Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.

Sec. Systems Microbiology

Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1528747

The skin microbiome on healthy and inflammatory altered canine skin determined by next generation sequencing

Provisionally accepted
Lucia Štempelová Lucia Štempelová 1Lenka Micenková Lenka Micenková 2Petr Andrla Petr Andrla 2Viola Strompfova Viola Strompfova 1*
  • 1 Institute of Animal Physiology (SAS), Košice, Slovakia
  • 2 Masaryk University, Brno, South Moravia, Czechia

The final, formatted version of the article will be published soon.

    Human and animal skin is colonized by a complex microbial population. An imbalance of these microorganisms is often associated with dermatological diseases. The aim of this work was to describe the skin bacterial microbiota composition of healthy dogs and dogs with inflammatory skin lesions. Genomic DNA was sequenced using primers that target the V4 region of the bacterial 16S rRNA gene. Superficial skin swabs were collected from eight body areas of six healthy dogs (n=48) and directly from inflammatory altered canine skin (n=16). The skin of healthy dogs was predominantly colonized by phylum Bacillota (34.4 ± 27.2%), followed by Actinomycetota (32.2 ± 20.3%), Pseudomonadota (16.4 ± 12.2%), and Bacteroidota (8.7 ± 11.6%). At the level of genera, Streptococcus spp. (19.4 ± 26.1%) was the most abundant genus across all samples collected from healthy skin, followed by Curtobacterium (5.4 ± 12.1%), Bacteroides (5.2 ± 11.1%) and Corynebacterium_1 (4.3 ± 13.2%). More specifically, Streptococcus spp. was the most abundant on the chin (49.0 ± 35.5%), nose (37.9 ± 32.1%), perianal region (21.1 ± 28.2%), abdomen (11.0 ± 12.8%), dorsal back (12.4 ± 10.3%) and interdigital area (5.5 ± 2.2%). Curtobacterium spp. was predominant on inner pinna (17.8 ± 24.8%) and axilla (6.7 ± 10.8%). Alpha diversity analysis (Shannon index) showed maximum on interdigital area but minimum on a chin (p-value: 0.0416). Beta diversity analysis showed clustering across samples from the individual skin sites but also across samples collected from individual dogs. Staphylococcus spp. was the most abundant genus in 12/16 samples collected from inflammatory skin. In addition, a lower bacterial diversity was observed in samples from skin lesions compared to samples from healthy canine skin. The results confirm the fact that the microbiome of healthy skin is very diverse. Compared to other studies, streptococci predominated on healthy canine skin. Shannon index showed only minor differences in diversity between different parts of canine skin. Results of beta-diversity showed the fact that the main force driving the skin microbiota composition is the individual, followed by the skin site. On the area of skin lesions, dysbiosis was observed with a significant predominance of staphylococci.

    Keywords: Skin, dog, microbiota, 16S rRNA gene, streptococci, Staphylococci

    Received: 15 Nov 2024; Accepted: 12 Feb 2025.

    Copyright: © 2025 Štempelová, Micenková, Andrla and Strompfova. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Viola Strompfova, Institute of Animal Physiology (SAS), Košice, Slovakia

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more