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Probiotics as antibiotic alternatives are unstable for use under stress in clinical 
applications. To explore the influence of catecholamine hormones on probiotic 
bacterial inhibition and antimicrobial activity, we tested the effects of norepinephrine 
(NE) on Levilactobacillus in vitro and in a mouse model. The in vitro results showed 
that in the presence of NE, 80% of Levilactobacillus strains showed increased 
growth rate and more than 80% of the strains indicated lower antimicrobial activity 
at 22 h. Furthermore, in the mouse model, NE weakens the protective effect of 
L. brevis 23,017 on Escherichia coli infection, which is shown by the decreased 
ability of antibacterial colonization, antioxidation, and anti-inflammation, and 
downregulating the expression of antioxidant genes and intestinal mucosal barrier-
related genes. At the same time, the addition of NE modulates the bacterial 
microbiota richness and diversity in the intestine, disrupting the balance of intestinal 
probiotics. These findings provide evidence that NE reduces the probiotic ability 
of Levilactobacillus and illustrates the plasticity of the probiotics in response to 
the intestinal microenvironment under stress.
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1 Introduction

In 1992, Lyte and Ernst introduced the concept of “microbial endocrinology” to assess 
the effect of bacterial growth under stress hormones, thus showing the two-way interaction 
between microorganisms and humans’ neuroendocrine factors (Lyte and Ernst, 1992). In 
past research, stress could increase neuroendocrine hormones, particularly glucocorticoids 
and catecholamines (Felten and Olschowka, 1987; Lymperopoulos et al., 2008; Webster 
Marketon and Glaser, 2008). Catecholamine hormones, including epinephrine, 
norepinephrine (NE), and dopamine, can affect the growth of many pathogenic bacteria 
in vitro (Coulanges et al., 1997; Nakano et al., 2007; Sandrini et al., 2014; Gao et al., 2019). 
Some studies have also shown that the virulence and biofilm formation of bacteria, such 
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as Salmonella (Hiller et  al., 2019) and Escherichia coli (E. coli) 
(Vlisidou et al., 2004), can be regulated by catecholamines, and this 
affects the outcome of infection by these bacteria on numerous 
hosts. However, there are few reports on the effect of catecholamine 
hormones on probiotics. Combined with proteomic analysis, 
Scardaci et al. assessed that in vitro norepinephrine (NE) treatment 
of Enterococcus faecalis enhanced the abundance of proteins 
involved in adhesion and immune stimulation (Scardaci et  al., 
2021). Cambronel et  al. (2020) proposed that in E. faecalis, 
catecholamine hormones can promote adherence to eukaryotic 
cells and biofilm formation, and structural modeling and molecular 
docking confirmed that E. faecalis contains adrenergic sensors that 
interact with epinephrine and NE. However, the aforementioned 
studies were only based on bioinformatics analysis and in vitro 
tests to investigate the molecular level or biofilm and adhesion 
of probiotics.

Some researchers have also conducted a few in  vivo 
experiments. Dong et al. discovered that NE increased the ability 
of Aeromonas hydrophila to proliferate in the lungs of mice (Dong 
et al., 2016). Some studies have also shown that catecholamine 
hormones can increase the pathogenicity of Salmonella in mouse, 
chicken, and bovine models (Williams et  al., 2006; McCuddin 
et al., 2008; Methner et al., 2008; Pullinger et al., 2010b; Pullinger 
et  al., 2010a), Yersinia ruckeri toward rainbow trout (Torabi 
Delshad et al., 2019), A. hydrophila in crucian (Gao et al., 2019), 
Vibrio harveyi and Vibrio campbellii in juvenile shrimp (Pande 
et al., 2014; Yang et al., 2014), and Pseudomonas aeruginosa toward 
Galleria mellonella larvae (Cambronel et al., 2019). Nevertheless, 
these studies have only looked at pathogenic microorganisms, and 
no scholars have yet explored the effect of catecholamine 
hormones on probiotics in  vivo. We  hypothesize that this 
interaction of host signals with Levilactobacillus strains may affect 
their bacterial properties and influence their probiotic effects. A 
better understanding of microbial endocrinology in the field of 
probiotics will allow a more comprehensive interpretation of how 
stress hormones are involved in the colonization of the microbiota 
and the ecological balance of the gut or other organs, which may 
help in the development of new therapies with medical and 
economic benefits.

