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Antimicrobial resistance (AMR) presents a critical challenge in clinical settings,

particularly among pediatric patients with life-threatening conditions such

as sepsis, meningitis, and neonatal infections. The increasing prevalence

of multi- and pan-resistant pathogens is strongly associated with adverse

clinical outcomes. Recent technological advances in sequencing methods,

including metagenomic next-generation sequencing (mNGS), Oxford Nanopore

Technologies (ONT), and targeted sequencing (TS), have significantly enhanced

the detection of both pathogens and their associated resistance genes.

However, discrepancies between resistance gene detection and antimicrobial

susceptibility testing (AST) often hinder the direct clinical application of

sequencing results. These inconsistencies may arise from factors such as

genetic mutations or variants in resistance genes, differences in the phenotypic

expression of resistance, and the influence of environmental conditions on

resistance levels, which can lead to variations in the observed resistance

patterns. Machine learning (ML) provides a promising solution by integrating

large-scale resistance data with sequencing outcomes, enabling more accurate

predictions of pathogen drug susceptibility. This review explores the application

of sequencing technologies and ML in the context of pediatric infections,

with a focus on their potential to track the evolution of resistance genes

and predict antibiotic susceptibility. The goal of this review is to promote the

incorporation of ML-based predictions into clinical practice, thereby improving

the management of AMR in pediatric populations.
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1 Introduction

Infectious diseases pose a significant threat to global health,
placing immense strain on public health systems worldwide. Infants
and children, due to the immaturity of their immune systems,
are particularly vulnerable to these threats (Zhou et al., 2024).
During early development, children are exposed to a wide range
of viruses, which often lead to bacterial co-infections, resulting in
sepsis rates that are higher than those observed in adults (Kissoon
and Carapetis, 2015). Extended hospital stays are known to
facilitate the development of resistance among common pathogens
against empirical treatment regimens, further contributing to
increased mortality from sepsis and meningitis in pediatric patients
(Williams et al., 2024). The rise of antimicrobial resistance (AMR)
represents a critical global public health crisis, particularly affecting
pediatric populations. A study in China found that 71.76%
of pediatric subjects carried multi-drug-resistant (MDR) gram-
negative bacteria, with only 8.23% showing susceptibility to the
tested antibiotics (Patil et al., 2019; Xu et al., 2023). Similar trends
have been documented globally (Kim et al., 2022; Nisa et al.,
2022). The rapid escalation of AMR in children demands urgent
development of novel strategies to combat MDR infections and
reduce unnecessary pediatric mortality (Medernach and Latania,
2018). This growing threat highlights the pressing need for rapid
antimicrobial susceptibility testing (AST) and vigilant monitoring
of AMR through comprehensive laboratory data.

Recent advances in sequencing technologies have greatly
enhanced the diagnosis of infectious diseases, particularly through
techniques such as metagenomic next-generation sequencing
(mNGS), Oxford Nanopore Technologies (ONT), and targeted
sequencing (TS). These technologies are invaluable for diagnosing
pediatric respiratory, central nervous system, and bloodstream
infections due to their ability to rapidly and accurately detect
pathogens in clinical samples (Horiba et al., 2018; Okumura
et al., 2023; Zeggeren et al., 2021). They also enable the timely
identification of antibiotic resistance genes (ARGs), often within
24–48 h, improving clinical outcomes. mNGS provides a broad
and unbiased analysis by detecting all microbial species in clinical
samples. It involves fragmenting microbial genomes into small
pieces (50–500 bp) and sequencing them against both local and
public reference databases to identify pathogens and ARGs (Chiu
and Miller, 2019). In contrast, TS targets a specific set of microbial
species by using predefined primers to capture and sequence ARGs.
ONT, on the other hand, facilitates the single-pass sequencing of
long DNA fragments (> 10 kbp) via electrical signal detection,
providing detailed insights into mutations and genetic variations,
which is particularly useful for tracking ARGs (Wang C. et al.,
2021). Although the results of AST can be influenced by factors
such as gene regulation, environmental conditions, and microbial
interactions (e.g., horizontal gene transfer), there is substantial
evidence correlating the presence of AMR genes with drug-resistant
phenotypes in microorganisms (Zhang et al., 2022).

The growth of whole-genome sequencing (WGS) data,
combined with clinical AST results and advancements in AMR
databases, has significantly boosted the application of machine
learning (ML) in predicting AMR phenotypes in pediatric
infections. When trained on large, diverse datasets, ML models
can achieve high prediction sensitivities, reaching up to 96.3%

by analyzing AMR determinants (Girgis et al., 2023; Yang et al.,
2019). However, while most studies have focused on using ML to
interpret AST outcomes derived from WGS data, there remains
a notable gap in research exploring the integration of ML with
other sequencing technologies commonly used in clinical pathogen
diagnostics (Gao W. et al., 2024). This gap underscores the need
for further investigation into how these technologies, especially
when combined with ML, can improve diagnostic accuracy and
therapeutic decision-making in pediatric settings.

Machine learning has already found widespread application
in pediatric disease management, including diagnosis, screening,
risk stratification, prognosis, and outcome prediction. It has been
particularly useful in identifying serious bacterial infections in
children (Clarke et al., 2022; Fenta et al., 2024; Lee et al., 2022).
This review examines the role of sequencing technologies in
clinical practice, focusing on their application in pediatric care for
detecting AMR in pathogens, monitoring the evolution of ARGs,
and tracking resistance gene dynamics. Additionally, the review
addresses the challenges associated with developing ML models
that can accurately predict AST outcomes. The primary objective of
this study is to highlight the impact of sequencing technologies on
the management of infections and antibiotic sensitivity in pediatric
populations. Furthermore, it explores the potential for integrating
ML-driven predictions of drug sensitivity into clinical workflows,
with the aim of improving patient care and treatment outcomes.

2 Confronting microbial resistance
in pediatric infectious diseases

2.1 Prevalence and AMR

The physiological and anatomical characteristics of children
differ markedly from those of adults, particularly due to
their immature physiological functions and underdeveloped
immune systems. These differences make pediatric populations
particularly susceptible to a wide range of infectious diseases
that affect multiple organ systems. In pediatric patients, prevalent
infections encompass respiratory conditions like pneumonia
and bronchitis; gastrointestinal infections such as gastroenteritis
and Helicobacter pylori-related illnesses; neurological disorders
including encephalitis and meningitis; as well as integumentary
and soft tissue infections, sepsis, fungal infections, tuberculosis,
and parasitic diseases. Among these, respiratory infections are the
most prevalent, affecting more than 40% of children (Pscheidt et al.,
2021). While many children experience mild symptoms, the unique
aspects of their growth and development can sometimes lead to
severe illness. Additionally, the spectrum of pathogens responsible
for these infections varies by geographic region. For example,
Escherichia coli (E. coli) is frequently isolated in neonates, school-
aged children, and adolescents, while Haemophilus influenzae
is more commonly found in infants. Streptococcus pneumoniae
primarily affects toddlers and preschoolers (Wu et al., 2023).
Additionally, respiratory epidemics in children are often driven
by pathogens such as influenza virus, rhinovirus, Mycoplasma
pneumoniae, and adenovirus.

Bacterial meningitis and meningoencephalitis are rapidly
progressing, severe infections that contribute significantly to the
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high rates of morbidity and mortality in pediatric populations.
These conditions are most prevalent in children under 5 years of age
and typically spread through hematogenous routes, accounting for
up to 90% of cases. Notably, infants and young children represent
two-thirds of these cases, with fatality rates ranging from 5% to 10%
(Li et al., 2018).

Invasive fungal diseases (IFD) are also a significant concern in
pediatric populations, particularly within intensive care settings.
Aspergillus species are the leading causative agents of IFD in
children, accounting for approximately 40% of these infections,
with Aspergillus fumigatus being the most commonly isolated
species (Burgos et al., 2008). Other common agents include
Trichoderma spp. and Fusarium spp. (Pana et al., 2017). Invasive
candidiasis is frequently observed in children with bloodstream
infections (Baalaaji, 2022; McCarty et al., 2021). Additionally, other
atypical fungi, such as Cryptococcus neoformans, Pneumocystis
jirovecii, and Talaromyces marneffei, pose significant clinical risks.
Diagnosing IFD in children is particularly challenging due to
the low rates of positive fungal cultures and the atypical clinical
presentations of these infections (Bandalizadeh et al., 2020; García-
Moreno et al., 2020; Guo et al., 2019; Zeng et al., 2021). The
presence of co-infections with viral and bacterial pathogens—
especially multidrug-resistant organisms—further complicates
diagnosis and contributes to prolonged hospital stays, as well as
increased morbidity and mortality (Donnelly et al., 2020).

