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Background: Regulators of n6-methyladenosine (m6A) RNA modification play 
important roles in many diseases; however, their involvement in Staphylococcus 
aureus (S. aureus)-related osteomyelitis remains inadequately explored. 
Therefore, this study aims to investigate the role of m6A in S. aureus infection-
related osteomyelitis and elucidate its underlying mechanisms.

Methods: We downloaded the S. aureus infection-related osteomyelitis 
infection dataset GSE30119 from the Gene Expression Omnibus database. 
Initially, we constructed a diagnostic model based on m6A genes and predicted 
the hub node miRNAs and transcription factors by constructing a protein–
protein interaction network. Subsequently, a prognostic model was built using 
LASSO regression, the receiver operating characteristic curve of the model was 
plotted, and the predictive performance of the diagnostic model was validated. 
Further, unsupervised clustering analysis, gene set enrichment analysis (GSEA), 
and gene set variation analysis (GSVA) were employed to assess immune cell 
infiltration. Additionally, we validated the expression of fat mass and obesity-
associated protein (FTO) in S. aureus-infected Raw264.7 macrophages using 
qPCR and western blotting. Moreover, we conducted si-FTO experiments on 
mouse Raw264.7 macrophages to investigate the anti-inflammatory regulatory 
role of si-FTO during S. aureus infection.

Results: We identified 19 co-expressed genes closely related to FTO were 
identified, along with 206 related transcription factor regulatory genes and 
589 miRNAs. Enrichment analyses suggested that these genes were involved 
in pathways related to the proliferation and oxidation of various immune cells, 
cellular senescence, and various tumors and immune cells, as well as cell cycle-
related functions. GSEA revealed that PD-1, TH1, TH2, CTLA4, and other pathways 
were significantly enriched in patients with high FTO expression. GSVA indicated 
that the differentially enriched pathways were related to included amino acid 
metabolism, immunity, and infection. Correlation analysis of immune infiltration 
revealed that monocytes, M2 macrophages, resting mast cells, and neutrophils 
were present in normal and diseased samples. Differences in expression 
were observed between the groups. The western blotting and qPCR analyses 
confirmed that the protein expression of FTO was reduced in macrophages 
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after infection with S. aureus, consistent with the observed changes in mRNA 
expression. Furthermore, we validated that FTO may influence the regulation of 
inflammation through the FoxO1/NF-kB pathway.

Conclusion: The m6A RNA methylation regulator FTO may serve as a potential 
diagnostic marker and therapeutic target, involved in the pathogenesis of S. 
aureus infection-related osteomyelitis. This finding provides new insights into the 
relationship between FTO-mediated m6A RNA methylation and osteomyelitis.

KEYWORDS

Staphylococcus aureus, m6A, FTO, infection, GSEA

1 Introduction

Osteomyelitis is a disease caused by microbial pathogens that 
infect bones, leading to inflammatory reactions and bone 
destruction. Severe cases can result in lifelong disability 
(Hatzenbuehler and Pulling, 2021). Among the causative agents, 
Staphylococcus aureus (S. aureus) is the predominant pathogen 
(Pimentel de Araujo et al., 2021). Despite advances in diagnostic 
methods and clinical management, the disease continues to pose 
significant challenges, particularly in pediatric and adolescent 
populations (Bouiller and David, 2023). Currently, direct sampling 
from wounds for culture and antibiotic sensitivity testing is crucial 
for targeted treatment. Research has suggested that inflammatory 
cytokines, S. aureus-specific antibodies, procalcitonin, and iron 
death-related markers can be  used for the early diagnosis of 
osteomyelitis (Zhang et  al., 2023; Isogai et  al., 2020; Shi et  al., 
2023). However, the specificity of detecting infection-induced 
osteomyelitis and the effectiveness of treatment are suboptimal, 
making early detection, diagnosis, and treatment the primary 
focuses of research.

The role of N6-methyladenosine (m6A) methylation in 
autoimmune diseases, inflammation, and cancer has gained 
significant attention recently (Wu et al., 2018). m6A methylation is 
a common post-transcriptional RNA modification involving 
enzymes such as m6A methyltransferases (writers), demethylases 
(erasers), and m6A RNA-binding proteins (readers) (Jia et al., 2008). 
Fat mass and obesity-associated protein (FTO), a key demethylase, 
is a promising biological target because of its role in mRNA 
modification (Gerken et al., 2007). It regulates cellular RNA m6A 
levels by removing methyl groups from single-stranded (ss) DNA 
and ssRNA. Recent studies show that during pathogen-induced 
sepsis, FTO modulates the formation of NLRP3 inflammasomes via 
the FoxO1/NF-κB pathway in macrophages (Luo et al., 2021). In 
addition, the METTL3/m6A/miR-193a/BCL2L2 axis is involved in 
the regulation of myocardial apoptosis and inflammation (Liang 
et al., 2023). IGF2BP3 also plays a role in the inflammatory state of 
synovial macrophages in osteoarthritis (Lu et al., 2023). Although 
the significance of FTO and other m6A-related genes in 
inflammatory diseases is known, research on their roles in S. aureus 
infection-related osteomyelitis remains limited.

To address this gap, our study delves into the role of FTO and 
m6A RNA methylation in the pathogenesis of S. aureus infection-
related osteomyelitis. By leveraging transcriptome-wide differential 
expression analyses and functional enrichment studies, we identify 
critical m6A regulators and unravel their associated molecular 

pathways. Particular attention is given to the expression dynamics 
of FTO and its regulatory networks, focusing on their influence on 
immune responses. Additionally, we  investigate the interplay 
between FTO expression and immune cell infiltration to elucidate 
its mechanistic contributions to immune modulation and disease 
progression. These findings provide novel insights into the molecular 
underpinnings of S. aureus infection-related osteomyelitis and 
inform the development of more precise diagnostic and 
therapeutic strategies.