In our research, we  tried to evaluate the effect of NE on the 
probiotic properties Levilactobacillus based on the body injury caused 
by E. coli, which could potentially provide ideas to improve the unstable 
application effects of Levilactobacillus as antibiotic alternatives. For this 
purpose, (i) we  simulated the internal environment (serum-SAPI 
medium) in vitro to investigate the effects of NE on the growth rate, 
viable bacteria count, bacterial inhibition capacity, and acid production 
capacity of Levilactobacillus strains; (ii) we selected the most suitable 
probiotic Levilactobacillus strains for investigating the effect of NE on 
the probiotic properties of Levilactobacillus in a mouse model; (iii) 
we established a BALB/c mouse model with E. coli standard strain 
infection and Levilactobacillus treatment; and (iv) we observed the 
intestinal pathological sections, oxidative damage, expression of 
inflammatory factors, intestinal mucosal barrier-related factors, Nrf2 
and TLR4 and their downstream genes, and microbial amplicon 
sequencing and biological information analysis. Our findings shed 
light on the involvement of stress-related hormones in probiotics’ 
positive effects on the organism.

2 Materials and methods

2.1 Bacteria and medium

The E. coli CVCC230 strain was purchased from the China 
Veterinary Drug Supervision Institute. Nalidixic acid was used to 
induce the CVCC230 strain to be resistant to 50 μg/mL nalidixic acid 
with the method in the reference (Daudelin et  al., 2011). 
Levilactobacillus brevis L5, 23010, 23017, 27197, 27053, 21060, 27058 
and 23027 were isolated by our laboratory (Cui et al., 2018; Shi et al., 
2019). As in almost all previous studies, the serum-SAPI medium 
was used in this study, which simulates the internal environment of 
the host (Lyte and Ernst, 1992; Freestone et al., 1999; Bearson et al., 
2008; Li et al., 2009; Inaba et al., 2016).

2.2 Growth of Levilactobacillus strains

The effect of NE (Sigma-Aldrich, USA) on the growth of 
Levilactobacillus strains was carried out according to the method of 
Inaba et  al. (2016). The bacteria were cultivated in serum-SAPI 
medium in a ratio of 1:100 as the Levilactobacillus groups and those 
added to NE (100 μM) as the Levilactobacillus + NE groups. 
We  selected 100 μM NE for in  vitro testing based on the 
concentrations in reference (Cogan et  al., 2007; Gao et  al., 2019; 
Scardaci et al., 2021). The bacterial suspension was collected at time 
periods of 2 h, 4 h, 6 h, 8 h, 12 h, 24 h, 28 h, 32 h, and 48 h. At the 
same time, live bacterial counts were also recorded.

2.3 Antimicrobial activity of 
Levilactobacillus strains

The antimicrobial activity of NE on Levilactobacillus strains was 
evaluated using an agar-well diffusion test, as described in the 
reference (Shi et al., 2019). The Levilactobacillus culture solution and 
100 μM NE were added to the serum-SAPI medium as the 
experimental group, and the Levilactobacillus culture solution alone 
was used as the control group. The antimicrobial activity was assessed 
against E. coli (CVCC230), Staphylococcus aureus (CVCC26003), and 
Pseudomonas aeruginosa (ATCC9027).

