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Background: Rheumatoid arthritis (RA) is a persistent autoimmune disorder 
marked by inflammation and joint damage. Although current treatments, such 
as disease-modifying antirheumatic drugs (DMARDs), help control symptoms, 
they frequently cause substantial side effects, highlighting the urgent need 
for safer and more effective alternatives. Recent research indicates that gut 
microbiota might be  pivotal in RA development through the “gut-joint axis,” 
presenting novel therapeutic possibilities.

Purpose: This study seeks to explore the therapeutic potential of the traditional 
Chinese medicine (TCM) compound new bitongling (NBTL) for RA, with an 
emphasis on its capacity to regulate gut microbiota and suppress angiogenesis 
via the vascular endothelial growth factor (VEGF) signaling pathway.

Methods: We utilized a collagen-induced arthritis (CIA) rat model to assess the 
impact of NBTL. The study employed 16S ribosomal DNA (16S rDNA) sequencing 
to analyze gut microbiota composition, machine learning techniques to 
identify characteristic microbial taxa, and transcriptomic analysis (GSVA) to 
assess the impact on the VEGF signaling pathway. The findings were further 
validated through analysis with deep neural network models and in vivo/in vitro 
experiments, including western blot, immunofluorescence, and miRNA analysis.

Results: NBTL treatment markedly diminished inflammation in RA rats, 
evidenced by the reduced expression of TNF-α, IL-17, IL-6, and ASC in 
synovial tissues. Histopathological analysis confirmed alleviation of joint 
damage. Five characteristic microbial taxa, including f_Mycoplasmataceae, s_
Metamycoplasma_sualvi, and g_Prevotellaceae_Ga6A1_group, were identified 
and associated with NBTL’s modulation of the VEGF pathway. Gene set variation 
analysis (GSVA) revealed significant downregulation of the VEGF signaling 
pathway following NBTL treatment. Subsequent experiments confirmed that 
NBTL inhibited VEGF and its receptors, VEGFR1 and VEGFR2, along with HIF-1α 
(hypoxia-inducible factor 1-alpha), thereby reducing angiogenesis. Additionally, 
NBTL upregulated miR-20a-5p and miR-223-3p, contributing to its anti-
angiogenic effects.

Conclusion: NBTL exhibits significant therapeutic potential in RA by modulating 
gut microbiota and inhibiting the VEGF signaling pathway. These findings 
support NBTL’s use as a promising candidate for RA treatment, emphasizing the 
need for further research on its mechanisms and clinical application.
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1 Introduction

Rheumatoid arthritis (RA) is an autoimmune disorder mainly 
defined by inflammation in the synovial joints, resulting in swelling, 
pain, and permanent joint damage. This significantly impairs patients’ 
quality of life and work capacity. Research indicates that within 
10 years, the disability rate for RA patients can reach as high as 43.5%. 
As the number of cases continues to rise, RA has become a major 
rheumatic disease globally, with a prevalence of 0.5 to 1% (Almutairi 
et al., 2021). Although RA remains incurable, guidelines from major 
rheumatology associations in western countries recommend a treat-
to-target strategy to alleviate symptoms and control disease 
progression (Aletaha et al., 2010). However, prolonged use of existing 
treatments, including conventional and biologic disease-modifying 
antirheumatic drugs (DMARDs), is frequently associated with 
significant side effects (El Masri et al., 2020; Gomides et al., 2021). 
Consequently, there is a pressing need to explore new, effective 
treatments with fewer adverse effects.

Recent research has increasingly explored the possible connection 
between gut microbiota and RA. Epidemiological and translational 
studies have indicated that imbalances in gut microbiota are strongly 
linked to RA development (Catrina et al., 2016; Scher et al., 2016; 
Scher et  al., 2013; Holers et  al., 2018). Notably, gut microbiota 
composition shifts significantly in the early stages of RA, contributing 
to the “gut-joint axis” theory (Wells et al., 2020; Zaiss et al., 2021). This 
theory posits that dysbiosis in gut microbiota not only promotes the 
onset of RA but also contributes significantly to maintaining the 
inflammatory state associated with the disease (Zhang X. et al., 2015; 
Chen et al., 2016; Marietta et al., 2016; Maeda et al., 2016; Alpizar-
Rodriguez et al., 2019; Inamo, 2021; Alpizar Rodriguez et al., 2021; 
Jeong et al., 2019). Additionally, angiogenesis in the synovium, which 
provides nutrients to inflamed areas and exacerbates joint damage, is 
also linked to microbial imbalances (Zaiss et al., 2021; Zhang Y. et al., 
2015; Alunno et al., 2015; Rogier et al., 2017). These findings offer new 
perspectives on RA pathophysiology and suggest the potential for 
therapeutic strategies targeting gut microbiota.

One research has shown that pairing mangiferin with cinnamic 
acid can ease RA symptoms through inhibition of the TLR4/NFκB/
NLRP3 signaling pathway (Li et  al., 2022). Various bioactive 
compounds derived from TCM, such as alkaloids, saponins, 
flavonoids, and terpenoids, have also shown potential in suppressing 
bone destruction and modulating immune responses (Shi et al., 2020). 
Furthermore, TCM components have been found to reduce RA 
symptoms by regulating endoplasmic reticulum stress, providing a 
basis for new therapeutic approaches (de Seabra Rodrigues Dias et al., 
2021). Meta-analyses and clinical evaluations have further emphasized 
the effectiveness of TCM formulas in improving key biomarkers, such 
as rheumatoid factor and anti-cyclic citrullinated peptide antibodies, 
in RA patients (Tang et al., 2021). These results offer solid support for 
incorporating TCM into modern medical practices.

Importantly, recent studies have emphasized TCM’s considerable 
potential in modulating gut microbiota for RA treatment. For 
example, studies have shown that Danggui Niantong Decoction can 

improve RA by regulating gut microbiota and promoting 
mitochondrial apoptosis in animal models (Lu et al., 2022). Similarly, 
paeoniflorin has been shown to dynamically reshape gut microbiota 
in CIA rats, indicating its potential therapeutic effects on RA through 
microbiota modulation (Peng et al., 2019). These studies underscore 
the importance of exploring TCM’s role in modulating gut microbiota 
as a therapeutic strategy for RA.

In addition to gut microbiota regulation, TCM has demonstrated 
significant potential in inhibiting angiogenesis related to RA. For 
example, Yuxuebi tablets have demonstrated anti-angiogenic activity 
in RA rat models by inhibiting the LOX/Ras/Raf-1 signaling pathway 
(Su et  al., 2022). Similarly, oxymatrine has been found to inhibit 
synovial angiogenesis in CIA rats by targeting the HIF-VEGF-Ang 
signaling and the PI3K/Akt pathways (Ao et al., 2022). These pieces of 
evidence further reinforce the potential of targeting angiogenesis to 
control RA progression.

Based on this background, our study hypothesizes that new 
bitongling (NBTL) can modulate gut microbiota to influence the 
VEGF pathway, thereby inhibiting angiogenesis in RA and achieving 
therapeutic effects. Our research team has previously demonstrated 
that new bitongling significantly improves the pathological state of RA 
in rats and alleviates arthritis symptoms by inhibiting the JAK2/
STAT3 signaling pathway (Li et al., 2021). To gain deeper insights into 
the mechanism, we intend to apply deep neural network prediction 
techniques to construct a regulatory model linking gut microbiota and 
the VEGF pathway. Experimental validation of the model’s predictions 
will provide robust evidence for NBTL’s efficacy in treating RA, 
furthering the integration of TCM into modern medicine.

2 Materials and methods

2.1 Preparation of new bitongling and 
Tripterygium wilfordii tablets

New bitongling, a traditional Chinese medicine (TCM) 
compound, is formulated using herbs such as Cinnamomi ramulus 
(Gui Zhi), Saposhnikoviae radix (Fang Feng), Ephedrae herba (Ma 
Huang), Sinomenii caulis (Qing Feng Teng), Aconiti radix (Chuan Wu), 
and Vespae nidus (Feng Fang), sourced from the pharmacy at Jiangsu 
Provincial Hospital of TCM. Prior to preparation, all raw herbs 
underwent stringent quality control measures, including 
morphological identification and visual inspection to verify the 
authenticity and purity of each herb. Additionally, each herb was 
standardized based on established pharmacopeial standards (China 
Pharmaceutical Association, 2020), ensuring that they met predefined 
criteria for key active components to guarantee consistency across 
different batches.

The preparation process involves several key steps: Aconiti radix 
(Chuan Wu) is first decocted in double-distilled water at 100°C for 
30 min. Subsequently, the remaining herbs are added and the mixture 
is decocted for an additional 45–60 min. The resulting liquid is then 
filtered to obtain the herbal extract. This decoction process is repeated 
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to ensure thorough extraction of active constituents. The combined 
extracts are concentrated and centrifuged at 5,000 rpm for 30 min to 
eliminate residues, yielding a final concentration of 1.22 g/mL. The 
decoction is then aliquoted and stored at −20°C for future use. All 
preparation batches underwent quality control checks, including 
visual inspection and adherence to standardized preparation 
protocols, to confirm the consistency and potency of the extracts.

For the positive control, Tripterygium wilfordii tablets containing 
10 mg of the active ingredient were used. These tablets, produced by 
Zhejiang Deyongde Pharmaceutical Co., Ltd. (Batch number: 
2204111B), were ground into a fine powder and dissolved in distilled 
water to create a suspension. The suspension was standardized to a 
final concentration of 8 mg/mL through precise measurement and 
preparation techniques to ensure the stability and uniformity of the 
active components for experimental use.

2.2 Selection of experimental animals, 
housing, model construction, and grouping

In this study, we  selected 6-week-old female Sprague–Dawley 
(SD) rats, weighing between 180–200 g, sourced from Zhejiang Vital 
River Laboratory Animal Technology Co., Ltd. (License No. 
SCXK(Zhe)2021-0006). The rats were acclimatized for 1 week before 
the experiment in a specific pathogen-free (SPF) facility at the 
Affiliated Hospital of Nanjing University of Chinese Medicine (License 
No. SYXK(Su)2017-0069), maintained under controlled conditions 
(22 ± 2°C, 45–60% humidity). They had free access to SPF-grade feed 
(Synergy Bio, 1010086) and water. The study adhered to National 
Institutes of Health (NIH) guidelines for the care and use of laboratory 
animals and received approval from the Ethics Committee of the 
Affiliated Hospital of Nanjing University of Chinese Medicine 
(Approval No. 2022 DW-37-01).

For arthritis induction, bovine type II collagen (CII) (Beijing 
Bolide Biotech, 20021) was dissolved in 0.1 mol/L glacial acetic acid 
to a concentration of 4 g/L, stirred on ice, and stored overnight at 
4°C. This solution was then emulsified with an equal volume of 
complete Freund’s adjuvant (CFA) (Sigma, F5881) to create a 2 g/L 
collagen II emulsion. The rats were randomly assigned to either a 
normal group or a collagen-induced arthritis (CIA) model group. The 
CIA induction protocol involved intradermal injections of 0.3 mL of 
the CII emulsion on day 1, followed by a booster dose on day 7. The 
primary immunization consisted of a 1:1 mix of bovine type II 
collagen and CFA, administered at a 2 g/L concentration. The booster 
immunization used a similar 1:1 mix with incomplete Freund’s 
adjuvant (IFA) (Sigma, F5506). Arthritis severity was evaluated on day 
14 using a visual scoring system for each paw (0–4, with a maximum 
total score of 16): 0 for normal joints, 1 for slight swelling or erythema, 
2 for moderate erythema and swelling, 3 for pronounced erythema 
and swelling, and 4 for severe swelling, erythema, or ankylosis 
(Trentham et al., 1977).

The rats with successfully induced arthritis were randomly 
allocated into different treatment groups, along with a blank control 
group selected from the normal group. The groups received the 
following treatments via oral gavage for 28 days (Li et al., 2021): blank 
control group received distilled water; model group received distilled 
water; low dose new bitongling group received 2.75 g/kg/day of new 
bitongling; medium dose new bitongling group received 5.5 g/kg/day 

of new bitongling; high dose new bitongling group received 11 g/kg/
day of new bitongling; and the positive control group received 0.008 g/
kg/day of Tripterygium wilfordii solution. The selected doses for the 
low, medium, and high new bitongling (NBTL) groups were based on 
dose extrapolation from equivalent human doses using the standard 
body surface area (BSA) conversion formula (Nair and Jacob, 2016; 
Reagan-Shaw et al., 2008). These doses were further refined through 
preliminary experiments reported in our prior study, which 
demonstrated the efficacy and safety of these specific concentrations 
in a similar model (Li et al., 2021). The rats were monitored daily for 
changes in appearance, behavior, food intake, and excretion, with 
body weight measurements taken weekly. After 28 days, the rats were 
anesthetized for blood serum collection and then euthanized for the 
collection of ankle and knee synovial tissue.