The early identification of pathogens is often uncertain, which
can lead to the unnecessary or inappropriate use of antibiotics,
sometimes without microbiological confirmation (Thaulow et al.,
2019). In pediatric patients, resistant infections may arise from
exposure to drug-resistant strains or the emergence of resistance
in previously susceptible strains during hospitalization. Neonates,
whose immune systems are immature and whose resistance is low,
are especially vulnerable to resistant pathogens. Several factors
exacerbate this risk, including preterm birth, low birth weight,
vertical transmission from mother to child, perinatal infections,
and the inappropriate use of antibiotics.

The increased prescription of antimicrobial agents during the
COVID-19 pandemic has likely contributed to the accelerated
emergence of multidrug-resistant (MDR) bacteria. Notably, there
has been a rise in the detection of drug-resistant Staphylococcus
aureus (S. aureus) in both pediatric and maternity wards
(Pinheiro et al., 2023). School-aged children are particularly
burdened by invasive S. aureus isolates, while premature and
very low-birth-weight infants are at an increased risk for early-
onset sepsis caused by isolates resistant to both ampicillin
and gentamicin. Additionally, invasive Streptococcus pneumoniae
isolates in children show higher resistance rates to penicillin
and other antibiotics, including erythromycin, clindamycin, and
mebendazole/sulfamethoxazole, compared to adults (Thaulow
et al., 2021). Alarmingly, resistance rates among coagulase-negative
staphylococci in children with bloodstream infections have reached
91%, and E. coli isolates exhibit significant resistance to cefotaxime,
with 84% of isolates resistant (Sajedi Moghaddam et al., 2024).

Moreover, multidrug-resistant Klebsiella pneumoniae
(K. pneumoniae) is an emerging contributor to sepsis in pediatric
patients, with high resistance levels to beta-lactam antibiotics
(Vijayakumar et al., 2024). The incidence of highly virulent
K. pneumoniae in the pediatric population is rapidly increasing,
underscoring the critical nature of the AMR crisis that is now

affecting children (Li et al., 2021). Figure 1 illustrates the common
pathogens and associated ARGs found in various sites of infection
in pediatric patients.

2.2 Limitations of conventional pathogen
identification methods

Conventional methods for pathogen diagnosis encompass
pathogen isolation and culture, microscopic examination,
immunological assays, and polymerase chain reaction (PCR).
Microbial cultures can be classified into aerobic, anaerobic, and
specialized cultures, each requiring substantial sample volumes.
Specialized cultures refer to those designed for isolating specific
or fastidious pathogens that may require particular environmental
conditions or selective media. Examples include mycobacterial
cultures for tuberculosis, fungal cultures for detecting mycoses, and
cultures for detecting specific pathogens like Brucella or Legionella.
However, acquiring sufficient samples from pediatric patients,
particularly neonates, presents significant challenges.

The blood culture procedures in children are inherently more
complex than those in adults, often necessitating multiple blood
draws to ensure accurate identification. Collecting blood from
pediatric patients can be particularly difficult, as younger children
may not comprehend the necessity of bilateral double sampling,
potentially compromising the effectiveness of culture methods.
Consequently, the sensitivity and specificity of these traditional
diagnostic approaches are relatively low, making it difficult to
detect mixed infections and leading to possible missed diagnoses
of various infectious diseases. Immunological methods that detect
pathogen antigens, metabolites, or antibodies in serum facilitate
the identification of new or secondary infections and allow for the
monitoring of disease progression. However, the underdeveloped
immune systems of children may delay antibody production, which
can result in the missed detection of pathogens.

In recent years, advanced molecular testing technologies,
such as the FilmArray R© Respiratory Panel, have significantly
improved the detection rates of pathogens in lower respiratory tract
infections. These technologies have proven particularly effective in
pediatric populations, achieving detection rates between 70% and
80% for various pathogens. This advancement not only reduces
reliance on antimicrobial drugs but also shortens their duration of
use, consequently diminishing the need for additional diagnostic
procedures such as chest radiographs, thereby leading to more
efficient utilization of medical resources (Kitano et al., 2020;
Subramony et al., 2016). Nonetheless, multiplex PCR technology
has limitations in throughput, typically detecting only a restricted
number of pathogenic microorganisms. Some kits are also limited
to specific sample types, which may restrict their applicability
across a broader range of specimens. Additionally, when microbial
load is low—often the case with pediatric samples—there is a risk
of missed detections, potentially resulting in overlooked diagnoses.
The introduction of matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF) has expanded the
capabilities for identifying clinical microorganisms, including a
wider array of bacterial and fungal species. This technology has
reduced reporting times to 18–24 h, significantly enhancing the
diagnostic timeline. However, it is crucial to consider that culture
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FIGURE 1

Overview of common pathogens implicated in pediatric infections at various anatomical sites, along with their documented resistance mechanisms
and associated antibiotic resistance genes (ARGs). (H. influenzae, Haemophilus influenzae; S. pneumoniae, Streptococcus pneumoniae;
M. tuberculosis, Mycobacterium tuberculosis; S. aureus, Staphylococcus aureus; E. coli, Escherichia coli).

results can be influenced by multiple factors, including the use of
antimicrobial agents, pathogen load, and the selection of culture
media (Martín et al., 2018).

3 Advances in antibiotic resistance
detection technologies

3.1 Conventional methods for detecting
antibiotic resistance

Bacterial drug resistance has emerged as a critical global
threat. In 2011, the World Health Organization (WHO) issued
an urgent alert on World Health Day, stating, “Curbing drug
resistance—if we don’t act today, we won’t have a drug
tomorrow.” This warning is particularly pertinent in pediatric

care, where the developing organs of children are more vulnerable
to the adverse effects of antimicrobial overuse, especially with
broad-spectrum antibacterial agents (Zhang et al., 2018). Data
from the China Children’s Multi-center Antimicrobial Drug
Application Monitoring Network indicates a troubling trend: the
proportion of broad-spectrum antimicrobial usage has remained
elevated in recent years, with no significant decline observed
(Wang C. et al., 2021). This sustained overuse exacerbates the
critical issue of pathogenic microorganism resistance among
children.

To mitigate this crisis and slow the emergence of resistance,
thereby reducing the risk of therapeutic failure, a targeted
approach is essential. Antibiotic therapy should only be
initiated after determining the resistance profile of the
causative pathogen. This strategy ensures that treatment is
both effective and minimizes the contribution to the development
of further resistance.
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Pathogen drug-sensitivity testing is a fundamental aspect of
modern antimicrobial stewardship. This testing includes both
phenotypic and genotypic assessments of drug resistance. Among
these, AST is particularly prominent. AST typically employs
methods such as broth dilution, gradient diffusion, and disc
diffusion, conducted after pathogen culture. Results are interpreted
according to the guidelines established by the United States
Committee for Clinical Laboratory Standards (CLSI) in 2022.
While AST has a long history and generally provides reliable
and cost-effective outcomes, its effectiveness is contingent upon
successful culture, and results can be influenced by multiple factors,
including the type of culture medium, bacterial inoculum size, drug
concentration, incubation duration, and temperature (Jenkins and
Schuetz, 2012).

Moreover, AST results do not always predict therapeutic
success. This discrepancy can occur because in vitro testing
conditions may not accurately reflect in vivo environments.
Consequently, in vitro AST outcomes may not correlate well with
the treatment of certain chronic diseases ( Flynn et al., 2020;
Somayaji et al., 2019). Therefore, it is crucial to interpret drug
sensitivity test results within the broader context of the patient’s
clinical condition.

3.2 mNGS

In 2019, a review in JCM underscored the significant utility
of WGS and mNGS in predicting bacterial AMR. These advanced
techniques offer comprehensive and systematic insights into ARGs
through high-throughput sequencing (Boolchandani et al., 2019).
mNGS, in particular, enables the detection of all microorganisms
in clinical samples, facilitating the identification of AMR genes.
Following nucleic acid extraction, library construction, and
sequencing, the obtained sequences are compared with public
or in-house resistance gene databases to pinpoint ARGs (Diao
et al., 2022). Studies have demonstrated a reasonable alignment
between mNGS results for AMR detection and clinical AST
outcomes. For instance, Gan et al. (2024) utilized mNGS to predict
AMR in pediatric patients with severe pneumonia, observing
superior sensitivity in predicting carbapenem resistance compared
to penicillins and cephalosporins. This variability in predictive
performance highlights the dependence on the pathogen and
antibiotic in question.