2 Materials and methods

2.1 Data and preprocessing

We downloaded the S. aureus infection-related osteomyelitis chip 
data and the corresponding clinical information for the S. aureus 
infection-related osteomyelitis dataset GSE30119 from the Gene 
Expression Omnibus database (Toufiq et  al., 2000). The sample 
source was Homo sapiens, and the sequencing platform used was 
GPL6947 Illumina HumanHT-12 V3.0. The dataset included two 
experimental sets (C1 and C2) representing 44 normal samples and 
99 samples from patients with S. aureus infections. We included C1 
as a training set with 22 normal samples and 40 patients with 
S. aureus infection and C2 as a validation set with 22 normal samples 
and 59 patients with S. aureus infection. In order to validate the 
model, we collected the bone marrow samples of S. aureus infection 
GSE16129 as the validation set. The R package “sva” was used to 
correct the batch effect between different datasets and perform log2 
standardization (Leek et  al., 2012). The expression distributions 
before and after standardization and batch correction were visualized 
using a box diagram (Figure 1).

2.2 Differentially expressed genes

To analyze the effect of m6A-related genes on disease, the R 
package “limma” was used to perform differential gene analysis on 
normal and diseased samples in the dataset (Ritchie et al., 2015). 
The volcano map showed a log2fold change (logFC) absolute value 
>2 and Padj <0.05, which were set as the differential expression 
results, and the heatmap showed the top 50 differentially expressed 
genes between normal samples and disease samples. Furthermore, 
we conducted differential analysis specifically focusing on the FTO 
cluster grouping.
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2.3 Panorama construction of m6A related 
genes

To analyze the expression of m6A-related genes in all samples, 
we first obtained m6A-related genes from the literature (Shi et al., 
2019; Chen et al., 2019; Xu et al., 2020; Du et al., 2019), including 11 
writer genes, 23 reader genes, and 3 eraser genes, totaling 37 genes. 
We then intersected the existing expression profiles for 27 genes. First, 
we used the R package “heatmap” to draw the expression heat map of 
the genes in all samples, and then we used the “ggpubr” package to 
draw grouped boxplots based on the normal and patient samples. The 
Wilcoxon rank sum test method was used for statistical significance 
between groups, and p < 0.05 was considered statistically significant. 

The “RCircos” package was used to draw a location map of the 27 
genes on the chromosome (Zhang et al., 2013). Chromosomal data 
were provided by the R package, and the location information of the 
genes on the chromosome was downloaded from the Ensembl 
database (Yates et al., 2000).

2.4 Correlation analysis between writer and 
eraser genes

To further analyze the correlation between writer and eraser gene 
expression in all patients, Pearson’s correlation was calculated between 
the two genes. The absolute value of the correlation coefficient was 
greater than 0.5 and the p value was less than 0.05. We used the R 
package “ggplot2” to draw a scatterplot of the correlations between 
gene pairs that met the requirements and fit the correlation curve and 
used the “ggExtra” package to draw a histogram of the edges of 
the graph.

2.5 Diagnostic model construction based 
on m6A genes

Owing to the important influence of the m6A modification 
process, there may be  different m6A modification states between 
normal and patient samples; therefore, we constructed two training 
groups based on m6A-related genes from GSE30119 as diagnostic 
models. In addition, we utilized GSE16129 as an external validation 
dataset. Here, we screened all m6A genes via least absolute shrinkage 
and selection operator (LASSO) regression using the R package 
“glmnet” and selected the best lambda value. Only genes with 
non-zero coefficients were retained. The genes used to construct the 
model, and their corresponding coefficients were displayed in the 
form of forest plots using the R package “forestplot.” Subsequently, to 
reveal the common effect of m6A gene expression on the diagnostic 
performance of the model, the R package “rms” was used to construct 
a logistic regression model of the m6A genes with the most significant 
weights in the previous LASSO model and visualized using a 
nomogram. To verify the predictive power of the diagnostic model, 
the R package “pROC” was used to draw single-gene receiver 
operating characteristic (ROC) curves and calculate the area under 
the curve (AUC) (Robin et al., 2011). An internal dataset and decision 
curve analysis (DCA) were used to illustrate the validity of the 
nomogram; the curves were drawn using the “ggDCA” R package.

2.6 Construction of a protein–protein 
interaction network

The expression of different genes, especially those that regulate the 
same biological processes, is interrelated. To reveal the relationship 
between m6A-related genes, a PPI network was constructed based on 
m6A-related genes using the STRING database with the above genes 
as inputs and the confidence threshold at the default value of 0.4 (Von 
Mering et al., 2003). Subsequently, the PPI network was exported and 
further analyzed using Cytoscape software (Shannon et al., 2003). The 
network attributes of each node were calculated, and the plug-in 
cytoHubba was used to mine the hub nodes based on their degree 

FIGURE 1

Workflow of the present study.
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(Chin et al., 2014). The 10 nodes with a degree of TOP10 were defined 
as hub nodes. These nodes exhibited a high level of connection with 
other nodes; therefore, they may play an extremely important role in 
the regulation of the entire biological process and warrant further 
study. Therefore, we conducted further prediction research on the 10 
hub nodes based on the miRNet database to predict the miRNAs and 
transcription factors of the hub nodes (Chang et  al., 2020). The 
predicted results were processed and plotted using Cytoscape software.

2.7 Construction of a diagnostic model 
based on hub genes

All hub genes were screened using LASSO regression, and a 
LASSO model was constructed and displayed as a forest graph. To 
verify the predictive power of the diagnostic model, the R package 
“pROC” was used to draw the ROC curve of the model and calculate 
the AUC.