2.3 Preparation of serum containing new 
bitongling and control serum

We selected 6–8 week-old SPF-grade SD rats and randomly 
divided them into the traditional Chinese medicine (TCM) group and 
the blank control group. The TCM group received an oral gavage of 
new bitongling (NBTL) at the optimal dose for in vivo rat experiments 
(high dose: 11 g/kg/day, with a drug concentration of 1.22 g/mL). The 
blank control group was administered an equal volume of 
physiological saline. Both treatments were administered daily for 
seven consecutive days. One hour after the final administration, the 
rats were anesthetized, and blood samples were collected. The blood 
was allowed to clot at 4°C for 2 h to facilitate serum and clot 
separation. The samples were then centrifuged at 3,000 rpm for 
10 min to separate the serum from the clot. The supernatant, which is 
the serum, was carefully collected. The collected serum was then 
inactivated at 56°C to eliminate any potential biological activity. This 
step is performed after serum separation. Following inactivation, the 
serum was filtered for sterilization, aliquoted, and stored at −80°C for 
subsequent experiments (Pan et al., 2023; Pei et al., 2024).

2.4 Identification of prototypical 
components and metabolites of new 
bitongling in blood using UPHLC-MS-TOF

We used ultra-performance high-performance liquid 
chromatography coupled with time-of-flight mass spectrometry 
(UPHLC-MS-TOF) to identify the prototypical components and 
metabolites of new bitongling (NBTL) in rat serum. Serum samples 
were prepared by protein precipitation and filtration. Chromatographic 
separation was performed on an acquity UPLC BEH C18 column, 
followed by mass spectrometric analysis with an electrospray 
ionization source in both positive and negative ion modes. Data 
processing included peak detection, alignment, and compound 
identification through database matching.

Ion peak data were filtered based on various conditions, with 
missing values removed. Positive and negative ion data were processed 
separately and converted to a long format for plotting, retaining only 
NBTL medicated serum group data. Vertical offsets were applied to 
avoid overlapping annotations. The “ggplot2” package (Villanueva and 
Chen, 2019) was used to visualize the data, creating plots for positive 
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and negative ions to illustrate the prototypical components 
and metabolites.

2.5 Hematoxylin and eosin staining of 
synovial tissue

Synovial tissue samples were fixed in 4% paraformaldehyde (PFA) 
(Aladdin, C104188; Sinopharm, 30525-89-4), dehydrated through 
graded ethanol solutions (Sinopharm, 100092683), and embedded in 
paraffin. Sections were cut at 4 microns, dewaxed, and rehydrated. 
Hematoxylin staining (Zhuhai Beisuo, BA4097) was used to highlight 
cell nuclei, followed by eosin staining (Zhuhai Beisuo, BA4099) to 
highlight cytoplasm. The sections were then dehydrated with 
anhydrous ethanol (Sinopharm, 100092683), cleared with xylene 
(Sinopharm, 1330-20-7), and mounted with neutral balsam 
(Sinopharm, 10004160). Hematoxylin and eosin (HE) staining was 
evaluated for synovial cell arrangement, hyperplasia, and 
inflammatory cell infiltration, with scores ranging from 0 (no lesion) 
to 4 (very severe) based on the extent of disorganization, hyperplasia, 
and infiltration. The average score was calculated to assess tissue 
damage severity across samples (Guo et al., 2017).

2.6 Serum enzyme-linked immunosorbent 
assay analysis

Serum samples stored at −80°C were thawed to room temperature 
for enzyme-linked immunosorbent assay (ELISA) analysis. The 
following reagents and consumables were used: rat interleukin-6 
(IL-6) ELISA kit (CSB-E04640r), rat interleukin-17 (IL-17) ELISA kit 
(CSB-E07451r), and rat tumor necrosis factor alpha (TNF-α) ELISA 
kit (CSB-E11987r) from Cusabio. Biotin-labeled antibodies and 
HRP-labeled streptavidin were diluted with their respective diluents 
at a ratio of 10 μL to 990 μL and kept on ice. The wash buffer was 
prepared by mixing 1 mL of concentrate with 24 mL of deionized 
water. Standard proteins were prepared through serial dilutions. The 
ELISA procedure involved adding standard proteins and serum 
samples to a coated 96-well plate, followed by incubation at 37°C. After 
2 h, 100 μL of biotin-labeled antibody was added and incubated for 
another hour. The plate was then washed five times with 200 μL of 
wash buffer per wash, followed by the addition of 100 μL of 
HRP-labeled streptavidin and a 1-h incubation. The wash step was 
repeated, and 90 μL of 3,3′,5,5′-tetramethylbenzidine (TMB) substrate 
was added and incubated in the dark. Finally, 50 μL of stop solution 
was added, and the absorbance was measured at 450 nm using a 
microplate reader.

2.7 Western blot analysis

In this study, western blot analysis was performed on synovial 
tissue samples. Key reagents included 10X Transfer Buffer, 10X 
Electrophoresis Buffer (pH 8.3), and 10X Tris Buffered Saline with 
Tween-20 (TBST) Buffer. We prepared working solutions such as 10% 
sodium dodecyl sulfate (SDS), 10% ammonium persulfate (APS), and 
Tris-HCl buffers at pH 8.8 and 6.8, along with stacking and separating 
gels of varying concentrations for sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The synovial 
tissues were minced, ground in liquid nitrogen, and lysed using 
radioimmunoprecipitation assay (RIPA) buffer with a protease inhibitor 
cocktail (Sigma, P8340). Protein concentrations were determined using 
the bicinchoninic acid (BCA) protein assay kit (Beyotime, P0010). The 
samples were resolved on SDS-PAGE gels and transferred to 
polyvinylidene difluoride (PVDF) membranes (Millipore, ISEQ00010). 
Membranes were blocked with 5% skim milk (BD, 232100) in TBST, 
then incubated overnight with primary antibodies in 1% bovine serum 
albumin (BSA)/TBST (Sigma-Aldrich, V900933). The primary 
antibodies used were glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) (Zen-Bio, 200306-7E4), vascular endothelial growth factor 
(VEGF) (Santa Cruz, sc-53463), vascular endothelial growth factor 
receptor 1 (VEGFR1) (Proteintech, 19003-1-AP), vascular endothelial 
growth factor receptor 2 (VEGFR2) (Abcam, ab32152), hypoxia-
inducible factor 1-alpha (HIF-1α) (Santa Cruz, SC-13515), and 
apoptosis-associated speck-like protein containing a CARD (ASC) 
(Santa Cruz, sc-514414). Secondary antibodies included 
HRP-conjugated anti-mouse (Beyotime, A0216) and anti-rabbit 
(Beyotime, A0208), as well as fluorescent antibodies Alexa Fluor 488 
Donkey Anti-Rabbit IgG (H + L) (Abcam, ab150061) and Alexa Fluor 
488 Donkey Anti-Mouse IgG (H + L) (Abcam, ab150105). Detection 
was performed using an enhanced chemiluminescence (ECL) substrate 
(Tanon, 180-5001) and visualized with a Tanon5200 Imaging System.

2.8 Quantitative polymerase chain reaction 
for mRNA and miRNA analysis in rat and 
cell samples

For quantitative polymerase chain reaction (qPCR) detection of 
mRNA and miRNA in rats and cells, we use specific kits and reagents. 
RNA is extracted using RNAiso Plus from Takara, combined with 
Alladin’s chloroform, isopropanol, ethanol, and diethylpyrocarbonate 
(DEPC) (C128130, I112011, E111989, D105557). This involves 
homogenizing in TRIzol (Thermo Fisher Scientific, 15596026), adding 
chloroform, and undergoing centrifugation to isolate RNA, which is 
then precipitated and washed before dissolving in DEPC water for 
concentration measurement.

For reverse transcription, the PrimeScript™ RT kit with gDNA 
Eraser from Takara is used for mRNA, while miRNA in rats employs the 
Ribobio’s Bugle-Loop™ RT kit (Guangzhou RiboBio Co., Ltd.) (Zhou 
et al., 2015), following the specific protocols of each. Quantitative PCR 
is performed using SYBR® Premix Ex Taq™ from Takara, starting with 
a 95°C denaturation, followed by 40 cycles and melting curve analysis.

Expression levels are calculated using the 2 CT−∆∆  method, 
comparing Ct values between target and reference genes (Livak and 
Schmittgen, 2001). Rat mRNA primers are detailed in Table 1. Due to 
intellectual property constraints, rat miRNA primer sequences from 
the Ribobio kit are not disclosed. Cell miRNA primers are provided 
in Table 2.

2.9 Gut microbiota 16S rDNA sequencing 
of rats

Rats were anesthetized with 10% Sodium Pentobarbital 
(Wengjiang Reagent, CAS: 57-33-0) via intraperitoneal injection. 
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Fecal samples were collected under sterile conditions and either used 
immediately or stored at −80°C. Microbial DNA was extracted using 
the E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, United States), with 
quality checked by agarose gel electrophoresis. Concentration and 
purity were measured with a NanoDrop2000 spectrophotometer 
(Thermo Scientific, United  States). The V3–V4 region of the 16S 
rRNA gene was amplified using primers 338F and 806R. The PCR mix 
included TransStart FastPfu Buffer, dNTPs, primers, and DNA 
polymerase, in a final volume of 20 μL. The PCR process began with 
denaturation at 95°C for 3 min, followed by 27 cycles at 95°C, 55°C, 
and 72°C, each for 30 s. The final step was a 10-min extension at 72°C, 
followed by cooling at 4°C. PCR products were separated on a 2% 
agarose gel, then purified and quantified. Sequencing libraries were 
created using the NEXTFLEX Rapid DNA-Seq Kit, which included 
adapter ligation, magnetic bead purification, and PCR amplification. 
Sequencing was performed using the Illumina PE300/PE250 platform. 
The raw paired-end data underwent quality control with Fastp (Chen 
et al., 2018) (v0.19.6) and were merged using FLASH (Magoč and 
Salzberg, 2011) (v1.2.11). Clustering into operational taxonomic units 
(OTUs) was done with UPARSE (Edgar, 2013; Stackebrandt and 
Goebel, 1994) (v7.1) at 97% similarity, with chimeric and 
mitochondrial sequences removed. To balance sequencing depth, each 
sample was normalized to 20,000 reads, achieving a Good’s coverage 
of 99.09%. OTUs were classified with the RDP Classifier (Wang et al., 
2007) (v2.11) at a 70% confidence threshold, referencing the Silva 16S 
rRNA Gene Database (v138), followed by community 
composition analysis.

2.10 Preliminary analysis of gut microbiota

The “data table” package (Barrett et al., 2021) was used to read the 
OTU table, set OTU ID as row names, and extract sample and 
taxonomy tables. The “amplicon” package (Callahan et  al., 2016) 
calculated microbial relative abundance with a threshold of 1 × 10−4.

The “ropls” package (Thévenot et al., 2015) constructed the partial 
least squares discriminant analysis (PLS-DA) model, and the “ggplot2” 
and “ggsci” (Xiao, 2023) packages visualized the results, including 
sample score and variable importance plots.

To observe gut microbial abundance changes, the total abundance 
of each species was calculated and sorted. The top  10 species by 
abundance and the total abundance of remaining species were 
displayed using stacked bar plots with “ggplot2” package. The “aplot” 
package (Yu, 2023) added group information.

For LEfSe (linear discriminant analysis effect size) analysis, the 
OTU table was loaded with identifiers as row names. A sample table 

and formatted taxonomy table were created. The “microeco” package 
(Liu C. et al., 2021) integrated these tables into a Microtable object. 
LEfSe analysis was conducted using the trans_diff$new function, with 
bar plots and a cladogram generated for taxonomic differences. 
Correlation analysis with the “corrplot” package (Wei et al., 2021) 
produced a correlation heatmap among gut microbiota.

2.11 Identification and analysis of 
characteristic gut microbiota associated 
with NBTL treatment in rheumatoid 
arthritis using SVM-RFE and random forest

We utilized the “tidyverse” (Wickham et al., 2019) packages for 
data preprocessing. The support vector machine-recursive feature 
elimination (SVM-RFE) algorithm, implemented via the “e1071” 
package (Meyer et  al., 2023), was employed for feature selection, 
identifying influential features for classification. K-fold cross-
validation evaluated the feature set effectiveness, with error rates and 
model accuracy visualized to assess the impact of feature subsets. The 
best-performing subset was selected based on error rates. A random 
forest model, created with the “randomForest” package (Liaw and 
Wiener, 2002), evaluated feature importance, and its generalizability 
was tested with five repetitions of 10-fold cross-validation. The 
optimal feature subset was selected based on importance scores and 
error rates.

Next, key microbiota identified from the SVM-RFE and random 
forest analyses were extracted and compared using the “VennDiagram” 
package (Chen and Boutros, 2011), with overlapping microbiota 
exported for receiver operating characteristic (ROC) analysis. The 
“pROC” package (Robin et  al., 2011) was used for ROC analysis, 
calculating the area under the curve (AUC) values. An AUC >0.7 was 
considered indicative of strong discriminative power for key 
microbiota. ROC curves were plotted and saved, and data for high 
AUC microbiota were exported.