Moreover, mNGS is increasingly being applied in the analysis of
microbial communities and functional genomic research pertinent
to pediatric infections. This technique allows for the detection
of both up-regulation and down-regulation of ARGs functions,
thereby aiding in the early management of AMR in pediatric
populations (Xu et al., 2023). Furthermore, ML models have
been developed to predict antibiotic susceptibilities for pathogens
identified through mNGS. A study employed mNGS to ascertain
the antibiotic susceptibility profiles of Acinetobacter baumannii,
creating an ML model that achieved a diagnostic accuracy
exceeding 96.5% in both retrospective and prospective validations
(Hu et al., 2023). Another investigation used mNGS data to detect
K. pneumoniae in pediatrics and predict its AMR profile with an
ML-based approach, resulting in an area under the curve (AUC)
value greater than 0.9, with prediction accuracies ranging from
88.76% to 96.26% (Xu Y. et al., 2024).

3.3 Third-generation sequencing

The emergence of third-generation sequencing technologies,
such as ONT or long-read sequencing methods, has been a
game-changer in genome assembly. These technologies provide
exceptionally high-quality data, allowing for direct detection of
epigenetic modifications on native DNA or RNA, and offer a
portable solution for genomic analysis (Wang C. et al., 2021). ONT
sequencing excels in identifying specific species and strains within
samples due to the mappable nature of long reads. This capability
provides a more accurate assessment of microbiota composition
compared to traditional methods that rely on 16S rRNA and
DNA amplicons (Van Dijk et al., 2018). Remarkably, ONT can
identify pathogens in under 10 min and detect ARGs within
an hour, a significant acceleration over conventional culturing
methods, which typically require 2–3 days, plus additional
time for AST results (Taxt et al., 2020). This technology has
demonstrated remarkable performance in diagnosing childhood
infections (Trotter et al., 2019).

Beyond rapid, real-time pathogen detection, ONT offers
sensitivity and accuracy comparable to mNGS and targeted next-
generation sequencing (tNGS), such as those offered by Illumina, in
detecting pediatric RNA viruses. It has also been extensively applied
in diagnosing tuberculosis (TB) in children. When, combined
with 16S rDNA sequencing, ONT enhances sensitivity and lowers
the detection limit for pneumonia infections in pediatric patients
(Chen et al., 2023; Wang X. et al., 2023). In the realm of ARGs
detection, long-read nanopore sequencing excels by identifying
the presence or absence of ARGs, determining the phenotype
of AMR, differentiating between ARG subtypes, and pinpointing
specific pathogens. This capability is a significant advantage over
conventional methods. Additionally, ONT provides a distinct
benefit in accurately identifying low-abundance plasmid-mediated
AMR, which often eludes detection by traditional techniques (Liu
et al., 2023). The rapid, application of real-time genomics holds
substantial promise for advancing clinical decision-making and
improving patient outcomes (Sauerborn et al., 2024).

3.4 TS

Targeted sequencing offers versatility across various sequencing
platforms, with tNGS being a particularly effective method. tNGS
identifies pathogens by employing specific primers designed for
pathogen detection, AMR and virulence genes (Sauerborn et al.,
2024). As the range of these specific primers expands, so does the
capacity to detect a broader spectrum of pathogens and AMR genes,
scaling from dozens to hundreds, and even thousands in some cases
(Goh, 2019). The sequencing data generated by these genetic panels
significantly enhance bacterial read-length sequences and genome
coverage (Allicock et al., 2018; Tang et al., 2024). tNGS has proven
particularly effective in detecting Mycobacterium tuberculosis
complex (MTBC) infections and associated ARGs (Murphy et al.,
2023). It reliably predicts AMR in MTBC directly from clinical
specimens or cultures, providing essential information for the
timely and appropriate treatment of drug-resistant tuberculosis.
While WHO-recommended rapid diagnostic technologies can
detect rifampicin resistance, they often fall short in identifying
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other forms of tuberculosis AMR, such as isoniazid resistance or
resistance to second-line drugs (Farhat et al., 2024). In contrast,
tNGS can detect resistance to over a dozen anti-tuberculosis drugs
in a single test, including both conventional and new drug types,
with a specificity of ≥ 95% for anti-tuberculosis AMR (Kamb Li
et al., 2021).

Targeted next-generation sequencing has rapidly become the
preferred method for diagnosing TB pathogens and AMR in
pediatric patients, demonstrating superior sensitivity compared to
the Xpert test for detecting pulmonary tuberculosis in children
(Zheng et al., 2024). Integrating tNGS with ML modeling
further enhances the diagnostic accuracy for TB infection and
AMR, with predictive sensitivities exceeding 95% in blood and
cerebrospinal fluid samples (Cryptic Consortium, 2024a; Shaikh
and Rodrigues, 2023). Moreover, tNGS maintains high sensitivity
(70.8%–95.0%) in samples with low pathogen loads, such as blood
and cerebrospinal fluid, and performs well in detecting ARGs in
respiratory infections in children, showing good concordance with
erythromycin and tetracycline resistance (Chen et al., 2024; Lin
et al., 2023).

Nanopore Targeted Sequencing (NTS), powered by third-
generation sequencing technology, offers a comprehensive
approach to AMR detection, transcending the limitations of
hotspot mutations and significantly reducing sequencing time.
NTS has demonstrated a high level of concordance with AST
results, particularly in detecting MTBC-AMR (Gao W. et al., 2024).
This method enables the precise identification of a broad spectrum
of resistance gene profiles, including MDR and extensively drug-
resistant strains (Tang et al., 2024). Compared to single-target
assays, NTS provides a simpler setup and delivers results more
rapidly than WGS and phenotypic AST (Allicock et al., 2018;
Sonntag et al., 2024).

Each sequencing method provides unique insights that form
the foundation for integrating ML approaches aimed at predicting
antibiotic susceptibility in pediatric patients. The detailed genomic
information obtained through these sequencing methods, when
combined with advanced ML algorithms, significantly enhances
our ability to predict and customize antibiotic treatments. By
leveraging the comprehensive data from sequencing, ML models
can improve the accuracy of susceptibility predictions and guide
more personalized therapeutic strategies. Table 1 summarizes the
sequencing methods employed for detecting ARGs in pediatrics,
while Figure 2 illustrates how ML techniques are applied to predict
AMR based on sequencing data. Together, these advancements
represent a pivotal shift toward more precise and effective
management of AMR in pediatric infections.

4 Challenges in sequencing
methods for predicting drug
sensitivity

The role of ML in predicting pathogen drug sensitivity
has gained considerable attention in recent years. Despite
the inconsistent correlation between genotypic and phenotypic
resistance detection, the clinical application of sequencing-
based resistance genotype identification encounters significant
challenges. Integrating this methodology into clinical practice
remains difficult, hindering its potential to facilitate more effective

antibiotic utilization. However, ML offers a promising solution
by leveraging extensive datasets of resistance genes and their
phenotypic relationships. This approach enables the accurate
prediction of resistance levels, including the estimation of minimal
inhibitory concentrations (MIC) for resistant, intermediate, and
susceptible profiles.

In pediatrics, the broad range of clinical presentations, atypical
symptomatology, and rapid disease progression add significant
complexity to diagnosis and treatment (Guo et al., 2020).
Children are particularly vulnerable to AMR, and the challenges
associated with obtaining high-quality clinical samples further
hinder pathogen detection and AST methods. These factors
highlight the urgent need for advanced and precise diagnostic
approaches (Wu et al., 2024). Additionally, many pediatric patients
receive antibiotics prior to hospital admission, which compromises
the reliability of culture-based diagnostic methods, particularly for
respiratory pathogens. Therefore, improving the enrichment of
pathogen-derived nucleic acids in clinical samples is critical for
optimizing sequencing accuracy, thereby introducing another layer
of complexity to the diagnostic process (Wilson et al., 2019).

4.1 Challenges in mNGS

In principle, ML can predict antimicrobial drug susceptibility
by analyzing ARGs identified through sequencing (Hyun et al.,
2023). However, the effectiveness of ML models is contingent
on both the sequencing technology employed and the quality
of the data obtained. Most studies currently utilize AST by
combining WGS of cultured bacterial strains with ML algorithms.
This approach is advantageous due to the comprehensive data it
generates, including information on alleles, non-allelic variants,
and genes that may not directly contribute to AMR but are relevant
to ARG prediction. Despite its potential, several challenges remain
that need to be addressed before these technologies can be routinely
used in clinical practice.