2.8 Unsupervised clustering of samples

Because of the pervasive heterogeneity among samples, 
unsupervised clustering of samples based on m6A regulators was 
applied to resolve heterogeneity and reclassify samples. Different m6A 
modification patterns were identified based on the expression of m6A 
regulators. Clustering was performed using the R package 
“ConsensusClusterPlus,” and the number of clusters was estimated 
(Wilkerson and Hayes, 2010). The basic principle of consensus 
clustering assumes that samples extracted from different subclasses of 
the original dataset constitute a new dataset, and that different samples 
from the same subclass are extracted and clustered on the new dataset. 
Accordingly, both the numbers of clusters and samples within the class 
should be similar to those of the original dataset. Therefore, the more 
stable the resulting cluster is with respect to the sampling variation, 
the more representative the cluster is of a true subclass structure. The 
resampling method could disrupt the original dataset, so clustering 
analysis was performed on each resampling sample, and then the 
results of multiple clustering analyses were comprehensively evaluated 
to determine the consensus.

2.9 Functional enrichment analysis of 
differentially expressed genes in 
Staphylococcus aureus infection

To reveal the biological differences between the two sample 
groups, we conducted Gene Set Enrichment Analysis (GSEA) and 
displayed the results using volcano and heat maps. Significant 
differentially expressed genes (DEGs) were defined as having a 
corrected p value <0.05 and |log2FC| > 0.5.

We performed Gene Ontology (GO) enrichment analysis on 
significant DEGs to annotate their functions, focusing on three 
categories: biological process, molecular function, and cellular 
component (Ashburner et al., 2000). The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database provides valuable information on 
genomes and pathways (Kanehisa and Goto, 2000). The R package 
GOPlot and KEGGPlot were used to annotate the GO and KEGG 

functions of all significant DEGs to identify the enriched biological 
processes (Yu et al., 2012). GSEA helps determine statistical differences 
in predefined gene sets between two biological states and assesses 
changes in pathway activity (Subramanian et  al., 2005). 
We downloaded reference gene sets “c5.go.v7.4.Entrez.GMT” and “c2.
cp.kegg.v7.4.Entrez.GMT” from the MSigDB database and performed 
GSEA using “clusterProfiler,” with p < 0.05 as the significance criterion 
(Liberzon et  al., 2015). Gene Set Variation Analysis (GSVA) is a 
non-parametric method that converts gene expression matrices into 
gene set expression matrices to evaluate pathway enrichment across 
samples (Hänzelmann et al., 2023). To examine biological process 
variation between the two groups, we calculated enrichment scores for 
each pathway from the “c2.cp.kegg.v7.4.Entrez.GMT” dataset and 
used the “limma” package to identify significantly differential 
pathways. GSVA results were visualized using “pheatmap” considering 
p < 0.05 as statistically significant.

2.10 Immune infiltration analysis

To further explore the similarities and differences in immune cell 
infiltration levels between the two groups of samples, the “GSVA” 
package was used following the single-sample GSEA (ssGSEA) 
method. The marker genes of the 28 immune cells were obtained from 
the literature and used as the background gene set for ssGSEA of each 
sample (Charoentong et al., 2017). The infiltration of all immune cells 
was visualized using box plots. Simultaneously, the R package 
“corrplot” was used to draw a correlation map between the immune 
cells for the two groups of samples to reveal the similarities and 
differences in the degree of correlation of immune cells in different 
cancer states. In addition, to directly view the correlation between the 
hub genes and the level of immune cell infiltration, a correlation 
scatter plot was drawn for the gene–immune cell pairs with significant 
correlations, and a correlation curve was fitted.

To maximize the accuracy of the results, the R package 
“CIBERSORT” was used to evaluate the infiltration level of immune 
cells (Steen et al., 2020), and the content of 22 immune cells in each 
sample was calculated based on the LM22 background gene set 
provided by CIBERSORT to reflect the infiltration level. CIBERSORT 
is based on the principle of linear support vector regression to 
deconvolute the transcriptome expression matrix and estimate the 
composition and abundance of immune cells in mixed cells. The 
results were displayed using heat maps and stacked bar charts drawn 
using the R package “ggplot2.” For gene–immune cell pairs with 
significant correlations, we drew a correlation scatterplot and fit a 
correlation curve. Samples with p < 0.05 were included to obtain the 
immune cell infiltration matrix.

2.11 Correlation analysis of hub genes

In order to analyze the correlation between these hub genes, a 
correlation heat map was drawn using the R package “corrplot.” In 
addition, in order to further study the correlation of these genes with 
endoplasmic reticulum stress and mitophagy process, relevant genes 
were retrieved from the GeneCards database with the keywords 
“endoplasmic reticulum stress” and “mitophagy,” and then the 
correlation between hub genes and these genes was calculated and 
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visualized in the form of a bubble chart (Stelzer et al., 2016). For the 
most significant hub gene pairs, a correlation scatter plot was drawn 
and a correlation curve was fitted.

2.12 Isolation of, and infection with, 
Staphylococcus aureus

Staphylococcus aureus, a pathogen causing asteomyelitis, 
preserved and provided by the laboratory (Guangdong Provincial 
Key Laboratory of Bone and Cartilage Regeneration Medicine, 
Nanfang Hospital, Southern Medical University Guangzhou, 
Guangdong, China). Prior to conducting the infection experiments, 
S. aureus was added to 10 mL of fresh tryptic soy broth and 
incubated overnight at 37°C with agitation at 120 rpm. After 
centrifugation, the bacteria were washed three times with phosphate-
buffered saline (PBS) and resuspended in PBS. The concentration of 
S. aureus was adjusted to an optical density of 0.5 at 600 nm, which 
is approximately equivalent to 1 × 108 colony-forming units per 
milliliter (CFU/mL), to ensure consistent inoculum densities (Lu 
et al., 2023). The resulting bacterial suspension was appropriately 
diluted for infection experiments in a RAW 264.7 macrophage cell 
line (Procell, Wuhan, China). Cells were seeded at a density of 
1 × 106 cells/well in a 6-well plate and cultured in Dulbecco’s 
modified Eagle’s medium (PM150210, Procell) supplemented with 
10% fetal bovine serum (FBS; 164,210–50, Procell) and 1% 
penicillin–streptomycin (PB180120, Procell). To evaluate the gene 
expression response of macrophages to S. aureus infection, cells were 
infected with S. aureus at doses of 100, 10, and 1× the multiplicity of 
infection (MOI). After 1 h of infection, cells were treated with 20 μg/
mL gentamicin (215–778-9, Sigma-Aldrich, St. Louis, MO, 
United  States) for 30 min to kill any remaining extracellular 
S. aureus, thus eliminating extracellular bacteria. After washing 
thrice with PBS, the cells were incubated in fresh culture medium 
containing 10% FBS for an additional 24 h. Subsequently, the RNA 
was collected for mRNA expression analysis.