Finally, the “data table” and “tidyverse” packages processed 
expression data of target microbiota. Boxplots were generated with the 
“ggsignif (Ahlmann-Eltze and Preisenergie, 2021), “ggplot2,” and 
“ggpubr” (Kassambara, 2023) packages to illustrate abundance 
differences among groups. The stat_compare_means function added 
p-values, identifying significant microbiota associated with NBTL 
treatment for rheumatoid arthritis.

2.12 Transcriptomic sequencing of rat 
synovial tissue mRNA

RNA was extracted from tissue samples using TRIzol® Reagent 
(Invitrogen) and RNAiso Plus (Takara, 9108). Concentration, purity, 
and integrity were assessed with a NanoDrop 2000 spectrophotometer 
and agarose gel electrophoresis. Quality was further verified using an 
Agilent 2100 Bioanalyzer, ensuring ≥1 μg of total RNA, a concentration 
of at least 50 ng/μL, and an OD 260/280 ratio within 1.8 to 2.2. 
diethylpyrocarbonate (DEPC) water (Alladin, D105557) was used in all 
preparations to ensure RNase-free conditions. mRNA was extracted 
using Oligo(dT) magnetic beads, then fragmented into ~300 bp pieces 
with a buffer for Illumina Sequencing. Using the PrimeScript™ RT 
reagent Kit with gDNA Eraser (Takara, RR047A), double-stranded 

TABLE 1 mRNA gene primer sequences.

Primer name Primer sequence (5′–3′)

rno-VEGF-F ACAGAAGGGGAGCAGAAAGC

rno-VEGF-R GCTGGCTTTGGTGAGGTTTG

rno-ASC-F GCCATGGACCTCACTGACAA

rno-ASC-R TTGGTGGTCTCTGCTCGAAC

rno-GAPDH-F TTCACCACCATGGAGAAGGC

rno-GAPDH-R AGTGATGGCATGGACTGTGG
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cDNA was synthesized from fragmented mRNA with random primers. 
The cDNA then underwent end repair, A-tailing, and Y-shaped adapter 
ligation using the Truseq™ RNA Sample Prep Kit (Illumina). Adapter-
ligated cDNA was purified, size-selected, and amplified by PCR to 
generate the final sequencing library. The libraries were quantified with 
the QuantiFluor® dsDNA System (Promega), and sequencing was 
conducted on the Illumina HiSeq X Ten platform using its reagent kit. 
Sequencing reads were analyzed for base distribution and quality, 
followed by quality control, reference genome alignment, and expression 
level analysis, with results reported in transcripts per million (TPM).

2.13 Preliminary bioinformatics analysis of 
the genetic basis of angiogenesis

We used the “ropls” package to create a PLS-DA model, extracting 
results like the model summary and VIP (variable importance in 
projection) values. Sample distributions and confidence ellipses were 
then plotted using the “ggplot2” package. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) gene sets were acquired using the 
“msigdbr” package (Dolgalev, 2022) to prepare gene lists for gene set 
variation analysis (GSVA). The analysis was carried out with the 
“GSVA” package (Hänzelmann et al., 2013), followed by differential 
analysis using GraphPad Prism.

For weighted gene co-expression network analysis (WGCNA), 
we processed and cleaned the gene expression data. The “WGCNA” 
package (Langfelder and Horvath, 2008, 2012) was then used for 
clustering analysis and the removal of outlier samples. The optimal soft 
threshold was determined, and a co-expression network was 
constructed to identify modules. These modules were analyzed for their 
correlation with phenotypic traits, and relevant plots were generated.

Next, module genes were analyzed for protein–protein 
interactions (PPI) using the STRING database (Szklarczyk et  al., 
2019).1 Cytoscape (Shannon et al., 2003) was used to visualize the 
interaction data, and the cytoHubba plugin (Bader and Hogue, 2003) 
identified hub genes through degree analysis. Following this, we read 
and cleaned the gene expression data, imported the top 10 genes based 
on degree ranking, and standardized the GSVA results for the vascular 
endothelial growth factor (VEGF) pathway. The “vegan” package 
(Oksanen et al., 2022) was used for correlation analysis, and the results 
were visualized with the “ggcor” package (Huang et al., 2020).

1 https://string-db.org/

We imported and cleaned the synovial PCR results and microbiota 
data. Spearman correlation tests were conducted to examine 
relationships between these datasets, and scatter plots were generated. 
Lastly, we imported synovial PCR data, selected samples, conducted 
correlation tests, and plotted scatter diagrams to display the 
relationship between miRNA and VEGF expression.

2.14 Deep neural network model 
construction and evaluation

Load the “data table,” “mlr3” (Lang et al., 2019), “mlr3learners” 
(Lang et al., 2023), “mlr3pipelines” (Binder et al., 2021), and “keras” 
(Chollet and Allaire, 2023) packages, and use the “reticulate” package 
(Kalinowski et al., 2024) to access the Keras library (Chollet, 2015) from 
a Python environment. Specify the working directory, load the dataset, 
and split it into 80% for training and 20% for testing. Standardize the 
training data and apply principal component analysis (PCA) for 
dimensionality reduction. Construct a sequential deep neural network 
(DNN) model with two hidden layers, using rectified linear unit (ReLU) 
activation and the Adam optimizer. The model was compiled using 
mean squared error (MSE) as the loss function and mean absolute error 
(MAE) as the performance metric. It was trained with a 20% validation 
split and evaluated on the test set. Plot comparisons of predicted versus 
actual values, calculate the R2 value, monitor the loss curve during 
training, and display a graphical representation of the model structure.

2.15 Cell culture and screening for the 
effective concentration of NBTL-containing 
serum

Human umbilical vein endothelial cells (HUVECs) were sourced 
from the American Type Culture Collection (ATCC) and stored in 
liquid nitrogen. Before culture, cells were quickly thawed in a 37°C 
water bath and transferred to a 15 mL centrifuge tube containing 
10 mL of pre-warmed Roswell Park Memorial Institute (RPMI)-1640 
medium (Gibco, C11875500BT) supplemented with 10% fetal bovine 
serum (FBS) (Gibco, 10099-141C) and 2 mM L-glutamine. After 
centrifugation at 1,000 rpm for 5 min, the supernatant was discarded, 
and the cell pellet was resuspended in fresh pre-warmed medium and 
transferred to a pre-coated T25 culture flask. HUVECs were 
maintained at 37°C in a 5% CO2 atmosphere, with medium changes 
every 2–3 days. Cells were passaged at 80–90% confluence using 
0.25% trypsin-EDTA (Gibco, Wisent 325-043-EL) for 1–2 min at 

TABLE 2 miRNA gene primer sequences.

Primer name Primer sequence (5′–3′)

hsa-miR-223-3p-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTGGGGTAT

hsa-miR-223-3p-F ACACTCCAGCTGGGTGTCAGTTTGTCAAAT

hsa-miR-20a-5p-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCTGC

hsa-miR-20a-5p-F ACACTCCAGCTGGGTAAAGTGCTTATAGTGC

universal primer -A TGGTGTCGTGGAGTCG

U6-F CTCGCTTCGGCAGCACA

U6-R AACGCTTCACGAATTTGCGT
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37°C, followed by centrifugation at 1,000 rpm for 5 min. Digestion 
was halted with an equal volume of RPMI-1640 containing 10% FBS, 
and cells were resuspended in fresh complete medium and 
redistributed into new culture flasks. For cryopreservation, cells were 
harvested, resuspended in CELLSAVING serum-free cryopreservation 
solution (C40100), aliquoted into cryovials, and stored at −80°C.

To screen for the effective concentration of NBTL-containing 
serum, HUVECs were cultured to an appropriate density and seeded 
into 96-well plates at 5 × 103 cells per well in RPMI-1640 medium with 
10% FBS. Cells were treated with various concentrations of NBTL-
containing serum (0, 2, 4, 8, 12, 16, 20%) or an equal volume of blank 
rat serum for 24 h at 37°C and 5% CO2. It is important to note that the 
intervention was carried out solely with rat serum and RPMI-1640 
basal medium, without the addition of FBS. Each concentration was 
tested in triplicate, followed by the addition of 10 μL of Cell Counting 
Kit-8 (CCK-8) reagent (APExBIO, K1018) and 90 μL of RPMI-1640 
medium, with further incubation for 1–4 h. Absorbance was measured 
at 450 nm using a microplate reader.

2.16 Scratch assay

HUVECs (1 × 105 cells per well) were cultured in 6-well plates 
until they reached confluence. A scratch was then created using a 
sterile 200 μL pipette tip, followed by treatment with either NBTL-
containing serum at its optimal concentration or blank rat serum. Cell 
migration and scratch closure were evaluated by capturing images at 
the beginning (0 h) and after 24 h using an inverted microscope.

2.17 Carboxyfluorescein diacetate 
succinimidyl ester flow cytometry

HUVECs (1 × 105 cells per well) were seeded in 6-well plates and 
labeled with 10 μM carboxyfluorescein diacetate succinimidyl ester 
(CFSE) (Beyotime, C1031). After 15 min of incubation at 37°C in the 
dark, the cells were rinsed with phosphate-buffered saline (PBS) 
(Nanjing Shengxing, SN331). The cells were then exposed to either 
control rat serum or NBTL-containing serum for 24 h, collected, and 
resuspended in PBS. Flow cytometry was used to assess cell 
proliferation, utilizing a 488 nm excitation and 518 nm emission.

2.18 Angiogenesis assay

HUVECs (1 × 105 cells per well) were first cultured in 6-well 
plates and treated with either control rat serum or NBTL-containing 
serum for 24 h. The cells were then transferred to Matrigel-coated 
24-well plates (1.5 × 105 cells per well) and incubated for 4 h. Tube 
formation was documented and quantified using ImageJ software with 
the Angiogenesis Analyzer plugin.

2.19 Immunofluorescence assay

Cells were seeded at 1 × 105 density into 3.5 cm glass-bottom 
culture dishes and incubated overnight. The next day, the media was 
replaced with control or drug-containing serum based on CCK8 

results, followed by a 24-h incubation. Cells were fixed with 4% 
paraformaldehyde (PFA) for 10 min, then washed with pre-cooled 
PBS and permeabilized using 0.5% Triton X-100 on ice. Blocking was 
performed with 3% bovine serum albumin (BSA) for 30 min at room 
temperature. Cells were incubated overnight at 4°C with primary 
antibodies (VEGF, VEGFR2, HIF-1α, VEGFR1) diluted in PBS with 
1% BSA. After washing, secondary antibodies (1:400 dilution) were 
applied for 1 h at room temperature in the dark. Nuclei were stained 
with 100 ng/mL DAPI for 10 min, followed by washes. Finally, an anti-
fade reagent was added, and the cells were imaged using a 
fluorescence microscope.

2.20 Statistical analysis and software 
utilization

In this study, the analysis and processing of gut microbiota data 
were primarily conducted using R software (R Core Team, 2021) 
(version 4.3.0). For the correlation analysis between synovial PCR 
results and characteristic gut microbiota, R software (version 4.3.1) 
was employed. The construction and training of the deep neural 
network (DNN) model utilized R software (version 4.3.0), while other 
R analyses were mainly performed using version 4.3.2. Grayscale value 
analysis of western blot results, scratch assay migration area analysis, 
and angiogenesis assay analysis were all conducted using ImageJ 
software. CFSE flow cytometry analysis was carried out with FlowJo 
software (version 10.8.1). Further data processing and graphical 
plotting were completed using GraphPad Prism software 
(version 9.5.0).

For statistical comparisons, one-way analysis of variance 
(ANOVA) was used for comparisons among multiple groups with a 
single factor, and two-way ANOVA was employed for comparisons 
involving two factors. Paired t-tests were used for within-group 
comparisons, while unpaired t-tests were employed for comparisons 
between independent groups. Before performing statistical tests, 
normality was assessed using the Shapiro–Wilk test, and homogeneity 
of variance was evaluated using Levene’s test. If these assumptions 
were met, parametric tests (ANOVA and t-tests) were applied. For 
non-normally distributed data, non-parametric tests (e.g., Mann–
Whitney U test) were used.

In all statistical analyses, significance levels were set as follows: 
p-values under 0.05 were considered statistically significant, those 
below 0.01 were highly significant, and p-values less than 0.001 or 
0.0001 were deemed extremely significant.