One significant challenge is the time required for microbial
cultivation, which typically ranges from 2 to 4 days, depending
on the complexity of the organism. In the case of Mycobacterium
tuberculosis (MTB), this process can extend from 2 to 8 weeks.
This delay in obtaining cultured samples can result in prolonged
diagnostic turnaround times, which is especially concerning
in pediatric patients who may require rapid intervention.
Furthermore, the large volume of data generated by WGS requires
extensive bioinformatics analysis, which adds to the overall
processing time (Su et al., 2019). Another challenge arises with
mNGS, a promising approach that is prone to complexities
related to experimental conditions. These include control over
environmental microbial contamination, the initial DNA input in
samples, sequencing depth, and the analytical capabilities required
to handle vast amounts of data. Additionally, mNGS results are
susceptible to false positives due to background noise, which
includes genetic material from human hosts and environmental
organisms. This contamination complicates the interpretation of
results, making it difficult to determine whether the identified
microorganism is the true causative agent of infection. Such
issues become more pronounced in cases where the read depth
for detected pathogens is low, when results do not align with
the clinical presentation, or when rare or atypical pathogens
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TABLE 1 Sequencing methods used for antibiotic resistance genes (ARGs) detection in pediatrics.

Type Detection
technology

Detection
type

Culture
needed?

Advantages Limitations References

Traditional AST detection
methods

Disk. diffusion
method

Phenotype Yes 1. Simple and does not require specialized
equipment
2. Simultaneous testing for multiple antibiotics
3. With standardized protocol

1. Time-consuming
2. Unable to get MIC value
3. Dependence on subjective
interpretation
4. Affected by temperature, humidity,
pH and other factors

Bonev et al., 2008; Weinstein
and Lewis, 2020

Agar dilution and
broth dilution
methods

Phenotype Yes 1. Widely recognized and used, With standardized
protocol
2. MIC value can be obtained
3. Cost minimization, and convenience

1. Time-consuming
2. Inefficient, only one antibiotic can
be tested at a time
3. Effects of emulsifiers and solvents

Golus et al., 2016; Intra et al.,
2019

Antimicrobial
gradient diffusion
test

Phenotype Yes 1. Convenient and rapid
2. Excellent reproducibility
3. MIC value can be obtained
4. Simultaneous detection of multiple antibiotics

1. Not applicable to other types of
antimicrobials
2. Subject to subjective interpretation

Gupta et al., 2015; Jeverica et al.,
2017

Mass spectrometry MALDI-TOF Genotype Yes 1. Less time consumption and accuracy
2. Easy to interpretation
3. Drug resistance genes in plasmids can be detect

1. Equipment is expensive
2. Specialized person needed

Florio et al., 2020; Singhal et al.,
2015

Sequencing technologies WGS Genotype Yes 1. Detect the full spectrum of drug-resistant genes
2. Tracking new emerging mutations and emerging
drug resistance
3. High throughput
4. High sensitivity and specificity

1. Time-consuming
2. Costly
3. Complex bioinformatics analysis

Almaghrabi et al., 2024; Monk,
2019

mNGS Genotype No 1. Simultaneous detection of pathogens and export
of resistance genes
2. Cultured free
3. High throughput
4. Rapid

1. Influenced by human genetic
background
2. Costly
3. Insufficient sequencing depth

(Hu et al., 2023; Xu Y. et al.,
2024)

ONT Genotype No 1. Long Sequence
2. Cultured free
3. More rapid than mNGS
4. Drug resistance genes in plasmids can be detect

1. Influenced by human genetic
background
2. Costly
3. Prone to sequencing errors

Nisa et al., 2022; Van Dijk et al.,
2018

TS Genotype No 1. Rapid
2. High throughput
3. Simultaneous detection of pathogens and export
of resistance genes
4. Independent of human genetic background

1. Require prior knowledge of target
genes
2. Challenges of aerosol pollution
3. Inability to identify emerging
variants

Tang et al., 2024; Murphy et al.,
2023

MALDI-TOF, matrix-assisted laser desorption/ionization time of flight mass apectrometry; WGS, whole-genome sequencing; mNGS, metagenomic next-generation sequencing; ONT, Oxford Nanopore Technologies; TS, targeted sequencing; AMR,
antimicrobial resistance.
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FIGURE 2

Workflow for machine learning (ML)-based prediction of antimicrobial resistance (AMR) using sequencing methods. The process starts with
collecting and preparing whole-genome sequencing (WGS) data and corresponding antimicrobial susceptibility testing (AST) results. Low-quality
data are filtered to ensure accuracy. Genomic sequences are aligned with the Comprehensive Antibiotic Resistance Database (CARD) database to
identify potential resistance markers. These markers train ML models, which are evaluated for their predictive accuracy. Features are weighted based
on significance, and models are refined and validated with clinical samples. The results are then used to improve clinical decision-making and guide
antibiotic stewardship.

are detected. These challenges, while significant, underscore
the importance of continued technological improvements in
sequencing methods and ML algorithms, as well as the need
for more robust bioinformatics tools and clinical workflows.
Addressing these obstacles will ultimately facilitate the broader
implementation of sequencing-based AST and ML approaches in
pediatric infection management, enabling faster, more accurate
diagnoses and more effective treatments.

The data preprocessing stage of mNGS can be facilitated using
software tools such as Trimmomatic v0.39, which removes low-
quality sequence fragments and trims sequences with inadequate
length. Transcriptomic technologies, such as RNA sequencing,
provide valuable insights into bacterial gene expression, which
can help bridge gaps in our understanding of AMR. RNA
sequencing can detect ARGs directly in clinical samples without
the need for prior culture; however, its effectiveness is dependent
on sample quality. For instance, obtaining high-quality sputum
samples from children under 5 years of age is often challenging
(Shaikh and Rodrigues, 2023). Studies on pediatric patients with
severe pneumonia have shown that the average genome coverage
for pathogen detection is often low, with the highest recorded
coverage at 42.25%. While mNGS demonstrates good sensitivity
and specificity for detecting carbapenem resistance, sensitivity
is considerably reduced for other resistance mechanisms (Gan
et al., 2024; Su et al., 2021). The integration of ML methods
has led to successful predictions of AST outcomes in several
studies (Lüftinger et al., 2023; Xu Y. et al., 2024). However,
since mNGS relies on random fragment sequencing, it may fail
to cover important genomic regions, which can hinder accurate
microbial typing. This results in insufficient data on species and
ARGs, particularly for known chromosomal mutations that are
detectable but may be missed due to sequencing limitations.
Additionally, mutations in resistance-related genes, such as point
mutations involved in resistance mechanisms, are often challenging
to detect (Asante and Osei Sekyere, 2019; Hadjadj et al., 2019).
False-negative results inconsistent with AST outcomes are also

a concern (Pailhoriès et al., 2022). Moreover, plasmid-mediated
resistance mechanisms are difficult to detect using mNGS. Both
WGS and mNGS based on short-read sequencing are prone to
missing key genetic information due to incomplete coverage of
critical genomic sites. To mitigate this, multiple software programs,
such as Readfq V82 for quality assessment and tools like fastp
and SPAdes for sequence assembly, are required to screen and
optimize gene sequences (Chen et al., 2018). Despite these efforts,
incorrect assembly can lead to erroneous results, and even with
quality control improvements, the resolution of ARGs remains
challenging (Gao W. et al., 2024). Furthermore, while efforts are
made to reduce the human genetic background in clinical samples,
a significant amount of human DNA often persists, which can
contribute to detection failures. In pediatrics, samples with low
microbial content may result in non-uniform genome coverage
or insufficient sequencing depth, undermining the reliability of
ARG detection (Ruppé et al., 2022). Additionally, mNGS often
cannot localize ARGs to specific pathogens, which compromises
the accuracy of drug sensitivity predictions.