2.13 Total RNA extraction and real-time 
quantitative PCR

RAW 264.7 cells were lysed using TRIzol reagent (TaKaRa Bio, 
Kusatsu, Japan) to isolate RNA. Subsequently, the RNA was reverse 
transcribed into cDNA using the Uni All-in-One First-Strand cDNA 
Synthesis SuperMix for qPCR kit (TransGen Biotech, Beijing, China). 
qPCR was performed using CFX96 (Bio-Rad, Hercules, CA, 
United States) and RealStar Power SYBR qPCR Mix (GenStar, Beijing, 
China). This method allows for the detection and quantification of 
gene expression levels in cDNA samples. To ensure accurate 
normalization and comparison of gene expression data, the relative 
expression of the target genes was normalized to that of the reference 
gene, GAPDH. Data analysis and quantification were performed using 
the 2–ΔΔCt method, which calculates the fold change in gene expression 
relative to a control sample. The PCR primers were 
5′-GACACTTGGCTTCCTTACCTG-3′ (FTO forward) and 5′-CTCA 
CCACGTCCCGAAACAA-3′ (FTO reverse); 5′-AGGTCGGTGT 
GAACGGATTTG-3′(GAPDH forward) and 5′-GGGGTCGTTGATG 
GCAACA-3′ (GAPDH reverse).

2.14 Western blotting

To collect RAW 264.7 cells infected with S. aureus, Cell Lysis 
Buffer for Western or IP (P0013, Beyotime, Shanghai, China) 
supplemented with a protease inhibitor cocktail (ST506-2, Beyotime), 
was used for protein extraction and purification. Equal amounts of 
protein were separated by SDS-PAGE on a 10% polyacrylamide gel 
and then transferred onto a PVDF membrane. The membrane was 
blocked with skim milk at room temperature for 1 h and washed 
thrice with TBST. Subsequently, the membranes were incubated 
overnight with primary antibodies against FTO (1:1000; 41,548, 
Signalway Antibody LLC, College Park, MD, United States), β-actin 
(1:1000; 52,901, Signalway Antibody LLC), Anti-IL1B (Signalway 
Antibody LLC, dilution 1:1000), Anti-IL6 (Signalway Antibody LLC, 
dilution 1:1000), Anti-NFKB (Signalway Antibody LLC, dilution 
1:1000), Anti-p-NFKB (Signalway Antibody LLC, dilution 1:1000), 
and Anti-FOXO1 (Signalway Antibody LLC, dilution 1:1000). The 
following day, the membrane was washed thrice with TBST and 
incubated with horseradish peroxidase-conjugated goat anti-rabbit 
IgG secondary antibody (1:1000; L3012, Signalway Antibody LLC). 
Finally, images were captured using GelView 6000Plus (Biotend, 
Guangzhou, China).

2.15 Statistical analysis

All data processing and analysis was performed using Excel 
(Microsoft, Redmond, WA, United States) and R software (version 
4.0.2). For comparisons of two groups of continuous variables, the 
statistical significance of normally distributed variables was estimated 
using an independent Student’s t-test, and the differences between 
non-normally distributed variables were analyzed using the Mann–
Whitney U test (i.e., Wilcoxon rank sum test). The chi-squares test or 
Fisher’s exact test was used to compare and analyze the statistical 
significance of categorical variables between the two groups. The 
Kruskal–Wallis test was used to compare two or more groups, and the 
Wilcoxon test was used to compare two groups. ROC curves were 
drawn using the pROC package in R, and the AUC was calculated to 
assess the accuracy of the risk score in estimating prognosis. All 
statistical p values were two-sided, and p < 0.05 considered 
statistically significant. Two-tailed p values <0.05 was considered 
statistically significant.

3 Results

3.1 Data preprocessing

We first examined the gene expression distribution of the original 
expression profile of the GSE30119 dataset before and after batch 
effect correction. The samples showed a serious batch effect when 
integrated directly, and samples from different sources showed 
significantly different expression distribution characteristics. After 
batch effect correction and log normalization, the expression 
distribution of all samples tended to be consistent, improving the 
accuracy and robustness of the downstream analysis (Figure 2A). The 
data spectrum expression distribution of the GSE30119 dataset before 
and after standardization correction is shown in the box diagram. The 
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heatmap and volcano map show the difference in expression between 
normal and diseased samples in the dataset GSE30119 (Figures 2B,C).