2.21 Statistical power and sample size

2.21.1 Animal experiments
The experiment involved six groups: control, model, low-dose 

NBTL, medium-dose NBTL, high-dose NBTL, and positive control, 
with each group containing eight animals (n = 8). As stated in 
Trentham et al. (1977), Charan and Kantharia (2013), and Vesterinen 
et  al. (2014), a sample size of 8 is widely accepted in studies of 
collagen-induced arthritis (CIA) and is adequate to identify significant 
differences in metrics such as arthritis and histopathological scores. 
This design provides a statistical power exceeding 80% for primary 
outcome measures.
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2.21.2 Gut microbiota analysis
Three groups were analyzed: control, model, and high-dose 

NBTL, with n = 8 per group. Gut microbiota composition and 
diversity were evaluated using 16S rDNA sequencing. Xu et  al. 
(2020) and Liu J. et  al. (2021) confirms that this sample size is 
sufficient to detect significant intergroup variations in microbiota 
profiles, enabling robust α and β diversity analyses, LEfSe analysis, 
and key taxa identification. The statistical power of the gut 
microbiota analysis was evaluated using R based on OTU-level data. 
The OTU table, metadata, and taxonomy data were merged using 
sample IDs, and the group variable (control, model, high-dose 
NBTL) was defined as an ordered factor. OTU abundance was 
normalized through z-score transformation to ensure consistency 
across samples. Significant OTUs were identified using Kruskal–
Wallis tests (p < 0.05). Effect sizes were calculated for significant 
OTUs using MANOVA, and the average effect size was used for 
power analysis with the R “pwr” (Champely, 2020) package, 
assuming a sample size of n = 8 per group and three groups. The 
results indicated a statistical power of 0.9233 
(Supplementary material S1), confirming the study’s sensitivity to 
detect significant differences in gut microbiota composition 
between groups.

2.21.3 Synovial transcriptomics analysis
Groups included control, model, and high-dose NBTL, with each 

group consisting of six samples (n = 6). Synovial tissues were subjected 
to RNA-Seq analysis for gene expression and pathway enrichment. As 
noted by Love et al. (2014) and Shu et al. (2021), n = 6 is considered 
adequate for detecting differentially expressed genes (DEGs) and 
changes in pathway activity. Power analysis (Supplementary material S1) 
involved preprocessing count matrices, estimating dispersion using 
the “RnaSeqSampleSize” (Zhao et al., 2021) package, and calculating 
statistical power at a significance level of 0.01 and a fold-change 
threshold of 2. The power for transcriptomic data was calculated to 
be 0.8193.

2.21.4 Deep neural network model prediction
Power analysis details (Supplementary material S2) include root-

mean-square error (RMSE), Shapiro–Wilk tests for residual normality, 
and Pearson correlation coefficients. The model exhibited an RMSE of 
0.084 (training) and 0.134 (testing), residual p-values of 0.124 
(training) and 0.640 (testing), and Pearson correlation coefficients of 
0.819 (training) and 0.979 (testing).

2.21.5 Western blot
Six experimental groups—control, model, low-dose NBTL, 

medium-dose NBTL, high-dose NBTL, and positive control—were 
analyzed with n = 3 biological replicates per group. As per Chen et al. 
(2023), this sample size, combined with internal control 
normalization, suffices to detect significant differences in 
protein expression.

2.21.6 Quantitative PCR
Six groups (control, model, low-dose NBTL, medium-dose NBTL, 

high-dose NBTL, and positive control) were assessed, with three 
biological replicates per group (n = 3) and three technical replicates 
per sample. According to Livak and Schmittgen (2001) and Nan et al. 
(2023), this configuration ensures stable and reliable results.

2.21.7 ELISA
Groups included control, model, low-dose NBTL, medium-dose 

NBTL, high-dose NBTL, and positive control, with each group 
comprising three biological replicates (n = 3). As stated by Li et al. 
(2021), this sample size is adequate for measuring significant 
differences in cytokines such as TNF-α, IL-6, and IL-17.

2.21.8 Cellular experiments
Two experimental groups were analyzed: control (20% blank 

serum) and NBTL-treated serum (20%), with three biological 
replicates per group (n = 3). This setup supported wound healing, tube 
formation, proliferation, and immunofluorescence assays. Referring 
to Qian et  al. (2021) and Mosmann (1983), this sample size is 
commonly used in cellular studies and is sufficient to capture 
significant changes in angiogenesis, migration, and proliferation.

3 Results

3.1 Comprehensive analysis of prototype 
components and metabolites of NBTL in 
blood using UPHLC-MS-TOF

Using UPHLC-MS-TOF, we conducted an in-depth analysis of the 
prototype components and metabolites of new bitongling (NBTL) 
after its entry into the bloodstream.

In the positive ion mode (Figure 1A and Table 3), the primary 
prototype components identified included zingerone (Rt. min. 5.029, 
m/z: 177.0907), wogonoside (Rt. min. 7.219, m/z: 461.1054), and 
uracil (Rt. min. 2.764, m/z: 113.0346), among others. In the negative 
ion mode (Figure 1B and Table 4), the main components detected 
were terpineol-4 (Rt. min. 8.989, m/z: 153.12506), succinic anhydride 
(Rt. min. 13.701, m/z: 99.00613), and salicyluric acid (Rt. min. 6.295, 
m/z: 194.04202), among others.

Furthermore, the analysis of NBTL metabolites in the bloodstream 
revealed several key compounds. In the positive ion mode (Figure 1C 
and Table  5), we  identified pyrimidine (Rt. min. 13.328, m/z: 
81.04522), pyridine (Rt. min. 0.539, m/z: 80.04992), and myrcene (Rt. 
min. 4.501, m/z: 137.13211), among others. In the negative ion mode 
(Figure 1D and Table 6), the primary metabolites detected included 
D-galactose (Rt. min. 13.649, m/z: 179.0527), arabitol(D) (Rt. min. 
13.649, m/z: 151.0578), and (+)-triptophenolide (Rt. min. 11.431, m/z: 
311.1644), among others.

This detailed UPHLC-MS-TOF analysis successfully identified the 
prototype components and metabolites of NBTL in the bloodstream, 
providing crucial data to support further research into the 
pharmacological mechanisms of NBTL.

3.2 Assessment of NBTL efficacy in a rat 
arthritis model

The animals underwent a one-week acclimation period to adjust 
to the experimental environment. Following this, two immunizations 
were performed on day 0 and day 7 to establish an arthritis model. The 
experimental animals were randomly divided into six groups: control, 
model, low-dose new bitongling (NBTL-L), medium-dose new 
bitongling (NBTL-M), high-dose new bitongling (NBTL-H), and 
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Tripterygium wilfordii tablets (TWT). Treatment for each group 
began on day 14 and continued until day 42 (Figure 2A).

Compared to the model group, all new bitongling groups and the 
TWT group showed reductions in arthritis index, especially the 
NBTL-H group (p < 0.01) (Figure 2B). Body weight changes during 
the experiment did not differ significantly across the groups 
(Figure 2C). Photographs taken at various time points revealed typical 
arthritis symptoms in the model group, which were noticeably 
reduced in the new bitongling and TWT groups (Figure 2D).

Histopathological examination of the ankle joints in the model 
group revealed significant structural damage along with marked 
infiltration of inflammatory cells. In contrast, both the NBTL-H and 
TWT groups showed a notable reduction in these pathological changes 
(p < 0.05 and p < 0.0001) compared to the model group (Figures 2E,F).

Following new bitongling treatment, TNF-α and IL-17 levels were 
notably decreased in the NBTL-L, NBTL-M, and NBTL-H groups 
(p < 0.01 and p < 0.0001), with comparable reductions seen in the 
TWT group (Figures 2G,H). Regarding IL-6, significant reductions 
were noted in the NBTL-M and NBTL-H groups (p < 0.01 and 
p < 0.001), but not in the NBTL-L group (Figure 2I).

Western blot analysis showed significantly increased ASC protein 
expression in the synovial tissues of the model group. After new 
bitongling treatment, ASC expression showed a dose-dependent 
decline, with the greatest reduction observed in the NBTL-H group 
(p < 0.001). The TWT group also showed a similar decreasing trend 
(Figures 2J,K). Quantitative polymerase chain reaction (qPCR) results 
further confirmed that ASC mRNA levels in the synovial tissues were 

significantly reduced in the NBTL-H, and TWT groups (p < 0.0001) 
(Figure 2L).

3.3 Gut microbiota structure and diversity 
analysis under NBTL-H treatment

In this study, we  employed PLS-DA to deeply analyze the gut 
microbiota structure across various taxonomic levels: order (Figure 3A), 
family (Figure  3B), genus (Figure  3C), species (Figure  3D), and 
operational taxonomic units (OTU) (Figure 3E). Experimental data 
points are marked in purple, red, and green to represent the control 
group (control), model group (model), and high-dose new bitongling 
treatment group (NBTL-H), respectively. Each subplot reveals the main 
directions of data variation through the first and second principal 
components, with the corresponding variance percentages labeled on 
the axes. The principal component analysis results clearly demonstrate 
the distribution characteristics of the three groups within the principal 
component space, with the NBTL-H treatment group showing 
significant separation at multiple taxonomic levels.

We also comprehensively analyzed the microbial abundance 
distribution at the order (Figure  3F), family (Figure  3G), genus 
(Figure 3H), and species (Figure 3I) levels. The data is displayed using 
distinctly colored bar charts, highlighting the abundance of each 
microbial group. The control, model, and NBTL-H groups are marked 
by different color bands at the chart base, aiding in the comparative 
analysis of gut microbiota across various taxonomic levels. Notable 
differences were observed in the proportions of certain microbial 

FIGURE 1

Comprehensive analysis of prototype components and metabolites of NBTL in blood using UPHLC-MS-TOF. (A) Blood entry prototype (positive). 
(B) Blood entry prototype (negative). (C) Metabolites of TCM (positive). (D) Metabolites of TCM (negative).
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TABLE 3 Blood entry prototype components (positive).

Number
ESI 
mode

Rt. 
min.

