative abundance at 20°C, corresponding to the optimal 
growth temperatures of both cultures. This highlights potential 
specific BHP adaptations in different methanotrophs to variations 
in temperature, but a more consistent response in ubiquinone 
distributions. Our salinity incubations account for the largest 
variance in the BHP dataset for the Methylobacter-Methylotenera 
enrichment, but only a slight increase in UQ10:10 and no other 
major changes in the quinone distributions. The BHP variability at 
higher salinities is mainly explained by increases in the relative 
abundance of aminoBHPs with additional modifications to the side 
chain (e.g., MC-aminoBHPs, EC-aminoBHPs, and N-formylated-
aminoBHPs). However, more work is needed to test whether this 
is an adaptation to changes in salinity by methanotrophs. This 
work highlights the potential of using a combined biomarker 
approach by analyzing both respiratory quinones and BHPs to 
understand how environmental changes influence methanotroph 
activity and lipid membrane adaptations in modern settings.
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