3.2 Panorama of m6A genes

The expression heterogeneity of all m6A genes in normal and 
diseased samples was visualized using a heat map and a grouping box 

diagram (Figures 2E,F). The results showed that among the three m6A 
gene types, the difference between the readers in the two groups was 
more obvious than that between writers and erasers. To construct a 
panorama of m6A-related genes in all samples, we  examined the 
localization of these genes on chromosomes and found that some 
genes were very close to each other, indicating that they were closely 
related at the genomic level (Figure 2D). The results showed that some 
genes were very close to each other on the chromosome, indicating 

FIGURE 2

Comparison and analysis between different experimental groups. (A) Effect of batch variation; the left panel shows data distribution before batch 
effect, while the right panel shows data distribution after batch effect. (B) Volcano plot illustrating differences between disease and normal groups; 
blue dots represent downregulated genes, red dots indicate upregulated genes, and black dots represent genes with no significant differences. 
(C) Heatmap displaying expression patterns of samples from disease and normal groups, clustered by similarity. (D) Circular genomic plot showing the 
distribution of m6A-related genes across different chromosomes. (E) Heatmap further illustrating the expression levels of m6A-related genes in patient 
samples, with colors ranging from red to blue indicating varying expression levels. (F) Boxplot comparing the expression levels of m6A-related genes 
between disease and normal groups, highlighting significant differences (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
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that these genes were closely related at the genomic level. To further 
analyze the relationship between the expression of m6A writer and 
eraser genes, we calculated the correlation between these genes and 
obtained the correlation coefficients R > 0.5 and p < 0.05, indicating 
positive correlations (Supplementary Figure S1).

3.3 m6A gene-based diagnostic model

Since the expression of m6A-regulated genes has important 
biological significance, we  constructed a diagnostic model for 
S. aureus infection based on all m6A genes.

First, the 27 m6A genes in the training and validation sets were 
regressively screened using LASSO, and the best lambda values were 
obtained for 17 genes in training set C1 (Figures 3A,B) and the 7 genes 
in validation set C2 (Figures 3D,E). Subsequently, forest maps were 
used to visualize the effects of these m6A gene-containing diagnostic 
models in the training (Figure 3C) and validation sets (Figure 3F).

Subsequently, to verify the accuracy of the model, we created 
nomograms and found that in the GSE30119 training set C1, the 
patient prediction risk score correlated with the disease risk of patients 
with S. aureus infection, highlighting the accuracy of the model 
(Supplementary Figure S2A). The predictive performance of the 
model was further validated using recall curves and decision curve 
analysis (DCA), which confirmed that the model exhibited superior 
predictive performance and robustness (Supplementary Figures S2C,E). 

Additionally, the nomogram model, recall curves, and DCA 
demonstrated the same efficacy as observed in the C1 validation set 
(Supplementary Figures S2B,D,F).

3.4 Differential expression of key m6A 
regulators and diagnostic efficacy 
verification

To further identify the key m6A regulators for diagnosing 
patients with the disease, we compared the factors with diagnostic 
significance in the two sets and found that only FTO was differentially 
expressed (Figures 4A,B). The AUC for FTO as a diagnostic marker 
for S. aureus infection was 0.857 in the training set and 0.886 in the 
validation set (Figures  4E,F). Moreover, the difference in FTO 
expression between different disease groups was significant, 
suggesting that FTO has high diagnostic value. Combined with the 
above forest diagram, it was confirmed that FTO is a low-risk gene 
for S. aureus infection.

To validate and analyze whether the diagnostic models based on 
the LASSO algorithm for C1 and C2 could independently distinguish 
between diseases, we plotted ROC curves and calculated the AUC. The 
AUC for C1 was 0.880, and for C2, it was 0.861, indicating good 
diagnostic efficacy (Figures  4C,D). Furthermore, to enhance the 
validation of diagnostic performance, we  selected the GSE16129 
dataset related to S. aureus infection osteomyelitis for external 

FIGURE 3

Analysis of gene expression in GSE30119 datasets. (A) Coefficient plot for the GSE30119 C1 dataset, displaying the relationship between coefficients 
and log lambda values for various genes. (B) Minimum cross-validated error plot for GSE30119 C1, showing the relationship between log lambda and 
the distance metric with error bars indicating variability. (C) Table of significant genes identified in GSE30119 C1, including mean expression levels and 
coefficients, with highlights on important genes. (D) Coefficient plot for the GSE30119 C2 dataset, similar to (A), showing the coefficients for different 
genes across log lambda values. (E) Minimum cross-validated error plot for GSE30119 C2, demonstrating the relationship between log lambda and the 
distance metric. (F) Table of significant genes identified in GSE30119 C2, detailing mean expression levels and coefficients, highlighting key regulatory 
genes in the analysis.
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validation. LASSO regression, forest plots, and nomograms all 
confirmed that FTO demonstrated diagnostic efficacy 
(Supplementary Figures S3A–D). Additionally, calibration curves and 
decision curve analysis (DCA) further supported these findings 
(Supplementary Figures S3E,F).

3.5 Molecular typing analysis of the key 
diagnostic marker FTO

To investigate the role of the key diagnostic marker FTO in disease, 
we conducted unsupervised consensus clustering on 143 samples from 

FIGURE 4

Gene expression and ROC analysis in GSE30119 datasets. (A) Violin plot showing the expression scores of selected genes in normal and disease 
groups, with asterisks indicating significant differences (**p < 0.05; **p < 0.01; ****p < 0.0001) and “ns” indicating no significant difference. (B) Boxplot 
comparing the expression scores of key genes (CBLL1, RBM15B, FTO, and EIF3A) between normal and disease groups, with significant differences 
highlighted. (C) ROC curve for GSE30119 C1, displaying sensitivity versus 1-specificity, with an AUC of 0.880 and confidence interval (CI) indicating 
model performance. (D) ROC curve for GSE30119 C2, illustrating a sensitivity of 0.861 with an AUC of 0.861 and confidence interval. (E) ROC 
comparison for multiple genes in GSE30119 C1, showing AUC values for each gene, with METTL3, IGF2BP1, RBM5, FTO, and IGF2BP3 indicated. 
(F) ROC comparison for multiple genes in GSE30119 C2, presenting AUC values for CBLL1, RBM15B, FTO, and EIF3A, highlighting their diagnostic 
potential.
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the GSE30119 dataset based on gene expression. The disease samples 
were clustered according to different m6A regulator subclasses, leading 
to an optimal k value of 2 (Figures 5A–C), which allowed us to classify 
the samples into two distinct subtypes (A: n = 70; B: n = 73, Figure 5D). 
We then compared the cluster groupings with high- and low-expression 
FTO levels, visualizing the results in a Sankey diagram (Figure 5F). 
Notably, Class A predominantly represented the disease samples, 
suggesting that FTO may play a significant role in differentiating 
between FTO Cluster A and FTO Cluster B.