m/z
Metabolite 
name

Adduct. 
type

Formula INCHIKEY

1 Positive 5.029 177.0907 Zingerone
[M + H − 

H2O]+
C11H14O3 OJYLAHXKWMRDGS-UHFFFAOYSA-N

2 Positive 7.219 461.1054 Wogonoside [M + H]+ C22H20O11 LNOHXHDWGCMVCO-NTKSAMNMSA-N

3 Positive 2.764 113.0346 Uracil [M + H]+ B C4H4N2O2 ISAKRJDGNUQOIC-UHFFFAOYSA-N

4 Positive 7.125 419.1689 Syringaresinol [M + H]+ C22H26O8 KOWMJRJXZMEZLD-UHFFFAOYSA-N

5 Positive 5.575 298.1432 Stepharine [M + H]+ C18H19NO3 OGJKMZVUJJYWKO-UHFFFAOYSA-N

6 Positive 5.746 323.1119 Salidroside [M + Na]+ C14H20O7 ILRCGYURZSFMEG-RKQHYHRCSA-N

7 Positive 2.525 121.0647 Phenylacetaldehyde [M + H]+ C8H8O DTUQWGWMVIHBKE-UHFFFAOYSA-N

8 Positive 5.765 483.1474 Paeonolide [M + Na]+ C20H28O12 IDZZECHGWAZTIB-NYBIBFQCSA-N

9 Positive 5.012 152.1068 Norephedrine [M + H]+ C9H13NO DLNKOYKMWOXYQA-VXNVDRBHSA-N

10 Positive 5.268 180.1377 N-Methylephedrine [M + H]+ C11H17NO FMCGSUUBYTWNDP-ONGXEEELSA-N

11 Positive 5.312 360.2523 Napelline [M + H]+ C22H33NO3 AZAZKLKDEOMJBJ-UHFFFAOYSA-N

12 Positive 5.113 486.2679 Mesaconine [M + H]+ C24H39NO9 GQRPJUIKGLHLLN-UHFFFAOYSA-N

13 Positive 6.969 301.1045 Meranzin hydrate [M + Na]+ C15H18O5 KGGUASRIGLRPAX-UHFFFAOYSA-N

14 Positive 13.762 180.1015 Maltoxazine
[M + H − 

H2O]+
C10H13NO2 MTHASAHNRVFFOM-UHFFFAOYSA-N

15 Positive 5.503 247.1430 Lenticin [M + H]+ C14H18N2O2 AOHCBEAZXHZMOR-UHFFFAOYSA-N

16 Positive 5.722 358.2005 Laudanosine [M + H]+ C21H27NO4 KGPAYJZAMGEDIQ-KRWDZBQOSA-N

17 Positive 5.283 408.2725 Isotalatizidine [M + H]+ C23H37NO5 RBSZCNOWHDHRFZ-CFIIAAHPSA-N

18 Positive 6.315 162.0907 Indole-3-ethanol [M + H]+ C10H11NO MBBOMCVGYCRMEA-UHFFFAOYSA-N

19 Positive 7.146 466.3147 Glycocholic acid [M + H]+ C26H43NO6 RFDAIACWWDREDC-FRVQLJSFSA-N

20 Positive 7.344 169.1220 Geranic acid [M + H]+ C10H16O2 ZHYZQXUYZJNEHD-UHFFFAOYSA-N

21 Positive 8.071 269.0803 Formononetin [M + H]+ C16H12O4 HKQYGTCOTHHOMP-UHFFFAOYSA-N

22 Positive 10.755 338.3408 Erucamide [M + H]+ C22H43NO UAUDZVJPLUQNMU-KTKRTIGZSA-N

23 Positive 10.067 297.1471 Cryptotanshinone [M + H]+ C19H20O3 GVKKJJOMQCNPGB-JTQLQIEISA-N

24 Positive 6.347 307.1159 Cimifugin [M + H]+ C16H18O6 ATDBDSBKYKMRGZ-UHFFFAOYSA-N

25 Positive 5.317 316.1526 Cephalotaxine [M + H]+ C18H21NO4 YMNCVRSYJBNGLD-KZNAEPCWSA-N

26 Positive 5.389 358.2360 Bullatine G [M + H]+ C22H31NO3 CBOSLVQFGANWTL-JAQKJRLSSA-N

27 Positive 7.087 293.1004 Benzyl glucopyranoside [M + Na]+ C13H18O6 GKHCBYYBLTXYEV-UJPOAAIJSA-N

28 Positive 9.384 308.0906 Arborinine [M + Na]+ C16H15NO4 ATBZZQPALSPNMF-UHFFFAOYSA-N

29 Positive 2.104 158.0921 Amphetamine [M + Na]+ C9H13N KWTSXDURSIMDCE-QMMMGPOBSA-N

30 Positive 7.183 247.1319 Abscisate
[M + H − 

H2O]+
C15H20O4 JLIDBLDQVAYHNE-WEYXYWBQSA-N

31 Positive 11.143 419.1325
5-Hydroxy-6,7,8,3′,4′,5′-

hexamethoxyflavone
[M + H]+ C21H22O9 MQBFFYQCZCKSBX-UHFFFAOYSA-N

32 Positive 7.146 313.1035 5,7-Dimethoxy-2-(4-

methoxyphenyl)-4H-

chromen-4-one

[M + H]+ C18H16O5 ZXJJBDHPUHUUHD-UHFFFAOYSA-N

33 Positive 5.156 148.1114 5,6,7,8-Tetrahydro-4-

methylquinoline

[M + CH3OH + 

H]+

C10H13N LGYCOYCCCKHXGC-UHFFFAOYSA-N

34 Positive 6.594 135.0436 4-Methoxybenzoate [M + H − 

H2O]+

C8H8O3 ZEYHEAKUIGZSGI-UHFFFAOYSA-N

35 Positive 5.832 220.0594 3,4-Dihydroxy-L-

phenylalanine

[M + Na]+ C9H11NO4 WTDRDQBEARUVNC-LURJTMIESA-N

36 Positive 6.312 137.0593 2-Hydroxyacetophenone [M + H]+ C8H8O2 ZWVHTXAYIKBMEE-UHFFFAOYSA-N

(Continued)
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groups. For instance, at the order level (Figure 3F), the abundance of 
Bacteroidales decreased in the NBTL-H treatment group compared to 
the control and model groups. At the family level (Figure  3G), 
Prevotellaceae abundance decreased in the treatment group relative to 
the model group. At the genus level (Figure 3H), UCG-005 abundance 
significantly declined in the high-dose treatment group. At the species 
level (Figure 3I), Lactobacillus johnsonii showed increased abundance 
in the high-dose treatment group relative to the other two groups.

Additionally, we applied LEfSe to detect significant microbial taxa 
differences among the control, model, and NBTL-H groups. The linear 
discriminant analysis (LDA) scores indicated the degree of intergroup 
differences, with higher scores reflecting greater differences. Analysis 
revealed that f_Mycoplasmataceae, g_Prevotellaceae_Ga6A1_group, s_
Metamycoplasma_sualvi, s_uncultured_bacterium_g_norank_f_
Eggerthellaceae, and s_uncultured_bacterium_g_Prevotellaceae_Ga6A1_
group exhibited high LDA scores, indicating significant abundance 
differences among groups (Figure 3J). Furthermore, the phylogenetic 
tree generated based on LDA scores (Figure  3K) illustrated the 
evolutionary relationships of these significantly different microbial taxa. 
Each node’s size represents the significance of the corresponding taxon, 
and color differences reflect different experimental groups.

Correlation heatmap analysis (Figure  3L) revealed significant 
correlations of f_Mycoplasmataceae with various other microbial taxa, 
especially with g_Prevotellaceae_Ga6A1_group in the NBTL-H 
treatment group. Additionally, changes in the correlation patterns of 
s_Metamycoplasma_sualvi with s_uncultured_bacterium_g_norank_f_
Eggerthellaceae and s_uncultured_bacterium_g_Prevotellaceae_
Ga6A1_group might reflect ecological interactions or similar 
physiological metabolic pathways. Notably, the altered correlations of 
s_Metamycoplasma_sualvi post-treatment suggest that NBTL may 
impact specific gut microbial interactions. Furthermore, significant 
correlation changes for s_uncultured_bacterium_g_Prevotellaceae_
Ga6A1_group indicate that this uncultured taxon may undergo niche 
alterations under drug influence.

3.4 Identifying characteristic gut microbiota 
for NBTL through machine learning

The SVM-RFE analysis results demonstrate a gradual 
improvement in the model’s 5-fold cross-validation accuracy 
(Figure  4A), which reaches its peak at 0.867 with 20 features. 

Simultaneously, the 5-fold cross-validation error (Figure 4B) decreases 
to its lowest point of 0.133 at 20 features, indicating optimal model 
performance at this point. The random forest analysis results show a 
steady decline in cross-validation error (Figure 4C) as the number of 
variables increases, reaching its lowest at 24 variables, demonstrating 
the model’s excellent generalization ability. The variable importance 
assessment (Figure 4D) highlights significant contributions to the 
model’s predictive power from species such as s_Metamycoplasma_
sualvi and s_uncultured_bacterium_g_norank_f_Eggerthellaceae. The 
Venn diagram (Figure 4E) reveals a consensus between SVM-RFE and 
random forest in identifying 19 key microbial taxa, including f_
Mycoplasmataceae and g_Prevotellaceae_Ga6A1_group, as potential 
targets for new bitongling’s regulation of the gut microbiome.

For the 19 key microbial taxa identified by machine learning, 
ROC analysis assessed their sensitivity and specificity across various 
classification thresholds. Six taxa had area under the curve (AUC) 
values exceeding 70%, indicating strong discriminative power. These 
include g_Prevotellaceae_Ga6A1_group and s_uncultured_
bacterium_g_Prevotellaceae_Ga6A1_group with AUCs of 81.25%, s_
Metamycoplasma_sualvi with an AUC of 93.75%, f_Mycoplasmataceae 
with an AUC of 90.62%, g_norank_f_Erysipelotrichaceae with an AUC 
of 77.34%, and s_uncultured_bacterium_g_norank_f_Eggerthellaceae 
with an AUC of 87.89% (Figure 4F).

Box plots illustrate the relative abundance differences of these taxa 
among the control, model, and NBTL-H. In the model condition, the 
relative abundance of g_Prevotellaceae_Ga6A1_group (Figure 4I) and 
s_uncultured_bacterium_g_Prevotellaceae_Ga6A1_group (Figure 4L) 
was markedly higher than in the control group but decreased 
significantly following NBTL-H treatment. In contrast, the abundance 
of f_Mycoplasmataceae (Figure  4G), s_Metamycoplasma_sualvi 
(Figure 4J), and s_uncultured_bacterium_g_norank_f_Eggerthellaceae 
(Figure 4K) was notably lower in the model group, yet it significantly 
increased after NBTL-H treatment. However, g_norank_f_
Erysipelotrichaceae (Figure  4H) showed significant differences 
between the NBTL-H treatment and model groups, but not between 
the control and model groups, resulting in its exclusion.

Considering the high discriminative power of the ROC curves and 
the significant differences among the three groups, we identified five taxa 
as characteristic microbial taxa influenced by NBTL: f_
Mycoplasmataceae, g_Prevotellaceae_Ga6A1_group, s_uncultured_
bacterium_g_Prevotellaceae_Ga6A1_group, s_Metamycoplasma_sualvi, 
and s_uncultured_bacterium_g_norank_f_Eggerthellaceae.

TABLE 3 (Continued)

Number
ESI 
mode

Rt. 
min.

m/z
Metabolite 
name

Adduct. 
type

Formula INCHIKEY

37 Positive 7.087 461.1053 (2S,3S,4S,5R,6S)-3,4,5-

trihydroxy-6-(5-

hydroxy-8-methoxy-4-

Oxo-2-phenylchromen-

7-Yl)oxyoxane-2-

carboxylic acid

[M + H]+ C22H20O11 LNOHXHDWGCMVCO-NTKSAMNMSA-N

38 Positive 8.213 277.1058 (2S)-4-hydroxy-2-(2-

hydroxypropan-2-Yl)-7-

methyl-2,3-

dihydrofuro[3,2-G]

chromen-5-one

[M + H]+ C15H16O5 LJSWMDKKEBOERP-UHFFFAOYSA-N
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3.5 Transcriptome analysis reveals NBTL’s 
impact on VEGF angiogenesis pathway and 
correlation of VEGF mRNA expression with 
characteristic gut microbiota

Transcriptome analysis results (Figure 5A) through PLS-DA show 
that PC explain 24.6 and 7.59% of the total variation, respectively, 
clearly distinguishing between the control, model, and NBTL-H 
groups. gene set variation analysis (GSVA) (Figure 5B) indicates a 
significant increase in the VEGF signaling pathway in the model 
group compared to the control group (p < 0.001), while a significant 
downregulation is observed in the NBTL-H group compared to the 
model group (p < 0.05).

Further investigation into the impact of NBTL-H on gene 
expression patterns was conducted using WGCNA. The soft threshold 
power analysis (Figure 5C) identified the optimal threshold as 20, 
optimizing the scale-free topology of the network. In the gene 
clustering dendrogram (Figure  5D), different modules were 
distinguished by color. The module-trait relationship heatmap 
(Figure  5E) revealed that the MEyellow module had a significant 
positive correlation with the NBTL-H group (r = 0.53, p = 0.02), 
suggesting that NBTL affects the VEGF pathway by regulating genes 
within this module, which is crucial for understanding the 
drug’s mechanism.

We also constructed a PPI network for the NBTL-H module 
genes (Figure 5F), revealing complex interactions among the drug 

module genes. Using Cytoscape, we visualized the top 10 genes 
with the highest degrees within the PPI network (Figure  5G), 
indicating their potential key roles in the mechanism of 
NBTL. Spearman analysis (Figure 5H) revealed a strong positive 
association between Rps9 and VEGF pathway activity, indicating a 
potential involvement of Rps9 in NBTL’s mechanism via the VEGF 
pathway. Although other genes (such as Rps16, Rpl11, etc.) did not 
show significant correlations with the VEGF pathway (p > 0.05), 
they might still be  involved in the pathway through more 
complex mechanisms.

The study also assessed the effects of different doses of NBTL on 
VEGF mRNA expression (Figure  5I). VEGF mRNA levels were 
markedly elevated in the model group, whereas all NBTL doses, 
particularly the high dose, led to a notable reduction. The positive 
control group treated with Tripterygium wilfordii tablets (TWT) also 
showed a similar reduction. Additionally, Spearman correlation 
analysis revealed significant associations between NBTL-H treatment 
and characteristic gut microbiota. Specifically, the abundance of f_
Mycoplasmataceae (Figure  5J, r = −0.76, p = 0.017), s_
Metamycoplasma_sualvi (Figure 5L, r = −0.82, p = 0.0066), and s_
uncultured_bacterium_g_norank_f_Eggerthellaceae (Figure  5M, 
r = −0.83, p = 0.0056) showed a negative correlation with VEGF 
mRNA expression, while g_Prevotellaceae_Ga6A1_group (Figure 5K, 
r = 0.76, p = 0.017) and s_uncultured_bacterium_g_Prevotellaceae_
Ga6A1_group (Figure  5N, r = 0.84, p = 0.0044) showed a 
positive correlation.

TABLE 4 Blood entry prototype components (negative).