2.4 Co-culture of probiotic and pathogenic 
bacteria

The co-culture of the probiotic L. brevis 23,017 and pathogenic 
bacteria E. coli CVCC230 was carried out according to Yang et  al. 
(2015), with slight modifications. They were suspended in sterile 
phosphate-buffered saline (PBS) before being co-inoculated in the 
serum-SAPI medium at a cell density of 1 × 106 CFU/mL and incubated 
aerobically for 24 h at 37°C. The samples were then serially diluted and 
plated on eosin-methylene blue (EMB) agar containing 50 μg/mL 
nalidixic acid to enumerate the number of pathogen colonies. EMB 
medium is a selective medium for E. coli, which appears as purple-black 
colonies with a green metallic luster when E. coli cultured in 
EMB medium.
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2.5 Acid production capacity of 
Levilactobacillus strains

The titratable acidity of the culture supernatant was determined 
by acid–base titration, following the methods described in reference 
(Navrátilova et al., 2022). The culture supernatant was collected at 
time periods of 2 h, 4 h, 6 h, 8 h, 12 h, 24 h, 28 h, 36 h, and 48 h. 
Hydrogen peroxide production was determined according to 
Eschenbach et al. (1989).

2.6 Animal experimental design

The Ethical Committee of the Institute approved all scientific 
experiments. All applicable international and national guidelines for 
the care and use of animals in experiments were followed. Approval 
(NEAUEC-20, 3 March 2020) was obtained from the Institutional 
Committee of Northeast Agricultural University for animal 
experiments. SPF BALB/c female mice (6–8 weeks of age) were 
purchased from the Laboratory Animal Centre, the Second Affiliated 
Hospital of Harbin Medical University (Harbin, China). The mice 
were maintained in a controlled environment and had free access to 
rodent food and tap water during a 12-h cycle of light and darkness.

In order to select the concentration and route of administration of 
NE, we  first performed pre-experiments. The mice were divided 
randomly into five groups (n = 5/group), and they were vaccinated 
orally five different concentrations of NE, 16.9 mg/kg/day (100 μM), 
8.45 mg/kg/day (50 μM), 4.23 mg/kg/day (25 μM), 1.69 mg/kg/day 
(12.5 μM), and 0 mg/kg/day (0 μM). The mice were kept under 
observation and the disease activity index (DAI) was recorded every 6 h 
and the NE administration route that causes the most significant clinical 
symptoms was identified. DAI is the sum of individual scores recorded 
for blood stool, stool consistency, and weight loss (Shinde et al., 2019). 
According to the method in literature (Cooper et al., 1993), the body 

weight of mice was recorded twice a day at the same time, and the 
average value was taken. In brief, scores were determined by reference.

Based on the previous in  vitro test data, we  selected L. brevis 
23,017 for animal testing. Before bacterial inoculation, the animals 
were given 0.25 mL of a 0.2 mol/L sodium bicarbonate solution. A 
total of 25 mice were randomly divided into 5 groups (5 mice in each) 
in a completely random design. Dietary treatments included the 
control group with oral PBS, the NE group with oral NE, the 
CVCC230 group with oral E. coli CVCC230, the 23,017 + CVCC230 
group with oral L. brevis 23,017 and E. coli CVCC230, and the 
23,017 + NE + CVCC230 group with oral L. brevis 23,017 cultured in 
the medium containing NE and E. coli CVCC230. The specific mouse 
infection model is shown in Figure 1. After 15 days of treatment, the 
mice in each group were sacrificed and used for the subsequent 
analysis. The blood was collected from the eyeballs, and the serum was 
separated and stored in a − 70°C freezer for further analysis. The 
duodenum tissues were immediately collected for experiments and 
fixed in 10% formalin for histological evaluation. The small intestine 
was collected for biological information analysis.

2.7 Bacterial enumeration

The bacterial enumeration of the duodenum was determined by 
the modified method of Nour et al. (2021). The entire duodenum was 
sampled for postmortem clinical assessment of parameters. The EMB 
containing 50 μg/mL nalidixic acid was used for counting agar.