4.2 Challenges in third-generation
sequencing

Third-generation sequencing technology can simultaneously
detect multiple resistance genes and all resistance loci,
providing more comprehensive information on drug resistance.
Overall categorical agreement of 95% for penicillins, 82.4%
for cephalosporins, 76.7% for carbapenems, 86.9% for
fluoroquinolones, and 96.2% for aminoglycosides in a study
(Weinmaier et al., 2023). However, Third-generation sequencing
is currently overpriced, the higher error rates associated with
ONT and the difficulty in resolving homopolymer sequences
pose significant challenges. These can affect the accuracy of AMR
determinations in children, where precise genomic information is
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paramount. Additionally, the choice of extraction kit can influence
the variability of third-generation sequencing results, affecting
factors such as reporting time, sequencing yield, and accuracy.
Moreover, Pseudomonas species are common contaminants of
ONT kits and reagents, and the presence of nucleic acids from
these organisms may interfere with the accuracy of drug resistance
predictions (Cryptic Consortium, 2024a). In addition, the rate
of false positives for drug-resistant genes was higher in third-
generation sequencing than in second-generation sequencing
because of sequencing or assembly problems. Variability in the
sequencing platform’s electrical signal stability could introduce
biases, influencing both the interpretation of genomic data and
the efficacy of subsequent ML models in predicting resistance
patterns (Istace et al., 2017). Conversely, ONT offer promising
advancements in pathogen AMR detection through its capacity for
long-read sequencing. This technique preserves crucial mutation
sites within ARGs, vital for tracking resistance patterns in pediatric
pathogens.

4.3 Challenges in TS

The TS approach enhances the detection of AMR in pediatrics
by minimizing the interference of host DNA, thereby increasing
the assay’s sensitivity compared to mNGS (Datar et al., 2021).
mNGS and tNGS have comparable detection rates of pathogenic
microorganisms in children, both for respiratory and tissue samples
(Gaston et al., 2022; Miao et al., 2018). Their application in
detecting drug resistance genes in clinical samples has become
widely adopted. Lin et al. (2023) utilized tNGS to identify a total
of 58 ARGs associated with tetracyclines, macrolides-lincosamides-
streptozotocin, beta-lactams, sulfonamides, and aminoglycosides
in 19 out of 25 pediatric patients. The concordance rates
between tNGS results and those from traditional AST for
erythromycin, tetracycline, penicillin, and sulfonamides were
89.5%, 79.0%, 36.8%, and 42.1%, respectively (Banerjee and Patel,
2023). Nonetheless, TS is susceptible to common challenges
associated with PCR, including non-specific amplification and
aerosol contamination. Additionally, issues such as limited primer
specificity can result in false-positive or false-negative outcomes.
Moreover, the reliance on meticulously designed probes and PCR
primers restricts genomic coverage, particularly failing to detect
sequences outside the predefined panel, which may overlook
emerging resistance genes critical in pediatrics. It facilitates
the resolution of plasmid sequences, enabling a more detailed
investigation of HGT of ARGs (Boolchandani et al., 2019).

4.4 Impact of sequencing parameters
on outcomes

The effectiveness of sequencing test kits in predicting antibiotic
sensitivity in pediatric infections is significantly influenced
by their quality. Robust assays necessitate stringent quality
metrics, including a Q30 score of at least 75% for accurate
base detection, a minimum of 50,000 original reads to ensure
adequate sequence data, and thresholds of 200 and 3,000 reads
for internal parameter amplification and pathogenicity target

regions, respectively (Kastanis et al., 2019). However, several
inherent challenges related to sequencing technology remain.
These challenges include difficulties in tracing the origins of
drug-resistant genes to specific microorganisms, the need for
clinical correlation to interpret the significance of identified
bacterial species, and the complex task of distinguishing between
infectious and colonizing microorganisms, which often requires
additional clinical context. Addressing these challenges is crucial
for enhancing the reliability of sequencing methods in predicting
antibiotic sensitivity, particularly in the pediatric population,
where atypical symptoms and rapid disease progression complicate
diagnostic processes (Zhu et al., 2023).

5 The crucial role of comprehensive
and up-to-date genetic data in
drug resistance

Large-scale public datasets are crucial for ML models aimed
at predicting AST outcomes. These databases must be both
comprehensive and regularly updated to improve the accuracy
of drug susceptibility predictions, especially for newly approved
antibiotics (Cryptic Consortium, 2024a). The Comprehensive
Antibiotic Resistance Database (CARD) exemplifies this necessity
for regular updates, with its latest version, 3.2.4, released monthly
(Alcock et al., 2023). However, the performance of ML models
can be compromised if critical resistance features of certain strains
are overlooked during feature selection (Tian et al., 2024). While
databases like ResFinder have been updated to version 4.0, others,
including the Antibiotic Resistance Genes Database (ARDB) and
Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT), are no
longer maintained (Xu Y. et al., 2024). The reliability of these
reference datasets is crucial for establishing baseline trends and
patterns.

Currently, genomic information, including resistance data, is
unevenly distributed across public databases, exhibiting a bias
toward data from developed regions such as North America
and Europe. Although contributions from developing countries,
particularly Asian nations like China, are increasing, they
still lag behind their Western counterparts (Alygizakis et al.,
2024). The NORMAN ARB&ARG database, established by the
NORMAN Association, incorporates information on antibiotic-
resistant bacteria and ARGs from studies conducted in China
and Nepal (Porse et al., 2020). Furthermore, China has developed
DRESIS, the world’s first comprehensive database on AMR,
which covers a broad spectrum of disease categories and
resistance mechanisms (Papp and Solymosi, 2022). The continuous
incorporation of high-quality microbial and ARGs data, alongside
timely updates to these databases, is essential for advancing the
clinical applicability of drug susceptibility predictions. Further
details regarding AMR gene databases can be found in Table 2.

A major limitation of these databases is their inability to
capture unknown resistance gene mechanisms. Additionally, the
coexistence of multiple resistance mechanisms can influence the
final AMR phenotype, potentially compromising the performance
of ML models (Papp and Solymosi, 2022). Furthermore, the lack of
standardization across databases adds another layer of complexity,
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TABLE 2 Overview of databases for antibiotic resistance genes (ARGs).

Databases
name

Update
frequency

Data types Clinical applications Database features References

CARD Regular updates,
typically quarterly

Gene sequences, resistance
mechanisms, gene
annotations, metadata

Identification and analysis of
ARGs and mechanisms.

Comprehensive coverage of
resistance genes, detailed
annotations, and integrated
tools for resistance
prediction.

Alcock et al., 2023;
Liu and Pop, 2009

ARDB Periodic updates,
less frequent

Gene sequences, resistance
profiles, functional
annotations

Gene identification and
characterization of resistance
in various pathogens.

Includes data on resistance
genes, mutations, and
mechanisms; supports
genomic searches.

Xu Y. et al., 2024;
Bortolaia et al., 2020

ResFinder Frequent updates,
typically monthly

Gene sequences, resistance
profiles, mutation data

Detection of ARGs in
sequencing data, especially
for clinical diagnostics.

Focuses on ARGs in
pathogenic bacteria, includes
high-throughput sequencing
data.

Florensa et al., 2022;
Gupta et al., 2014

ARG-ANNOT Regular updates,
typically quarterly

Gene sequences, functional
annotations, taxonomic data

Annotation of ARGs in
metagenomic and genomic
sequences.

Annotates ARGs with
functional and taxonomic
information, supports
various sequencing data
formats.

Johnson et al., 2022

ARGO Less frequent
updates, annual

Gene ontology terms,
functional annotations, gene
sequences

Functional classification and
understanding of ARGs.

Provides ontology-based
classification, integrating
gene function and resistance
mechanisms.

Bush, 2023

Lahey list of
β-lactamases

Periodic updates,
biannual

Gene sequences, β-lactamase
classifications, enzyme
characteristics

Identification and
characterization of
β-lactamase genes and their
variants.

Comprehensive list of
β-lactamases, including
detailed information on gene
variants and enzyme
properties.

Naas et al., 2017

BLDB Regular updates,
typically quarterly

Gene sequences, enzyme
activities, resistance profiles

Tracking and analysis of
β-lactamase genes and their
resistance profiles.

Extensive database of
β-lactamases with
information on gene
sequences, enzyme activities,
and clinical relevance.

Prasanna and
Niranjan, 2019

TBDReaMDB Periodic updates,
less frequent

Gene sequences, novel
β-lactamase variants,
resistance data

Research and development of
β-lactamase-related
treatments and diagnostics.

Focuses on β-lactamase gene
research, including novel
variants and their
implications for drug
resistance.

Gibson et al., 2015

Resfams Regular updates,
typically annual

Gene family classifications,
functional annotations,
sequence data

Classification and functional
annotation of ARGs families.