Number
ESI 
mode

Rt. min. m/z
Metabolite 
name

Adduct. 
type

Formula INCHIKEY

1 Negative 8.989 153.12506 Terpineol-4 [M − H]− C10H18O WRYLYDPHFGVWKC-UHFFFAOYSA-N

2 Negative 13.701 99.00613 Succinic anhydride [M − H2O − H]− C4H4O3 RINCXYDBBGOEEQ-UHFFFAOYSA-N

3 Negative 6.295 194.04202 Salicyluric acid [M − H]− C9H9NO4 ONJSZLXSECQROL-UHFFFAOYSA-N

4 Negative 6.179 463.08154
Quercetin 

3-O-glucoside
[M − H]− C21H20O12 OVSQVDMCBVZWGM-QSOFNFLRSA-N

5 Negative 5.861 192.06271 Phenylacetylglycine [M − H]− C10H11NO3 UTYVDVLMYQPLQB-UHFFFAOYSA-N

6 Negative 6.330 579.16412 Naringin [M − H]− C27H32O14 DFPMSGMNTNDNHN-UHFFFAOYSA-N

7 Negative 0.853 245.03946 Glycerophosphoglycerol [M−H]− C6H15O8P LLCSXHMJULHSJN-OLQVQODUSA-N

8 Negative 7.092 183.06276 Genipic acid [M − H]− C9H12O4 KWBASGHXHPTPGU-UHFFFAOYSA-N

9 Negative 5.708 787.25836 Eleutheroside E [M + FA − H]− C34H46O18 FFDULTAFAQRACT-XKBSQSBASA-N

10 Negative 5.609 415.09717 Daidzein-8-C-glucoside [M − H]− C21H20O9 HKEAFJYKMMKDOR-UHFFFAOYSA-N

11 Negative 1.131 133.01071 D-(+)-malic acid [M − H]− C4H6O5 BJEPYKJPYRNKOW-REOHCLBHSA-N

12 Negative 7.178 263.12500 Abscisic acid; LC-tDDA [M − H]− C15H20O4 JLIDBLDQVAYHNE-WEYXYWBQSA-N

13 Negative 6.295 515.11108
3,4-Di-O-caffeoylquinic 

acid
[M − H]− C25H24O12 UFCLZKMFXSILNL-RVXRWRFUSA-N

14 Negative 6.613 165.05206
3-(2-Hydroxyphenyl)

propionic acid
[M − H]− C9H10O3 CJBDUOMQLFKVQC-UHFFFAOYSA-N

15 Negative 5.653 153.01595 2,5-Dihydroxybenzoate [M − H]− C7H6O4 WXTMDXOMEHJXQO-UHFFFAOYSA-N

16 Negative 5.049 255.04716

2,3-Dihydroxy-2-[(4-

hydroxyphenyl)methyl]

butanedioic acid

[M − H]− C11H12O7 TUODPMGCCJSJRH-KWQFWETISA-N

17 Negative 5.827 211.99826
1H-Indol-3-

yloxidanesulfonic acid
[M − H]− C8H7NO4S BXFFHSIDQOFMLE-UHFFFAOYSA-N
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3.6 Dose-dependent regulation of 
miR-20a-5p and miR-223-3p by NBTL and 
their correlation with VEGF expression and 
characteristic gut microbiota

Our findings (Figures6A,H) revealed that in the model group, the 
levels of miR-20a-5p and miR-223-3p were significantly reduced, 
likely contributing to increased angiogenesis in the disease state. 
Treatment with NBTL, especially at high doses (NBTL-H), 
significantly restored the expression levels of these miRNAs. Likewise, 
expression recovery was observed in the positive control group 
receiving tripterygium glycosides, showing a similar trend. Spearman 
correlation analysis further demonstrated that, in the high-dose NBTL 
group, miR-20a-5p and miR-223-3p were significantly negatively 
correlated with VEGF mRNA expression (Figure  6B, r = −1, 
p = 5.6 × 10−6; Figure  6I, r = −0.92, p = 0.0013), suggesting these 
miRNAs may inhibit VEGF expression and, consequently, 
angiogenesis in the disease context.

Additionally, Spearman correlation analysis indicated that in the 
NBTL-H group, the abundance of g_Prevotellaceae_Ga6A1_group 
(Figure 6D, r = −0.82, p = 0.0066) and s_uncultured_bacterium_g_
Prevotellaceae_Ga6A1_group (Figure 6G, r = −0.82, p = 0.0066) were 
negatively correlated with miR-20a-5p, suggesting that the reduction 
of these bacterial groups may promote the expression of miR-20a-5p. 
Conversely, the abundance of s_Metamycoplasma_sualvi (Figure 6E, 
r = 0.83, p = 0.0053) showed a positive correlation with miR-20a-5p, 
indicating that the increase of this beneficial bacterium might 
enhance the production of miR-20a-5p. Although the abundance of 
f_Mycoplasmataceae (Figure 6C, r = 0.27, p = 0.48) and s_uncultured_
bacterium_g_norank_f_Eggerthellaceae (Figure 6F, r = 0.44, p = 0.24) 
was positively correlated with miR-20a-5p, the correlations were not 
significant, but they still hold potential biological relevance.

Similarly, in the NBTL-H group, g_Prevotellaceae_Ga6A1_group 
(Figure  6K, r = −0.78, p = 0.013) and s_uncultured_bacterium_g_
Prevotellaceae_Ga6A1_group (Figure 6N, r = −0.76, p = 0.017) both 
exhibited a strong negative correlation with miR-223-3p. Conversely, 

s_Metamycoplasma_sualvi (Figure  6L, r = 0.71, p = 0.032) was 
positively correlated with miR-223-3p. Although the correlations of 
f_Mycoplasmataceae (Figure 6J, r = 0.45, p = 0.22) and s_uncultured_
bacterium_g_norank_f_Eggerthellaceae (Figure  6M, r = 0.66, 
p = 0.053) with miR-223-3p were not significant, they still possess 
potential biological importance.

3.7 Deep learning-driven prediction and rat 
model validation of NBTL’s inhibition of the 
VEGF pathway via characteristic gut 
microbiota features

We initially employed a deep neural network (DNN) to predict 
how NBTL inhibits VEGF-driven angiogenesis by analyzing five 
characteristic gut microbiota features. The training process 
(Figure 7A) showed a rapid decline and subsequent stabilization in the 
model’s loss and error rates, with validation data performing slightly 
worse than the training data, indicating good generalization. Further 
optimization (Figure 7B) revealed an R2 of 0.671 for the training set 
and a high R2 of 0.958 for the validation set, with a loss of 0.01807 and 
a MAE of 0.12241, underscoring the model’s robust predictive 
capability regarding NBTL’s regulation of the VEGF pathway. The 
model architecture, from input to output layers, effectively captured 
complex relationships within the data through multiple layers of 
feature extraction (Figure 7C).

Building on the DNN model’s predictions, we further validated 
NBTL’s inhibitory effects on VEGF signaling using a rat model. 
Western blot analysis of VEGF, VEGFR1, VEGFR2, and HIF-1α 
protein expression demonstrated a dose-dependent inhibitory effect 
of NBTL across low, medium, and high dosage groups (Figures 7D–G). 
The high-dose group showed a highly significant suppression of 
VEGF, VEGFR1, VEGFR2, and HIF-1α expression (p < 0.05 and 
p < 0.0001), with the medium dose also significantly reducing VEGF, 
VEGFR1, and HIF-1α levels (p < 0.05 and p < 0.0001) (Figure 7H). In 
conclusion, NBTL not only exhibited strong potential in inhibiting the 

TABLE 5 Metabolites of traditional Chinese medicine components (positive).

Number
ESI 
mode

Rt. 
min.

m/z Metabolite name Adduct. type Formula INCHIKEY

1 Positive 13.328 81.04522 Pyrimidine [M + H]+ C4H4N2 CZPWVGJYEJSRLH-UHFFFAOYSA-N

2 Positive 0.539 80.04992 Pyridine [M + H]+ C5H5N JUJWROOIHBZHMG-UHFFFAOYSA-N

3 Positive 4.501 137.13211 Myrcene [M + H]+ C10H16 UAHWPYUMFXYFJY-UHFFFAOYSA-N

4 Positive 0.568 88.07614 Morpholine [M + H]+ C4H9NO YNAVUWVOSKDBBP-UHFFFAOYSA-N

5 Positive 4.501 153.12703 Camphora [M + H]+ C10H16O DSSYKIVIOFKYAU-XCBNKYQSSA-N

6 Positive 0.554 127.03881 1,2,3-Trihydroxybenzene [M + H]+ C6H6O3 WQGWDDDVZFFDIG-UHFFFAOYSA-N

7 Positive 0.554 277.17914 [6]-Gingerol [M + H − H2O]+ C17H26O4 NLDDIKRKFXEWBK-UHFFFAOYSA-N

TABLE 6 Metabolites of traditional Chinese medicine components (negative).

Number
ESI 
mode

Rt. 
min.

m/z Metabolite name
Adduct. 
type

Formula INCHIKEY

1 Negative 13.649 179.0527 D-Galactose [M − H]− C6H12O6 WQZGKKKJIJFFOK-PHYPRBDBSA-N

2 Negative 13.649 151.0578 Arabitol(D) [M − H]− C5H12O5 HEBKCHPVOIAQTA-IMJSIDKUSA-N

3 Negative 11.431 311.1644 (+)-Triptophenolide [M − H]− C20H24O3 KPXIBWGPZSPABK-FXAWDEMLSA-N
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VEGF signaling pathway in predictive models but also demonstrated 
substantial efficacy in rat models, particularly at higher doses, 
supporting its potential use in treating rheumatoid arthritis.

3.8 NBTL medicated serum suppresses 
HUVEC viability, migration, and 
angiogenesis via miRNA modulation and 
VEGF signaling pathway inhibition: 
validation at the cellular level with deep 
learning predictive models

In this study, we utilized the CCK-8 assay to evaluate the effects 
of NBTL medicated serum on the viability of HUVECs. The results 
indicated a dose-dependent decrease in cell viability as the 
concentration of NBTL medicated serum increased from 0 to 20%, 
demonstrating an inhibitory effect on cell growth (Figure 8A). At the 
highest concentration (20%), cell viability significantly decreased 
relative to the 0% group (p < 0.05). A comparison between the control 
group (20% blank serum) and the NBTL medicated serum group 

(20%) further confirmed that NBTL significantly reduced cell viability 
(p < 0.05) (Figure  8B), establishing 20% as the optimal inhibitory 
concentration for subsequent experiments.

Next, we  assessed the impact of NBTL medicated serum on 
HUVEC migration using a scratch assay. After 24 h of incubation, the 
control group displayed significant wound closure, while the NBTL-
treated group showed limited closure, indicating a substantial inhibition 
of cell migration (Figures 8C,D, p < 0.001). This suggests that NBTL 
may exert its anti-angiogenic effects, in part, by inhibiting cell migration.

We also conducted a tube formation assay to investigate the effect 
of NBTL medicated serum on angiogenesis. Microscopic observations 
revealed that HUVECs in the control formed more tube-like 
structures than in the NBTL group, where these structures were 
notably fewer (Figures 8E–H, p < 0.05 and p < 0.01), confirming its 
anti-angiogenic properties.

Additionally, we analyzed the effect of NBTL medicated serum on 
HUVEC proliferation using CFSE staining and flow cytometry. The 
results demonstrated a marked decrease in cell proliferation in the 
NBTL group relative to the control (Figures  8I–N, p < 0.01), 
supporting its role in inhibiting cell growth.

FIGURE 2

Evaluation of the therapeutic effects of NBTL on a rat model of arthritis. (A) Experimental design and timeline: −7 days to 0 day, acclimatization; 0 day, 
first immunization with type II collagen and adjuvant; 7 days, second immunization to enhance arthritis model; 14 days to 42 days, treatment groups: 
control (no treatment), model (arthritis development), new bitongling (NBTL) low (NBTL-L), medium (NBTL-M), and high (NBTL-H) doses, and 
Tripterygium wilfordii tablets (TWT) as a drug control. (B) Arthritis index scoring over time. (C) Weight changes, showing no significant differences (ns). 
(D) Visual comparison of rat leg inflammation on days 0, 14, and 42 across all groups. (E) Histological analysis with HE staining at 20× magnification 
showing joint tissue structure and inflammation. (F) HE staining scores indicating tissue damage severity. (G,H) Serum levels of TNF-α and IL-17, 
showing inflammation response across treatments. (I) IL-6 serum levels with significant reductions in treated groups compared to the model. (J,K) 
Western blot analysis of ASC protein expression in synovial tissue with GAPDH as a loading control. (L) ASC mRNA levels quantified by qPCR, 
comparing each group to the model, with statistical significance noted. Significance markers used are (*p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001, ns: not significant). (B–F) Sample size per group: n = 8. (G–L) Sample size per group: n = 3.
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Quantitative PCR (qPCR) analysis assessed the expression of 
miR-20a-5p and miR-223-3p, two miRNAs linked to angiogenesis 
inhibition. The data showed that NBTL-treated serum significantly 
upregulated these miRNAs (Figures  8O,P, p < 0.05 and p < 0.01), 
indicating a possible mechanism through which NBTL 
inhibits angiogenesis.

Finally, immunofluorescence staining demonstrated that NBTL 
medicated serum significantly downregulated the expression of VEGF, 
VEGFR1, VEGFR2, and HIF-1α proteins, which are key components 
of the VEGF signaling pathway in HUVECs (Figures 8Q–T).