3.6 PPI network construction of co-expressed 
genes based on the m6A regulator FTO

To further analyze the influence of FTO on diseases, we analyzed 
the differences between groups with high and low FTO expression and 
obtained a total of 645 co-expressed genes that may be subject to the 
same regulatory processes and reflect similar biological functions (p 
value <0.05 and | log2FC | > 1) (Figure 5G). Additionally, I selected 
the top 50 genes for visualization in a heatmap (Figure 5E).

To gain a deeper understanding of FTO-related differential genes 
and their biological significance, we utilized the STRING database was 
used to construct a protein–protein interaction network of differential 
genes for the 645 FTO co-expressed genes (Figure 5H). The tightly 
linked genes of the PPI network module were screened using the 
MCODE plug-in in CYTOSCAPE (v3.7.2), and the highest confidence 
interaction score was set to 0.4 and visualized (Figure 5I). Simultaneously, 
the cytoHubba plug-in was used to screen the Top 30 closely linked 
genes (Figure 5J). The intersection of the two methods is shown in a 
Venn diagram, which shows 19 closely related FTO co-expressed genes 
(Figure 5K). These genes are closely related to FTO expression.

Subsequently, to further understand the interaction of the 19 FTO 
co-expressed genes at the post-transcriptional stage, we identified 589 
miRNAs and 206 transcription factor regulatory genes targeted by 
them and constructed a network (Figure 5L).

3.7 GO/KEGG/GSEA enrichment analysis

GO analysis showed enrichment in DNA binding, mismatch 
repair complex binding, and cell cycle. Function-related genes were 
enriched in immune cell proliferation, differentiation, activation, and 
oxidation (Supplementary Figure S4). The KEGG enrichment results 
indicated that the entries were enriched in various cellular senescence, 
tumor, and immune cell-related pathways. GSEA enrichment analysis 
was performed between the groups with high and low FTO 
expression (c2.all.v7.2.symbols.gmt was used as the background set) 
(Supplementary Tables S1–S3). The results suggested that the related 
molecular mechanisms mediated by PD-1, TH1TH2, CTLA4, and 
other pathways were significantly enriched in patients with high FTO 
expression (Figure 6A).

3.8 Molecular typing analysis of co-expressed 
hub genes associated with FTO

To further investigate the biological characteristics of FTO 
expression in diseased tissues, we performed unsupervised consensus 

clustering using the expression of 19 hub co-expression molecules 
associated with FTO. Cluster analysis was conducted on disease 
sample data to classify the samples into different subclasses based on 
these molecules. After evaluating multiple cluster analyses for 
consistency, we selected an optimal k value of 3 based on the delta 
plot, resulting in three distinct subtypes (A: n = 26; B: n = 58; C: 
n = 14; Figures 6B–D).

Subsequently, we performed Gene Set Variation Analysis (GSVA) 
between the groups, focusing on comparisons among Cluster C vs. 
Cluster A, Cluster C vs. Cluster B, and Cluster B vs. Cluster A, using 
the c2.all.v7.2.symbols.gmt background set. The differentially enriched 
pathways identified included amino acid metabolism and immune- 
and infection-related processes (Figures 6E–G).

3.9 Evaluation and analysis of immune cell 
infiltration

Immune cell infiltration was assessed using the GSE30119 dataset. 
The CIBERSORT algorithm is shown in a box chart to evaluate the 
difference in immune cell infiltration between the normal and disease 
sample groups (Figure 7A), and the immune infiltration correlation 
analysis was further performed on the disease-related diagnostic 
prediction model according to the difference in immune cell 
expression between the FTO high and low expression groups 
(Figure 7B). The expression of naïve B cells, CD8+ T cells, naïve CD4+ 
T cells, activated memory CD4+ T cells, gamma delta T cells, resting 
natural killer cells, monocytes, M2 macrophages, resting mast cells, 
and neutrophils differed between the normal and disease sample 
groups. The number of CD8+ T cells, naïve CD4+ T cells, T cell helper 
cells, and neutrophils differed between the high and low FTO 
expression groups.

We then performed ssGSEA to estimate the number of specific 
infiltrating immune cells and the specific immune response 
activity, which defined an enrichment score to determine the 
absolute enrichment of a gene set in each sample in the dataset. 
We compared the differences in immune cell infiltration among the 
three clusters from FTO hub co-expression molecular typing 
(Figure 7C) and between the high and low FTO expression groups 
(Figure 7D).

3.10 Correlation analysis of the key m6A 
regulator FTO with immune cells in disease 
samples

To analyze the correlation between FTO expression and 
immune cells in diseased samples, we drew a scatter plot showing 
the expression correlation scatter plot between the genes with the 
strongest correlation (correlation coefficient R > 0.6 and significant 
sex p < 0.01). Spearman correlation analysis was used to determine 
the correlation between FTO expression, the proportion of 
immune cells, and immune reactivity. The results showed that FTO 
expression was closely related to Activated.B.cell (R = 0.548), 
Immature.B.cell (R = 0.479), T.follicular.helper.cell (R = 0.444), 
Activated.CD8.T.cell (R = 0.437), MDSC (R = 0.418), and 
type.17.T.helper cells (R = 0.402), with a positive correlation 
(Supplementary Figures S5A–F).
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FIGURE 5