Provides family-based
classification and functional
annotation of ARGs across
diverse species.

Pei et al., 2024

ARGs, antibiotic resistance genes; CARD, Comprehensive Antibiotic Resistance Database; ARDB, Antibiotic Resistance Genes Database; ARG-ANNOT, Antibiotic Resistance Gene-
ANNOTation; ARGO, Antibiotic Resistance Genes Online; BLDB, β-lactamase database; TBDReaMDB, tuberculosis AMR mutation database.

as inconsistencies and variations in data across databases may affect
the accuracy and reliability of ML model predictions.

6 Key considerations in applying
machine learning for predicting
antibiotic susceptibility in pediatrics

6.1 Genomic datasets and
feature extraction

Machine learning in microbiology, particularly for predicting
AST from sequencing data, has significant potential to improve

clinical decision-making in pediatric settings. Table 3 summarizes
existing studies that integrate ML with sequencing approaches for
AMR analysis in pediatric populations. Among the various ML
techniques employed, Random Forest (RF) and Logistic Regression
(LR) models appear to be the most commonly used across pediatric
studies, reflecting their broad applicability and robustness in
handling complex datasets such as whole genome sequencing
(WGS) and NGS data. These models are frequently applied due
to their relatively straightforward implementation and strong
predictive performance, particularly in contexts like bloodstream
infections and urinary tract infections. Conversely, more complex
models, such as Bayesian networks, Support Vector Machines
(SVM), and Naïve Bayes, are used less often, potentially due to their
greater computational demands or limited adaptation to the diverse
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TABLE 3 Summary of pediatric studies integrating machine learning with sequencing approaches for antimicrobial resistance analysis.

References Study date Age range Sequencing
approach
employed

ML approach
used

Key findings/notes

Lee et al., 2022 2022 0–6 years WGS RF, CLR Identified SBI in pediatric patients

McAdams et al.,
2022

2022 Neonate (< 28 days
after birth)

WGS Supervised learning,
regression models

Investigated neonatal morbidities,
including sepsis, bronchopulmonary
dysplasia, and retinopathy of prematurity

Sick-Samuels
et al., 2020

2020 0–18 years WGS Decision tree Focused on bloodstream infections caused
by multidrug-resistant gram-negative
organisms

Bagnasco et al.,
2022

2022 0–19 years WGS LR Explored urinary tract infections in
pediatric patients

Xuemei et al.,
2024

2024 > 28 days after birth
to 18 years

WGS LR, RF, XGB, and BP Investigated children with severe
infections

Frange et al.,
2012

2012 0–18 years WGS SVM Estimated the potential benefits of
CCR5-antagonist therapy in pediatric
patients

Yap et al., 2016 2016 Neonate (< 28 days
after birth)

tNGS RF Focused on intestinal carriage of
multidrug-resistant gram-negative
bacteria in neonates

Karsies et al.,
2018

2018 > 28 days after birth
to 14 years

WGS Multivariable regression Investigated gram-negative bacilli with
high antibiotic resistance potential

Rahman et al.,
2018

2018 0–3 months mNGS RF Identified influential ARGs in the infant
gut microbiome

Gasparrini et al.,
2019

2019 0–21 months mNGS RF Analyzed persistent metagenomic
signatures in pediatric patients

Wu et al., 2020 2020 0–17 years WGS Bayesian networks Predicted causative pathogens in children
with osteomyelitis

Lu et al., 2022 2022 0–18 years WGS LR Investigated urinary tract infections in
Chinese pediatric patients

Sung et al., 2022 2022 0–18 years tNGS RF Studied Mycoplasma pneumoniae
pneumonia in children

Tsurumi et al.,
2023

2023 0–16 years tNGS LASSO Focused on infections in children with
burns

Hoffer et al., 2024 2024 2–17 years tNGS SVM Investigated acute Streptococcal
Pharyngitis in children

Xing et al., 2024 2024 0–18 years mNGS LASSO Studied childhood infectious meningitis
and encephalitis

Özdede et al.,
2024

2024 0–18 years Pangenome analysis Naïve bayes Analyzed carbapenem-resistant
Acinetobacter baumannii infections in
pediatric patients

RF, random forest; LR, logistic regression; SBI, serious bacterial infection; DT, decision tree; XGB, extreme gradient boosting tree; BP, backpropagation neural network; SVM, support vector
machine; tNGS, targeted Sequencing; mNGS, metagenomic sequencing; LASSO, least absolute shrinkage and selection operator.

nature of pediatric infections. Despite the promise of integrating
ML with sequencing technologies, challenges remain in the
accurate prediction of pediatric antimicrobial resistance, including
issues related to the limitations of sequencing technologies
like mNGS, tNGS, ONT, and TNS, and the need for further
optimization in ML model selection and integration for pediatric-
specific infections.

The “garbage in, garbage out” principle is a fundamental
aspect of ML, emphasizing the importance of high-quality input
data. This principle is especially crucial in pediatrics for several
reasons. First, the diversity within pediatric populations, ranging
from neonates to adolescents, introduces significant variability

in physiological and pathological features at each developmental
stage. For example, neonates and adolescents have distinct immune
systems, metabolic rates, and drug responses (Simon et al., 2015).
If these age-related differences are not adequately reflected in the
input data, the model’s predictions may be inaccurate or even
harmful to certain age groups (Wiens and Shenoy, 2018). Second,
data collection in pediatric settings presents unique challenges,
such as children’s limited ability to accurately express symptoms,
necessitating reliance on parental reports (Varni et al., 1999).
Additionally, pediatric datasets are typically smaller, and data
quality and completeness may be compromised. Although large
datasets are not always essential, genomic datasets should be
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sufficiently large to ensure robust model training. However, larger
datasets increase processing time, which could be a limiting
factor in pediatric contexts. Pediatric ML models should ideally
be developed from datasets where the sample size exceeds the
number of features to ensure class balance and model validity.
Low-quality or incomplete data can lead to models learning
incorrect or unreliable information, compromising the model’s
performance and reliability (Raghupathi and Raghupathi, 2014b).
Third, pediatric data collection and use are governed by strict
ethical and privacy regulations to protect confidentiality and
security. These regulations can limit data access and sharing,
further restricting dataset size and diversity (Olteanu et al., 2019).
However, dataset size and sample selection bias often hinder the
effectiveness of ML models in clinical settings (Goto et al., 2019).
Thus, ensuring high-quality and representative input data is crucial
for developing and applying ML models in pediatric contexts.

Feature extraction and selection are crucial for the predictive
accuracy and efficiency of ML models. Inaccurate feature extraction
can lead to model failure. ARGs are key genetic determinants of
antimicrobial resistance and are often conserved across various
species (Macesic et al., 2020). High-dimensional feature vectors
may negatively impact ML performance and increase execution
time (Wang C. C. et al., 2023). Algorithms such as RF and LASSO
have built-in feature selection capabilities, which help in removing
low-abundance or low-prevalence features. Prodigal, a gene
prediction tool based on open reading frames, provides detailed
feature predictions that enhance the filtering process (Hyatt et al.,
2010). Additionally, k-mer length can be used as an input feature
for ML models to predict the MIC. Feature selection methods
apply equally to the input dataset, which is crucial for ensuring
the relevance of features used in ML models. In metagenomic
sequencing, commonly employed techniques include NGS and
ONT. Raw data undergo preliminary processing before feature
selection, which involves the removal of low-quality reads and
adapter sequences using tools such as FastQC, fastp, and NanoFilt.
It is also essential to eliminate human nucleic acids using tools
like Bowtie2 and Kraken. High-quality reads are then assembled
into genomic contigs using assembly software like SPAdes, and
subsequently mapped to an ARGs database using BLASTN. The
ARGs database is pre-organized based on the research objectives
to identify target ARGs and their single nucleotide polymorphisms
(SNPs), insertions, and deletions. Alternatively, features can be
selected based on gene presence/absence and gene variants for
further analysis. However, it is vital to ensure that the selected ARGs
are specific to the pathogens of interest in the current research
(Bortolaia et al., 2020; Hu et al., 2023; Xu Y. et al., 2024).

Optimizing features, especially those highly correlated with
drug susceptibility phenotypes, can significantly improve model
performance (Sarker, 2021). In pediatric antibiotic susceptibility
assessments, consideration should not only be given to the presence
of known resistance genes but also to genomic mutations relative to
reference genomes. Studies on pediatric pathogen drug sensitivity
have shown that the AUC for predicting antimicrobial resistance
increases as the length of the compared sequence fragments
increases, particularly in MTB (Aytan-Aktug et al., 2021). However,
reliable sequence length requirements for accurate prediction
have yet to be established. Precise identification of resistance-
related genes and ensuring high-quality sequencing are crucial

to improving the accuracy of ML models in managing pediatric
infectious diseases.