In conclusion, this study systematically demonstrates that NBTL 
medicated serum significantly inhibits HUVEC proliferation, 

FIGURE 3

Gut microbiota structure and diversity analysis under NBTL-H treatment. (A) Order level: PLS-DA analysis shows 11.6% of the variance explained by the 
first principal component and 9.42% by the second. Different groups are marked with distinct colors: purple for control, red for model, and green for 
NBTL-H (high dose of new bitongling). (B) Family level: 10.2% of the variance is captured by the first principal component and 9.21% by the second, 
with consistent colors and markers. (C) Genus level: the first and second principal components account for 8.34 and 6.74% of the variance, 
respectively, with colors and markers as in the order level. (D) Species level: both the first and second components explain 8.34 and 6.74% of the 
variance, respectively, maintaining the same color scheme. (E) OTU level: 7.01% of the variance is explained by the first component and 6.28% by the 
second, using the same colors and markers as in the order level. (F–I) Depicts the relative abundance of gut microbiota in the control, model, and 
high-dose new bitongling (NBTL-H) groups, analyzed at the order (F), family (G), genus (H), and species (I) levels. Bar charts are used for each category, 
with varying colors representing different taxa. (J) LDA score plot: this plot highlights microbial taxa with significant differences across the control, 
model, and NBTL-H groups, with each bar’s length reflecting the LDA score. (K) Phylogenetic tree: significant differences in microbial taxa between 
groups based on LDA scores, with branch end circles sized proportionally to significance and colors indicating different groups. (L) Correlation 
heatmap: correlations of significantly different microbial taxa in the three groups, with color intensity indicating correlation strength, red for positive 
correlations, and blue for negative correlations. (A–L) Sample size per group: n = 8.
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migration, and angiogenesis through multiple mechanisms, offering 
a potential therapeutic application in anti-angiogenesis treatment.

4 Discussion

Our evaluation centered on uncovering the underlying 
mechanisms, particularly gut microbiota modulation and VEGF 
angiogenesis pathway inhibition. The findings demonstrate that NBTL 
not only significantly alleviates RA symptoms by suppressing key 
inflammatory factors but also profoundly modulates gut microbiota 
composition, highlighting the critical roles of specific bacterial taxa 
like f_Mycoplasmataceae and g_Prevotellaceae_Ga6A1_group in RA 
treatment. Furthermore, NBTL inhibits the VEGF angiogenesis 
signaling pathway by promoting the expression of anti-angiogenic 
factors, including miR-20a-5p and miR-223-3p, while simultaneously 
downregulating the expression of VEGF, VEGFR1, VEGFR2, and 
HIF-1α, thereby reducing angiogenesis in the synovial tissue. The 
Mechanism diagram (Figure  9) visually encapsulates how NBTL 
inhibits angiogenesis through the gut-joint axis, paving the way for 

future advancements in precision medicine and personalized 
therapeutic strategies.

Firstly, NBTL showed notable anti-inflammatory effects in the RA 
model. NBTL treatment markedly lowered TNF-α, IL-17, and IL-6 
levels compared to the control, particularly in the medium- and high-
dose groups, demonstrating a clear dose-dependence. These cytokines 
are key drivers in RA pathogenesis, with their overexpression strongly 
associated with joint inflammation and damage to cartilage and bone 
(Yamanaka, 2015; Taams, 2020; Kishimoto and Kang, 2022; 
Hashizume et al., 2008). By inhibiting these key cytokines, NBTL 
effectively attenuated the inflammatory response, suggesting a 
primary mechanism through which it may exert its therapeutic effects 
in RA. Additionally, the study highlighted the potential involvement 
of ASC in RA pathogenesis. ASC levels were notably elevated in the 
synovial tissue of RA rats, but high-dose NBTL treatment significantly 
reduced its expression. This finding not only underscores the complex 
role of ASC in RA progression but also opens new avenues for 
understanding NBTL’s mechanisms, indicating that it may modulate 
inflammation through an inflammasome-independent pathway 
(Ippagunta et al., 2010).

FIGURE 4

Identifying characteristic gut microbiota for NBTL through machine learning. (A) In the SVM-RFE method, the accuracy of 5-fold cross-validation varies 
with the number of features, reaching a maximum of 0.867 with 20 features. (B) The error rate in 5-fold cross-validation using the SVM-RFE method 
decreases with the number of features, reaching a minimum of 0.133 with 20 features. (C) In the random forest method, the cross-validation error rate 
varies with the number of variables, with the lowest error at 24 variables. (D) Variable importance in the random forest model is represented by 
MeanDecreaseGini. (E) Venn diagram of key gut microbiota identified by SVM-RFE and random forest methods, with 19 common taxa highlighted by a 
red dashed border. (F) ROC curves of key taxa show the relationship between sensitivity and specificity at different thresholds, with different colors 
representing different taxa and corresponding AUC values listed in the legend. (G–L) Box plots illustrating the relative abundance of f_
Mycoplasmataceae (G), g_norank_f_Erysipelotrichaceae (H), g_Prevotellaceae_Ga6A1_group (I), s_Metamycoplasma_sualvi (J), s_uncultured_
bacterium_g_norank_f_Eggerthellaceae (K), and s_uncultured_bacterium_g_Prevotellaceae_Ga6A1_group (L) across the control, model, and NBTL-H 
groups. *p < 0.05, **p < 0.01, and ***p < 0.001, ns: not significant. (A–L) Sample size per group: n = 8.
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Secondly, gut microbiota is crucial in RA pathogenesis. Alterations 
in gut microbial communities, including the emergence of rare taxa 
and reduced microbial diversity, have been implicated in the 
development of RA (Zaiss et al., 2021). Our study demonstrated that 
NBTL significantly alters gut microbiota in RA rats, boosting 
beneficial bacteria like f_Mycoplasmataceae, s_Metamycoplasma_
sualvi, and s_uncultured_bacterium_g_norank_f_Eggerthellaceae, 
while decreasing potential pathogens such as g_Prevotellaceae_
Ga6A1_group and s_uncultured_bacterium_g_Prevotellaceae_Ga6A1_
group. The reduction of g_Prevotellaceae_Ga6A1_group is particularly 
notable, as it suggests a possible role in RA pathology, with NBTL 
potentially exerting therapeutic effects by modulating these specific 
bacterial taxa. This discovery not only sheds light on the mechanisms 
of NBTL but also opens new avenues for exploring the RA-gut 
microbiota relationship in future research.

Our study also applied advanced machine learning (ML) 
techniques, such as SVM-RFE and random forest, to evaluate NBTL’s 
impact on gut microbiota in the RA rat model. SVM-RFE effectively 
identified the most informative features (Sanz et  al., 2018), while 
random forest demonstrated strong nonlinear modeling capabilities 
in processing complex data (Zhang et al., 2021; Roguet et al., 2018; 
Belk et  al., 2018). However, each method has its strengths and 
limitations. SVM-RFE may lose some information when dealing with 
complex biological data, and the inherent randomness in random 
forest could lead to instability in feature selection. Despite these 
limitations, the overlap and divergence in microbial selection between 
the two methods suggest that these microbes may be crucial to NBTL’s 
therapeutic effects. We  recommend the combined use of these 
techniques in future research, with particular attention to microbes 
identified by only one method, as they may harbor undiscovered 

FIGURE 5

Transcriptome analysis reveals NBTL’s impact on VEGF angiogenesis pathway and correlation of VEGF mRNA expression with characteristic gut 
microbiota. (A) PLS-DA scatter plot with PC1 (24.6% variance) and PC2 (7.59% variance). Purple, red, and green dots represent control, model, and 
NBTL-H groups, respectively. (B) VEGF pathway box plot showing distribution, median, quartiles, and outliers. Purple, red, and green boxes represent 
control, model, and NBTL-H groups, respectively. *p < 0.05 and ***p < 0.001. (C) Scale independence and mean connectivity vs. soft threshold for 
network construction. (D) Gene module cluster dendrogram with modules colored. (E) Module-trait relationship heatmap depicting module-sample 
correlations: red signifies positive, blue indicates negative; numbers represent the correlation coefficients and p-values. Highlighted modules are 
significantly associated with NBTL-H. (F) PPI network for NBTL-H module genes. (G) Top 10 genes by degree in the NBTL-H module, with node size 
representing degree and edge thickness interaction strength. (H) GSVA VEGF pathway data with Spearman correlations for the top 10 genes by degree, 
using solid lines for p < 0.05 and dashed lines for p > 0.05. Positive correlations are shown in red, while negative correlations are in blue. (I) VEGF mRNA 
expression comparison across control, model, NBTL-L, NBTL-M, NBTL-H, and TWT groups. **p < 0.01, ***p < 0.001, and ****p < 0.0001. (J–N) 
Spearman correlation between VEGF mRNA and bacterial taxa in NBTL-H rats: (J) f_Mycoplasmataceae (r = −0.76, p = 0.017), (K) g_Prevotellaceae_
Ga6A1_group (r = 0.76, p = 0.017), (L) s_Metamycoplasma_sualvi (r = −0.82, p = 0.0066), (M) s_uncultured_bacterium_g_norank_f_Eggerthellaceae 
(r = −0.83, p = 0.0056), (N) s_uncultured_bacterium_g_Prevotellaceae_Ga6A1_group (r = 0.84, p = 0.0044). Gray areas represent the 95% confidence 
interval, with significance marked at p < 0.05. (A–H) Sample size per group: n = 6. (I–N) Sample size per group: n = 3.
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biological significance. To ensure the robustness and generalizability 
of the models, we  employed 5-fold cross-validation with five 
repetitions to evaluate both the SVM-RFE and random forest models. 
This rigorous cross-validation approach minimized the risk of 
overfitting and confirmed the stability of the results across different 
data subsets. Additionally, while these models performed well on the 
current dataset, their generalizability to larger and more diverse 
datasets remains a critical area for future research. Expanding the 
dataset to include samples with varying microbiota compositions 
could help further validate the predictive accuracy of the identified 
microbial signatures and ensure the models’ broader applicability 
across different populations. Furthermore, it is important to 
acknowledge that both SVM-RFE and random forest have their own 
limitations in handling complex biological data. For instance, 
SVM-RFE may suffer from information loss when dealing with 

high-dimensional, nonlinear feature relationships, while random 
forest’s inherent randomness can cause variability in feature selection. 
However, these issues were mitigated by combining both methods, 
allowing for cross-validation of the microbial taxa identified and 
reinforcing the reliability of our findings. Future studies should 
consider using additional machine learning techniques, such as 
ensemble models or deep learning algorithms, to further enhance 
model stability and prediction accuracy. In light of these 
considerations, we recommend that future research incorporate larger 
and more diverse datasets to assess the robustness of these models in 
varied clinical or experimental contexts. Moreover, we  suggest 
exploring other machine learning approaches, such as neural networks 
or support vector machines, to address the potential weaknesses of the 
current methods and identify novel microbial markers that may have 
been overlooked by a single method.

FIGURE 6

Dose-dependent regulation of miR-20a-5p and miR-223-3p by NBTL and their correlation with VEGF expression and characteristic gut microbiota. 
(A) Comparison of miR-20a-5p expression levels across different treatment groups in rats. (B) Spearman correlation analysis between miR-20a-5p and 
VEGF mRNA expression in the NBTL-H group showed a significant negative correlation (r = −1, p = 5.6 × 10−6). (C) The abundance of the f_
Mycoplasmataceae family exhibited a low positive correlation with miR-20a-5p, though not statistically significant (r = 0.27, p = 0.48). (D) The 
abundance of g_Prevotellaceae_Ga6A1_group showed a strong negative correlation with miR-20a-5p (r = −0.82, p = 0.0066). (E) The abundance of 
s_Metamycoplasma_sualvi species showed a positive correlation with miR-20a-5p (r = 0.83, p = 0.0053). (F) The s_uncultured_bacterium_g_
norank_f_Eggerthellaceae species exhibited a low positive correlation with miR-20a-5p, not reaching statistical significance (r = 0.44, p = 0.24). 
(G) The species s_uncultured_bacterium_g_Prevotellaceae_Ga6A1_group was strongly negatively correlated with miR-20a-5p (r = −0.82, p = 0.0066). 
(H) Comparison of miR-223-3p expression levels across different treatment groups in rats. (I) Spearman correlation analysis between miR-223-3p and 
VEGF mRNA expression in the NBTL-H group showed a negative correlation (r = −0.92, p = 0.0013). (J) The abundance of the f_Mycoplasmataceae 
family exhibited a low positive correlation with miR-223-3p, not reaching statistical significance (r = 0.45, p = 0.22). (K) The g_Prevotellaceae_Ga6A1_
group genus abundance showed a negative correlation with miR-223-3p (r = −0.78, p = 0.013). (L) The abundance of s_Metamycoplasma_sualvi 
species demonstrated a positive correlation with miR-223-3p (r = 0.71, p = 0.032). (M) The s_uncultured_bacterium_g_norank_f_Eggerthellaceae 
species showed a low positive correlation with miR-223-3p, nearly reaching statistical significance (r = 0.66, p = 0.053). (N) The s_uncultured_
bacterium_g_Prevotellaceae_Ga6A1_group species exhibited a negative correlation with miR-223-3p (r = −0.76, p = 0.017). The gray areas represent 
the confidence intervals, with significance at p < 0.05. *p < 0.05, ***p < 0.001, and ****p < 0.0001; ns denotes no statistical significance. (A–N) Sample 
size per group: n = 3.
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FIGURE 7