Analysis and visualization of gene co-expression and clustering about FTO. (A) Consensus clustering CDF illustrating the stability of different cluster 
solutions, with each line representing a different cluster number. (B) Delta area plot showing the change in area under the CDF curve, indicating 
optimal cluster selection. (C) Tracking plot displaying the assignment of samples to clusters across different consensus clustering iterations. 
(D) Heatmap of consensus matrix, visualizing the clustering results and similarity between samples (m6A Cluster). (E) Hierarchical clustering heatmap of 
gene expression, showing distinct patterns between different m6A Cluster type. (F) Alluvial diagram representing the distribution of sample types 
(Normal vs. Disease) across identified clusters. (G) Volcano plot highlighting significant genes, with blue indicating downregulated and yellow indicating 
upregulated genes. (H) Network visualization showing interactions between significant genes, with nodes representing genes and edges representing 
co-expression relationships. (I) MCODE analysis identifying densely connected gene modules within the co-expression network. (J) Cytoscape hub 
representation of identified gene modules, with highlighted nodes indicating key genes. (K) Venn diagram comparing gene overlap between MCODE 
and Cytoscape analyses, indicating shared and unique genes. (L) Network diagram of miR-TF (FTO co-expressed genes), illustrating the relationships 
among identified genes in the regulatory network.
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3.11 Influence of Staphylococcus aureus 
infection on FTO expression in RAW 264.7 
macrophages

To investigate the effect of S. aureus infection on FTO 
expression in macrophages, RAW 264.7 cells were infected with 
different MOIs of S. aureus. We observed a significant decrease in 
both the mRNA and protein levels of FTO as the MOI increased. 
Following infection with S. aureus at an MOI of 10, the FTO 
expression in macrophages was statistically significant 
(Figure 8A). Furthermore, Western blot experiments confirmed 
that FTO protein expression was reduced in macrophages after 
infection with S. aureus at an MOI of 10, which was consistent 
with the observed changes in mRNA expression (Figure  8C). 
Based on the groups—normal group, S. aureus-infected 
macrophage group, si_Fto group, and S. aureus-infected 
macrophage + si_FTO group, we conducted Western blot analysis 
to assess the expression of inflammatory proteins and the FOXO1/
NFKB signaling pathway proteins. We found that in the S. aureus-
infected macrophage group and the S. aureus-infected macrophage 
+ si_FTO group, IL6 and IL1β inflammatory protein levels 
increased following si_FTO treatment. Additionally, we detected 
the expression of p-NFKB, NFKB, and FOXO1 proteins, suggesting 
that FTO may regulate the macrophage phenotype through the 
FOXO1/NFKB pathway (Figure 8D). Additionally, we performed 
statistical analysis on the protein bands using bar charts, which 
demonstrated significant differences among the groups 
(Figure 8B).

4 Discussion

Up to 75% of osteomyelitis cases are caused by S. aureus, a 
pathogen that is notoriously difficult to diagnose in the early stages 
due to its nonspecific symptoms. Moreover, the increasing prevalence 
of antibiotic resistance complicates treatment, making management 
of these infections a significant challenge (Chen et al., 2019; Maiti and 
Jiranek, 2014). Consequently, S. aureus bone infections have attracted 
considerable research attention. Understanding the interaction 
between microbial pathogens and bone tissue, as well as the molecular 
mechanisms governing phagocytic function in immune responses, is 
critical for developing novel treatments that mitigate antibiotic 
resistance and prevent chronic infections.

Recent research on m6A RNA methylation has revealed its pivotal 
role in RNA metabolism, influencing splicing, expression, and 
translation (Desrosiers et al., 1974; Gilbert et al., 2016). Among the 
various m6A regulators, FTO stands out due to its potential as a 
diagnostic marker in S. aureus infections. Our study demonstrated 
that FTO expression was significantly upregulated in S. aureus 
infections, with AUC values of 0.857 in the training set and 0.886 in 
the validation set, highlighting FTO’s strong diagnostic value. 
Furthermore, FTO expression varied significantly across different 
disease groups, emphasizing its potential as a reliable biomarker for 
diagnosing S. aureus infections.

FTO, located on chromosome 16q12.2, is primarily associated 
with obesity but has also been implicated in other diseases, including 
metabolic and inflammatory conditions. Previous studies have 
indicated that individuals with higher FTO expression tend to have a 

FIGURE 6

Clustering and pathway analysis of gene expression data about 19 FTO co-ohub genes. (A) Visualization of the enrichment scores for various 
KEGG pathways across different clusters, highlighting the primary pathways associated with each cluster. (B) Consensus matrix for k = 3, 
illustrating the clustering of samples with the dendrogram indicating sample relationships (19 FTO co-ohub genes). (C) Consensus cumulative 
distribution function (CDF) plot showing the stability of cluster assignments as a function of consensus index, with different colors representing 
varying cluster numbers. (D) Delta area plot indicating the relative change in area under the CDF curve, helping determine the optimal number 
of clusters. (E) Heatmap comparing Cluster B versus Cluster A, displaying the expression patterns of selected pathways, with colors indicating 
the magnitude of expression changes. (F) Heatmap comparing Cluster C versus Cluster A, showcasing distinct pathway expressions and their 
significance in the analysis. (G) Heatmap comparing Cluster C versus Cluster B, further illustrating the differential expression of pathways among 
the clusters.
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greater prevalence of S. aureus in their oral microbiota, suggesting a 
link between FTO and susceptibility to S. aureus infections, 
potentially through immune modulation and host-pathogen 

interactions (Huđek et al., 2017). This raises the possibility that FTO 
could play a critical role in the pathogenesis of S. aureus-
induced osteomyelitis.