6.2 ML algorithms

The performance of ML algorithms during training is
influenced by various factors, one of the most important being
the structure and order of the input dataset. This raises concerns
about the reproducibility of the results: will the outcomes remain
consistent if the algorithm is trained on the same data but with
different input sequences? To ensure robust and reproducible
model performance, it is critical to implement strategies such
as random data splitting and cross-validation during training.
These techniques help mitigate biases introduced by the sequence
of the input data.

Furthermore, ML algorithms require large, diverse, and well-
annotated datasets to train effectively. However, acquiring high-
quality pediatric data poses significant challenges, as pediatric
datasets are often much smaller and harder to access compared
to adult datasets. The cost of generating sufficient pediatric data
can be prohibitively high, which often leads researchers to rely
on public databases or collaborative networks to supplement
the available data. To address the issue of data scarcity, several
ML techniques can be employed to augment the dataset. For
instance, transfer learning involves utilizing models pretrained
on large adult datasets, which are then fine-tuned with pediatric
data (Pisanello et al., 2019). This approach allows researchers to
leverage existing knowledge, minimizing the need for extensive
pediatric datasets. Data augmentation techniques, such as rotation,
scaling, and cropping, can also be applied to generate additional
data samples from existing datasets, thereby expanding the dataset
size (Raghupathi and Raghupathi, 2014a). Additionally, synthetic
data generation methods, like Generative Adversarial Networks
(GANs), can be used to produce realistic, synthetic data to
supplement real-world data (Frid-Adar et al., 2018).

Deep learning has also shown promise in predicting pediatric
AMR, particularly in identifying complex patterns of pathogen
resistance, such as in neonatal sepsis diagnosis (McAdams et al.,
2022; Nguyen et al., 2019). However, deep learning models require
high computational resources and significant optimization of both
algorithms and hardware to operate efficiently. This computational
complexity must be addressed to make deep learning models viable
for pediatric AMR applications.

The collection and annotation of pediatric data can be more
challenging than for adults, as children may have difficulty
accurately expressing their symptoms, which can affect the
completeness and accuracy of the data. To overcome this, several
ML strategies can be employed. Multi-source data integration,
which combines data from multiple medical institutions and
diverse sources, can help increase dataset diversity and improve
model generalization (Rajkomar et al., 2018). Semi-supervised and
self-supervised learning techniques, which allow for the use of
unannotated data, can enhance model performance by making
better use of the available data (Sun et al., 2017; Van Engelen
and Hoos, 2020). Active labeling, where medical experts manually
annotate the most informative data, improves the quality and
efficiency of the labeling process (He et al., 2019).
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Moreover, pediatric pathogens and diseases possess unique
characteristics that ML models must recognize in order to make
accurate predictions. Feature engineering, specifically tailored to
the pediatric context, is essential to ensure that the models capture
these unique features (Grossman et al., 2017). Ensemble learning
methods, which combine predictions from multiple models (e.g.,
decision trees, RF), have been shown to improve overall model
accuracy and robustness (Dietterich, 2000). These approaches help
ensure that models perform well even when faced with limited or
noisy data.

In summary, common ML models used for predicting pediatric
antibiotic susceptibility include Adaptive Boosting (AdaBoost), RF,
Extreme Gradient Boosting (XGBoost), ensemble learning, SVM,
and neural networks. The most suitable algorithm depends on
the specific nature of the data and the goals of the study. While
no single “best” algorithm exists for predicting drug susceptibility
from sequencing data, many studies utilize a multi-algorithm
approach to compare performance and identify the most effective
model for their specific task (Hu et al., 2023; Xu Y. et al., 2024).
Among these, RF has proven particularly effective in handling
sequencing data focused on resistance genes, as it excels in
capturing non-linear relationships and making predictions based
on complex decision rules. This makes RF a promising candidate
for predicting antimicrobial resistance in pediatric infections
(Prasanna and Niranjan, 2019). A detailed overview of these
algorithms’ performance is provided in Table 4.

6.3 Validation of ML model performance

The robustness and generalizability of ML models in
pediatric AMR prediction must be thoroughly validated using
authentic clinical data from diverse pediatric cohorts. This
validation is essential for ensuring that models trained on
one dataset can perform effectively across different settings,
including those with distinct microbial populations and patient
demographics. Consequently, regular validation against traditional
surveillance data is imperative for assessing the robustness of
these models (Lazer et al., 2014). Pediatric data is often scarce,
making cross-validation and model robustness testing even
more crucial to confirm the model’s applicability in clinical
practice.

Different ML algorithms demonstrate variable predictive
performance depending on their specific applications. To
ensure comprehensive classification and representation of
all MIC of antimicrobial drugs in the training set, stratified
random sampling techniques—such as those implemented
in ShuffleSplit software—are utilized. This method produces
stratified, randomly collapsed datasets, thereby maintaining
the proportionality of samples at each MIC level. Evaluating
the predictive performance of ML models involves several
key metrics, including Essential Agreement (EA), Category
Agreement (CA), Receiver Operating Characteristic (ROC) curves,
and AUC values. These metrics, alongside recall/sensitivity,
specificity, Positive Predictive Value (PPV), Negative Predictive
Value (NPV), Major Error (ME), and Very Major Error (VME),
are critical for a comprehensive assessment of model efficacy
(Shehadeh et al., 2021).

7 Future insights

The integration of ML into pediatric infectious disease
management is still in its early stages, with the majority of
current efforts primarily focusing on individual pathogens.
While this has contributed to an initial understanding of
pathogen-specific antibiotic resistance patterns, such an
approach presents considerable limitations, particularly in the
context of mixed infections. In clinical scenarios, pediatric
patients-especially those in critical care-are frequently affected
by polymicrobial infections, where multiple pathogens
coexist. The challenge of accurately predicting antibiotic
resistance in these complex infections is exacerbated by
the technical difficulties of simultaneously identifying
multiple pathogens. However, achieving this capability would
be a significant breakthrough, as it could substantially
improve clinical decision-making by providing a more
comprehensive understanding of the pathogen landscape in
each individual patient.

Currently, no gold-standard method exists to explore and
predict the resistome-the collection of all resistance genes-
within pediatric infections. The identification of AMR in
children remains one of the most pressing challenges in modern
medicine. The growing emergence of pediatric drug-resistant
infections necessitates a concerted effort from both clinicians
and researchers to develop more effective diagnostic tools and
therapeutic strategies. While research on the application of
ML to pediatric AMR is still limited, the increasing volume
of studies in this field underscores its importance. Enhanced
attention to this area is critical for improving the treatment of
pediatric drug-resistant infections, mitigating the rise of AMR,
and ultimately preventing further complications in vulnerable
pediatric populations.

Advancements in WGS and NGS technologies have
provided a powerful foundation for exploring antibiotic
susceptibility, conducting evolutionary analyses, and uncovering
the molecular mechanisms of AMR. These technologies have
enabled more precise detection of resistance genes and
their distribution across different microbial species, thereby
facilitating a deeper understanding of AMR dynamics. As
the number of studies utilizing NGS and ML continues
to grow, clinical AMR surveillance has become more
robust, offering clinicians valuable insights that can guide
treatment decisions.

Particularly in pediatrics, where patients are at an increased
risk for severe infections and acquired AMR, accurate predictions
of drug susceptibility are crucial for improving clinical outcomes.
The ability to rapidly and accurately assess the susceptibility of
pathogens to specific antibiotics can directly inform therapeutic
decisions, optimizing the use of antibiotics and reducing the risk
of treatment failure.

Looking ahead, there is tremendous potential to develop
integrated ML-driven platforms that not only detect antimicrobial
resistance but also translate this information into personalized
treatment recommendations for pediatric patients. Such
platforms could combine pathogen resistance profiles with
patient-specific data to create individualized treatment plans,
ultimately streamlining clinical workflows and improving patient
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TABLE 4 Utilizations of various supervised learning algorithms.