Deep learning-driven prediction and rat model validation of NBTL’s inhibition of the VEGF pathway via characteristic gut microbiota features. (A) The 
figure illustrates the changes in training and validation loss as well as mean absolute error over epochs. The top panel shows the loss curves, with red 
and blue lines representing the training and validation datasets, respectively. Dots mark specific values at each epoch, while the curves indicate the 
smoothed trends. The bottom panel depicts the mean absolute error, with red and blue lines corresponding to the training and validation datasets. 
(B) The scatter plot compares predicted vs. actual values, with blue dots for training data and red triangles for validation data. The R2 values are 0.671 
(training) and 0.958 (validation), with a loss of 0.01807 and a MAE of 0.12241. (C) The network architecture diagram displays the model’s structure, from 
input to output layers, with two input features processed through dense layers before outputting a single prediction. (D–G) Show the expression levels 
of VEGF, VEGFR1, VEGFR2, and HIF-1α proteins in rats. (H) Shows the relative levels of these proteins. The groups include control (healthy control), 
model (untreated disease model), NBTL-L/M/H (low, medium, and high doses of new bitongling), and TWT (Tripterygium wilfordii positive control), with 
GAPDH used as a loading control. (A–C) Sample size per group: n = 6. (D–H) Sample size per group: n = 3. *p < 0.05, ***p < 0.001, and ****p < 0.0001, 
and ns for non-significant differences.
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FIGURE 8

NBTL medicated serum suppresses HUVEC viability, migration, and angiogenesis via miRNA modulation and VEGF signaling pathway inhibition: 
validation at the cellular level with deep learning predictive models. (A) Dose-response curve of cell viability treated with NBTL-medicated serum. 

(Continued)
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Through Spearman correlation analysis, we  further identified 
significant associations between NBTL-regulated key microbial taxa 
and angiogenesis, leading to the hypothesis that these taxa could 
predict NBTL’s efficacy in inhibiting the VEGF angiogenesis pathway. 
Based on this hypothesis, we developed and optimized a deep neural 
network (DNN) model that effectively predicted NBTL’s potential 
anti-angiogenic mechanisms through modulation of specific gut 
microbiota. This model demonstrated high accuracy in predicting 
unknown data, providing a powerful analytical tool and theoretical 
foundation for understanding NBTL’s mechanisms.

It is worth noting that while NBTL significantly inhibited the 
VEGF signaling pathway, its dual inhibition of VEGFR1 and VEGFR2 
deviates from the conventional understanding of these receptors’ 
opposing expression trends. Traditionally, VEGFR2 is considered the 
primary pro-angiogenic factor, while VEGFR1 has a regulatory role, 
with their expressions typically showing inverse trends (Pérez-
Gutiérrez and Ferrara, 2023; Simons et al., 2016; Chiodelli et al., 2017). 
The ability of NBTL to concurrently inhibit both receptors suggests a 
non-typical mechanism of action, offering a new perspective on its 
therapeutic efficacy and indicating a more comprehensive regulation 
of the VEGF pathway by NBTL.

In addition, our study further highlights the therapeutic relevance 
of miR-20a-5p and miR-223-3p in RA. Recent research indicates that 
miR-223-3p is commonly dysregulated in RA patients and is involved 
in modulating inflammatory, with its expression correlating with 
disease activity and synovial inflammation (Wu et al., 2020; Dunaeva 
et al., 2018; Moriya et al., 2017). Although miR-20a-5p has not been 
extensively studied in RA, its established role in VEGF regulation 
suggests potential therapeutic value (Guo et al., 2021). These findings 
open avenues for further exploration of these miRNAs as biomarkers 
or therapeutic targets for RA. However, additional clinical studies 
involving patient samples are needed to validate their roles and clarify 
their potential applications.

To further substantiate the molecular mechanisms underpinning 
NBTL’s therapeutic effects, we employed UPHLC-MS-TOF to analyze 
the prototype components and metabolites in the blood. This analysis 
revealed that the bioactivities observed, including anti-inflammatory 
and anti-angiogenic effects, are closely linked to specific active 
ingredients and their metabolites. These findings reinforce the proposed 
mechanisms of action, suggesting that the pharmacokinetics of NBTL’s 
constituents contribute significantly to its overall efficacy. This aspect of 
the study provides additional evidence for NBTL’s role in modulating 
biological pathways relevant to rheumatoid arthritis treatment.

Additionally, we  employed PLS-DA instead of the traditional 
principal component analysis (PCA) for analyzing both gut microbiome 
and transcriptome data. Compared to PCA, PLS-DA demonstrated 
clear advantages in distinguishing between different experimental 

conditions, such as treatment and control groups, as it considers not 
only the main directions of data variance but also their relationships 
with the response variables (Ruiz-Perez et al., 2020; Lasalvia et al., 2022; 
Lee et al., 2018). However, when sample size is limited or there are many 
variables, PLS-DA may increase model complexity, potentially leading 
to overfitting and reduced generalizability. Additionally, PLS-DA results 
may be less intuitive to interpret compared to PCA. Therefore, careful 
parameter selection is crucial when applying PLS-DA models. To 
optimize this process, we  plan to further evaluate and refine the 
parameter selection and validation procedures for PLS-DA in future 
studies, aiming to ensure model stability while maximizing the 
extraction and utilization of biological information from both gut 
microbiome and transcriptome data.

The doses of NBTL used in this study were carefully selected 
based on preclinical studies and equivalent human dosage 
extrapolation. The low, medium, and high doses were chosen to 
evaluate a dose-response relationship and assess the potential 
therapeutic window. Among these, the medium dose of NBTL 
demonstrated optimal efficacy in alleviating RA symptoms, while 
avoiding significant adverse effects. This dosage range, extrapolated 
from preclinical data, provides a reasonable starting point for future 
clinical trials. However, further studies are needed to determine the 
precise dose that balances efficacy and safety in humans. These 
findings could serve as a foundation for subsequent clinical 
investigations to establish an optimal dosing regimen for NBTL in 
rheumatoid arthritis treatment.

While NBTL shows promising therapeutic potential, clinical 
application faces challenges, particularly regarding safety and 
regulatory hurdles. Long-term safety needs to be  evaluated, as 
prolonged use of herbal formulations can sometimes cause toxicity. 
Further preclinical studies on chronic toxicity are necessary. 
Additionally, due to NBTL’s multi-component nature, regulatory 
agencies will require detailed documentation on its efficacy, safety, 
and consistent manufacturing. Establishing clear relationships 
between dose and effect, along with standardized quality control, 
will be crucial for regulatory approval. In summary, NBTL holds 
significant potential for RA treatment, but addressing safety 
concerns, regulatory requirements, and standardization will be key 
for its clinical translation. Future studies should focus on 
determining optimal dosing, ensuring long-term safety, and 
identifying biomarkers for personalized treatment.

Despite the extensive documentation of the association between 
gut microbiota dysbiosis and rheumatoid arthritis (RA), our study 
offers novel insights by introducing new bitongling (NBTL) as a 
unique traditional Chinese medicine (TCM) formulation with a 
distinct herbal composition. Unlike previously studied TCM formulas 
such as Gegen Qinlian Decoction (Hu et al., 2024; Lv et al., 2019; Peng 

The x-axis represents different concentrations of NBTL-medicated serum (0, 2, 4, 8, 12, 16, 20%), and the y-axis represents cell viability percentage. 
(B) Comparison of cell viability between the control group (orange, control) and NBTL-medicated serum group (green, NBTL). *p < 0.05, ns: not 
significant. (C) Wound healing assay showing the effect of NBTL-medicated serum on HUVEC cell migration at 0 and 24 h. Red scale bars = 100 μm. 
(D) Quantification of HUVEC cell migration area after 24 h; ***p < 0.001. (E) Tube formation assay images of HUVEC cells. Control group (left) and NBTL 
group (right) with unprocessed (top) and software-analyzed images (bottom). Black scale bars = 100 μm. (F–H) Quantitative analysis of tube formation: 
number of nodes, meshes, and total tube length. *p < 0.05 and **p < 0.01. (I–N) CFSE staining to assess cell proliferation: (I) unlabeled HUVEC cells 
(blank) for baseline; (J) control group; (K) NBTL group; (L–M) overlay of CFSE intensity between control and NBTL groups; (N) statistical analysis of 
CFSE fluorescence intensity. **p < 0.01. (O,P) Expression levels of miR-20a-5p (O) and miR-223-3p (P) in HUVEC cells, control vs. NBTL. *p < 0.05 and 
**p < 0.01. (Q–T) Immunofluorescence staining of HUVEC cells for VEGF (Q), VEGFR1 (R), VEGFR2 (S), and HIF-1α (T), with DAPI (blue) marking nuclei 
and specific markers (green) showing protein expression. White scale bars = 10 μm. Control = blank serum, NBTL = NBTL-medicated serum.
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FIGURE 9

Mechanism diagram: integrating machine learning and deep neural networks to analyze the role of NBTL in modulating angiogenesis in rheumatoid 
arthritis via the gut-joint axis.

et  al., 2024), NBTL comprises a specific combination of herbs 
including Cinnamomi ramulus, Saposhnikoviae radix, Ephedrae herba, 
Sinomenii caulis, Aconiti radix, and Vespae Nidus. This unique 

formulation has not been extensively explored in the context of RA 
and gut microbiota modulation, thereby providing a fresh perspective 
on TCM-based therapeutic strategies.
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Furthermore, our integrative approach combining gut microbiota 
16S rDNA sequencing, transcriptomic analysis, and advanced machine 
learning techniques (SVM-RFE, random forest, and deep neural 
networks) allows for a comprehensive exploration of the regulatory 
mechanisms linking gut microbiota modulation and the VEGF 
angiogenesis pathway. This multi-omics and computational methodology 
surpasses previous studies by providing a more holistic understanding of 
how NBTL influences RA pathogenesis. Specifically, the identification 
and validation of specific microbial taxa (e.g., f_Mycoplasmataceae, g_
Prevotellaceae_Ga6A1_group) and miRNAs (miR-20a-5p and 
miR-223-3p) associated with NBTL treatment efficacy offer potential 
biomarkers for personalized medicine approaches in RA treatment.

Additionally, our study reveals that NBTL concurrently inhibits 
both VEGFR1 and VEGFR2, a finding that deviates from the 
conventional focus on VEGFR2 as the primary pro-angiogenic factor 
in RA. This dual inhibition suggests a more comprehensive regulatory 
effect on the VEGF signaling pathway, potentially enhancing the anti-
angiogenic and anti-inflammatory efficacy of NBTL compared to 
therapies targeting individual components of this pathway.

Moreover, the use of machine learning models to predict and 
validate the regulatory relationships between gut microbiota and the 
VEGF pathway represents an innovative aspect of our research. These 
computational tools facilitate the identification of key microbial and 
molecular players in RA, thereby enhancing the translational potential 
of our findings and paving the way for future precision medicine and 
personalized therapeutic strategies.
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Glossary

RA - Rheumatoid arthritis

DMARDs - Disease-modifying antirheumatic drugs

TCM - Traditional Chinese medicine

NBTL - New bitongling

VEGF - Vascular endothelial growth factor

CIA - Collagen-induced arthritis

16S rDNA - 16S ribosomal DNA

GSVA - Gene set variation analysis

TNF-α - Tumor necrosis factor alpha

IL - Interleukin

ASC - Apoptosis-associated speck-like protein containing a CARD

UPHLC-MS-TOF - Ultra-performance high-performance liquid 
chromatography coupled with time-of-flight mass spectrometry

HE - Hematoxylin and eosin

ELISA - Enzyme-linked immunosorbent assay

SDS-PAGE - Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

PVDF - Polyvinylidene difluoride

GAPDH - Glyceraldehyde 3-phosphate dehydrogenase

HIF-1α - Hypoxia-inducible factor 1-alpha

qPCR - Quantitative polymerase chain reaction

OTU - Operational taxonomic units

LEfSe - Linear discriminant analysis effect size

SVM-RFE - Support vector machine-recursive feature  
elimination

AUC - Area under the curve

ROC - Receiver operating characteristic

WGCNA - Weighted gene co-expression network analysis

PPI - Protein–protein interaction

DNN - Deep neural network

HUVECs - Human umbilical vein endothelial cells

RPMI - Roswell Park Memorial Institute

FBS - Fetal bovine serum

CCK-8 - Cell Counting Kit-8

CFSE - Carboxyfluorescein diacetate succinimidyl ester

PCA - Principal component analysis

PLS-DA - Partial least squares discriminant analysis

MAE - Mean absolute error
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