FIGURE 7

Differential analysis of immune infiltration. (A) Box plot from the CIBERSORT algorithm to evaluate the difference in immune cell infiltration between 
the normal and disease sample groups. (B) Box plot from the CIBERSORT algorithm to evaluate the difference in immune cell infiltration between the 
FTO high and low expression groups. (C) ssGSEA algorithm evaluating the differences in immune cell infiltration among the three clusters from the hub 
co-expression molecular typing of FTO. (D) ssGSEA algorithm evaluating the differences in immune cell infiltration between the high and low FTO 
expression groups.

https://doi.org/10.3389/fmicb.2025.1526475
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2025.1526475

Frontiers in Microbiology 13 frontiersin.org

The role of FTO in inflammation is multifaceted and involves 
influencing m6A levels under stress conditions, such as hyperglycemia. 
Knocking out FTO in endothelial cells reduces inflammation and 
promotes cell migration and angiogenesis, suggesting a protective role 
against diabetic vascular damage via the FTO/TNIP1/NF-κB pathway. In 
ulcerative colitis, FTO downregulation exacerbates inflammation by 
altering sphingolipid metabolism, suggesting an m6A-dependent 
mechanism (Zhou et al., 2023). Overexpressing FTO in osteoarthritis 
models improves cartilage integrity and diminishes inflammation by 
modulating TLR4/MyD88/NF-κB signaling and NLRP3 inflammasome 
activity, which are relevant in myocardial ischemia/reperfusion injury. 
Moreover, FTO demethylase activity is crucial for innate immunity in 
cancer (Zheng et al., 2021). Combining FTO inhibition with a PD-1 
blockade has the potential to enhance melanoma immunotherapy (Yang 
et  al., 2019). In vascular parkinsonism, m6A RNA methylation can 
decrease the T helper cell count and mitigate vulnerable atherosclerotic 
plaques (Quan et al., 2021; Yang et al., 2020). These findings underscore 
the importance of FTO in regulating immune responses and 
inflammation in various contexts. Moreover, studies have shown that 
FTO expression is upregulated in hepatocellular carcinoma tumors, and 
targeting the FTO/m6A/GPNMB axis significantly inhibits tumor growth 
and metastasis while enhancing immune activation (Chen et al., 2024). In 
rheumatoid arthritis, FTO knockdown or inhibition significantly reduces 
the severity of arthritis (Li et  al., 2024). In Parkinson’s disease, FTO 
knockout leads to a marked suppression of dopamine neuron death and 
restores the expression of tyrosine hydroxylase in the brains of PD mice 
(Geng et al., 2023). These findings underscore the potential of FTO as a 
therapeutic target for treating various diseases.

Our study, which utilized advanced machine learning and 
modeling, highlights the significant role of FTO in inflammatory 
diseases. We established an association between FTO expression and 
immune pathways in S. aureus-induced bone marrow inflammation. 
These pathways include IgA production within the intestinal immune 
network, PD-1 signaling, allograft rejection, and mycobacterial 
infection. Correlations with various immune cell activations 
underscore FTO’s regulatory impact on S. aureus-induced bone 
marrow inflammation. Our findings showed that METTL14 
knockdown in bone marrow cells increased macrophage sensitivity 
to bacterial infections. LPS treatment increased SOCS1 m6A 
methylation and subsequently elevated SOCS1 levels by accelerating 
FTO mRNA degradation (Hu et al., 2022). Additionally, we noted 
marked differences in monocytes and macrophages between the 
disease and normal groups as well as within the m6A cluster 
grouping. In experiments with RAW 264.7 macrophages infected 
with S. aureus, increased MOI led to decreased FTO mRNA and 
protein expression levels. These findings support the notion that FTO 
plays a role in macrophage regulation during bone marrow 
inflammation. To further investigate the regulatory mechanism of 
FTO in macrophages during S. aureus-induced osteomyelitis, 
we  utilized small interfering RNA (siRNA) technology to knock 
down FTO expression. Compared to the model group, we found that 
silencing FTO enhanced the inflammatory phenotype of 
macrophages, suggesting that FTO may modulate inflammation 
through the FOXO1/NFKB signaling pathway. This finding further 
supports FTO as a potential therapeutic target for modulating 
immune-inflammatory responses.

FIGURE 8

FTO expression and its effects on inflammatory markers in Raw264.7 cells. (A) Bar graph showing FTO gene expression levels in different experimental 
conditions (NC: negative control, 1, 10, 100 MOI), with significant differences indicated (**p < 0.01, ns: not significant). (B) Relative band intensity of 
FTO, NFkB, and phosphorylated NFkB (p-NFkB) protein levels, demonstrating significant changes in response to S. aureus infection and si-FTO 
treatment (*p < 0.05; **p < 0.01; ***p < 0.001). (C) Western blot analysis of FTO expression in Raw264.7 cells with and without S. aureus infection, with 
β-actin as a loading control. (D) Western blot analysis of inflammatory markers (IL-1β, NFkB, p-NFkB, IL-6, FoxO1) in Raw264.7 cells treated with si-FTO 
and S. aureus, with tubulin as a loading control, highlighting significant differences in band intensity for IL-1β and IL-6.
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This study had a few limitations. First, because S. aureus is a live 
bacterium, it may be challenging to completely eradicate the bacteria 
effectively with the use of antibiotics during the handling of cells. 
This could potentially impact the results of the experiment, as the 
incomplete elimination of bacteria may lead to heterogeneity and 
uncertainty in experimental outcomes. Second, exploring differential 
gene expression within cells is valuable; however, it may not fully 
reflect the situation in vivo. Extracting proteins and mRNA from 
mouse models or human samples for detection may be  more 
effective and reliable, as these samples closely resemble the real 
physiological environment. By studying animal models or clinical 
samples, a more accurate understanding of the changes in gene 
expression associated with, and mechanisms underlying, 
osteomyelitis could be achieved.

In conclusion, our study highlights the crucial role of the m6A 
RNA methylation regulator FTO in S. aureus infection-related 
osteomyelitis. It can serve as a potential biomarker for the diagnosis 
of S. aureus infection-related osteomyelitis and as a therapeutic target 
for modulating immune responses. This finding provides new insights 
into the relationship between FTO-mediated m6A RNA methylation 
and disease, laying the foundation for future research.
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