Algorithm Year Key advantages Limitations Typical application scenarios Use in pediatric infectious
disease

References

Neural networks 1958 1. Model flexibility
2. Powerful predictive capability
3. Handling a large number of features
4. Dealing with non-linear
relationships

1. Sensitive to training data bias
2. Overfitting issue
3. High training complexity
4. Time-consuming
5. High model interpretability
difficulty

1. Non-linear problem processing
2. High-dimensional data learning
3. Processing of unstructured data

ARGNet classify ARGs from sequence data,
contributes significantly to understanding
ARGs

Pei et al., 2024;
López-Cortés et al.,
2024

Decision tree 1959 1. Easy interpretation of results
2. Naturally handle missing values in
data
3. Applicable to a broad range of
complex problems
4. Minimal data preparation required

1. Pliable to overfit training data
2. Sensitive to data variations and
noise
3. High computational complexity
and cost

1. Non-linear data scenarios
2. Small data sets with relatively simple
problems
3. Model interpretability required
4. Feature selection

Optimizing treatment outcomes and
avoiding empirical medication use

Sick-Samuels et al.,
2020; Costa and
Pedreira, 2023

K-Nearest
neighbors

1968 1. Simple and intuitive high accuracy
2. No training required
3. Suitable for multi-class problems
4. Supports multi-class classification

1. High computational cost
2. Large storage requirements
3. Poor performance with
high-dimensional data

1. Small to medium scale datasets and data
mining
2. Rapid prototyping design
3. Classification and regression problems

– Pan et al., 2020

Linear
regression

– 1. Easy to understand and interpret
2. Simple calculations, fast predictions
3. Broad applicability

1. Linearity assumption limitation
2. Sensitive to outliers
3. Multicollinearity affects model
stability and interpretability
4. Independence assumption may not
hold in practice

1. Continuous values
2. Economics and finance
3. Modeling simple relationships
4. Rapid prototyping and preliminary
analysis
5. Scenarios with low data dimensions

Linear regression exhibits good
applicability in analyzing trends of ARGs

Sivasankar et al., 2023;
Maulud and
Abdulazeez, 2020

Logistic
regression

1972 1. Easy to understand and implement
with fast speed
2. Clear explanation of model
decision-making
3. Seamless extension to multi-class
classification problems
4. Interpretable result weights

1. Limited by linear assumptions and
multicollinearity issues
2. Prone to overfitting with
high-dimensional data
3. Sensitive to outliers and requires a
large sample size

1. Binary classification problems
2. High-dimensional sparse data scenarios
3. Medical diagnosis, marketing, credit
scoring, etc.

1. Analysis of pathogen proportions
isolated from pediatric urine samples and
their resistance patterns to selected
antibiotics
2. Identification of potential risk factors for
clinical outcomes in MRSA and S. aureus
infections

Bagnasco et al., 2022;
Dai et al., 2024

Adaptive
boosting

1995 1. Enhancing the performance of
weak learners
2. Automatic adjustment of weak
learner weights
3. Applicable for handling imbalanced
class distributions

1. Sensitive to noise and outliers
2. Long training time

1. Binary classification, multi-class
classification, and regression problems
2. Anomaly detection
3. Feature selection
4. Combination use with other ML
methods

– Feng et al., 2020
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TABLE 4 (Continued)

Algorithm Year Key advantages Limitations Typical application scenarios Use in pediatric infectious
disease

References

Support vector
machine

1995 1. Effective in high-dimensional
spaces and with small sample sizes
2. High memory efficiency
3. Multi-functionality and
generalization capability
4. Robust to noise in data

1. Dependent on parameter selection
2. Potentially high computational
cost, long training time
3. Potentially high computational
cost, long training time

1. Highly effective in high-dimensional
space
2. Large-scale datasets
3. Time series prediction scenarios
4. Bioinformatics analysis
5. Text classification, anomaly detection,
etc.

– Sunuwar and Azad,
2021; Cervantes et al.,
2020

Random forests 2001 1. Possesses good robustness
2. Fast training speed and high
accuracy
3. Broad applicability
4. Provides feature importance
measures

1. High computational complexity,
large memory usage, and long
prediction time
2. Prediction results sometimes lack
explainability
3. May overfit training data

1. Small samples, non-linear problems
2. Feature selection
3. Large-scale datasets, high-dimensional
data
4. Time series prediction
5. Text classification and anomaly
detection

– Romandini et al., 2021

Extreme
gradient
boosting

2014 1. Applicable to large-scale datasets
2. Built-in regularization to prevent
overfitting, high performance, and
accuracy
3. Enhances model flexibility
4. Provides feature importance scores

1. Requires careful parameter tuning,
risk of overfitting
2. Poor model interpretability
3. High memory consumption,
potentially high computational Cost

1. Suitable for simple problems with low
feature dimensions
2. Feature selection
3. Optimization algorithms
4. Large-scale datasets
5. Scenarios requiring high efficiency and
accuracy in predictions

XGBoost possesses potential application
value in pediatric infectious disease AMR
research and clinical decision support
systems

Xuemei et al., 2024;
Huang et al., 2021

ARGs, antibiotic resistance genes; MRSA, methicillin-resistant Staphylococcus aureus; ML, machine learning.
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FIGURE 3

Machine learning (ML)-based integrated platform for detecting antibiotic susceptibility and antibiotic resistance genes (ARGs) in pediatrics. This
figure visually encapsulates the prospective advancements in research and application for detecting antibiotic susceptibility and ARGs in pediatric
infections. By integrating ML with high-throughput genomic sequencing, this approach not only enhances the accuracy of detecting multiple
pathogens but also supports the refinement of antibiotic treatment strategies. Such advancements are pivotal for improving clinical management
and therapeutic outcomes in pediatric patients.

care. This would mark a major advancement in pediatric
microbiology, providing clinicians with real-time, actionable data
that would enhance the precision of diagnosis and the efficacy of
treatments. These platforms could also be standardized for quality
control, ensuring that clinical decisions are based on reliable,
reproducible data.

As Figure 3 illustrates, ML-based platforms designed
to detect antibiotic susceptibility and ARGs hold promise
for transforming pediatric infectious disease management.
Future research should focus on refining these systems,
incorporating diverse pathogen profiles, and developing
strategies for their seamless integration into routine clinical
practice.

8 Conclusion

Advancements in sequencing technologies, such as mNGS,
TS, and ONT, are meeting critical clinical needs in the
detection and characterization of pathogens and resistance
mechanisms. When integrated with ML, these methodologies
have the potential to significantly improve the accuracy of
predicting antimicrobial susceptibility, particularly for pediatric
infections. This combination not only promises to enhance

antibiotic stewardship but also offers the possibility of real-
time, data-driven decision-making in clinical settings. As
research progresses and these approaches are validated in
clinical practice, they are expected to become integral tools for
combating antimicrobial resistance in pediatric populations,
ultimately transforming the management of infections in this
vulnerable group.

Author contributions

ZZ: Data curation, Formal Analysis, Project administration,
Writing – original draft. FT: Data curation, Writing –
original draft. LQ: Funding acquisition, Supervision,
Validation, Writing – review and editing. SW: Investigation,
Writing – review and editing. HZ: Conceptualization,
Funding acquisition, Methodology, Writing – review and
editing.

Funding

The author(s) declare that financial support was received
for the research, authorship, and/ or publication of this article.
This research was supported by the National Natural Science

Frontiers in Microbiology 16 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1528696
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1528696 March 3, 2025 Time: 14:4 # 17

Zou et al. 10.3389/fmicb.2025.1528696

Foundation of China (No. 82371716) and the National Key
Research and Development Project (No. 2021YFC2701705).

Acknowledgments

We thank all staff involved in the implementation of this study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Alcock, B., Huynh, W., Chalil, R., Smith, K., Raphenya, A., Wlodarski, M., et al.
(2023). CARD 2023: Expanded curation, support for machine learning, and resistome
prediction at the Comprehensive antibiotic resistance database. Nucleic Acids Res. 51,
D690–D699. doi: 10.1093/nar/gkac920

Allicock, O., Guo, C., Uhlemann, A., Whittier, S., Chauhan, L., Garcia, J., et al.
(2018). BacCapSeq: A platform for diagnosis and characterization of bacterial
infections. mBio 9, e2007–e2018. doi: 10.1128/mBio.02007-18

Almaghrabi, R. S., Macori, G., Sheridan, F., McCarthy, S., Floss-Jones, A., Fanning,
S., et al. (2024). Whole genome sequencing of resistance and virulence genes in
multi-drug resistant Pseudomonas aeruginosa. J. Infect. Public Health 17, 299–307.
doi: 10.1016/j.jiph.2023.12.012
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