2.8 Histopathology

According to the previous pathological tissue staining protocol 
(Trajković et al., 2007), the tissues were sectioned and images were 
obtained at 100× and 400× magnifications, respectively.

FIGURE 1

The infection model of the mice.
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2.9 Antioxidant capacity

The antioxidant capacities of duodenum were determined using 
assay kits according to the manufacturer’s instructions (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China). The activities of 
superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and 
total antioxidant capacity (T-AOC) were expressed as U per mg 
protein. The activities of malondialdehyde (MDA) were expressed as 
nmol per mg protein.

2.10 Enzyme-linked immunosorbent assay 
(ELISA)

The levels of interleukin-6 (IL-6), interleukin-10 (IL-10), 
interleukin-1β (IL-1β), and myeloperoxidase (MPO) were measured 
via an enzyme-linked immunosorbent assay (ELISA) kit according to 
the manufacturer’s instructions (Boster Biological Technology, China).

2.11 Real-time quantitative polymerase 
chain reaction (PCR)

Based on the method of Gao et  al. (2019), the detection of 
intestinal mucosal barrier-related functional genes was implemented 
with a slight modification. The RNA was extracted from the 
duodenum tissue using an RNA extraction kit (TransGen Biotech, 
Beijing, China) and then reverse-transcribed into cDNA using 
ReverTra Ace® (TOYOBO, Shanghai, China) following the 
manufacturer’s protocol. The cDNA was used for quantification and 
expression of various genes, including inflammation-related genes, 
Nrf2, and their downstream genes and intestinal mucosal barrier-
related genes. Furthermore, the real-time quantitative PCR reactions 
were carried out using the Applied Biosystems® 7,500 Real-Time PCR 
System (Analytik Jena AG, Germany) according to the manufacturer’s 
instructions. Actin β-action was taken as the reference gene. Primers 
for this study were synthesized with the company (Comate Bioscience 
Co., Ltd., Jilin, China). The primer sequence sets used are provided in 
Supplementary Table S1. The relative mRNA levels were quantified 
using the 2−ΔΔCt method (Livak and Schmittgen, 2001).

2.12 Microbial diversity analysis

Fecal pellets and contents of small intestine were collected from 
mice in different groups, and the microbial amplicon sequencing was 
conducted by Genesky Biotechnologies Inc. (Shanghai, China). Alpha 
diversity was used to analyze the complexity of species diversity in 
each sample, which included Chao1, ACE, Shannon, and Simpson.

2.13 Statistical analysis

All the data are expressed as ±standard error of the mean. The SPSS 
22.0 software (SPSS Inc., Chicago, IL, USA) was utilized for statistical 
analyses. The one-way ANOVA with the least significant difference (LSD) 
post-hoc test was used to identify the significant differences between 
groups. p < 0.05 was considered to be statistically significant.

3 Results

3.1 NE promotes the growth and viable 
bacteria of Levilactobacillus strains

To investigate whether NE has an effect on the growth of 
Levilactobacillus strains, we  examined the growth rate and viable 
bacterial counts in ten strains of Levilactobacillus in vitro. In 0–48 h, 
the addition of NE resulted in an increase in the final culture density 
of 8 (80%) Levilactobacillus strains over control cultures (Figure 2A; 
Supplementary Figure S1) in addition to the 27,197 and 23,027 groups.

According to Figure 2B and Supplementary Figure S2, the growth 
trend of the average Levilactobacillus viable count is similar to the 
trend of the bacterial growth curve. In 0–24 h, the addition of NE 
resulted in an increase in the viable count of 9 (90%) Levilactobacillus 
strains over control cultures. In general, the results showed that NE 
has a promotive effect on the growth of most Levilactobacillus strains.

3.2 NE reduces the antimicrobial activity of 
Levilactobacillus strains

To explore the effect of NE on the inhibitory effect of probiotic 
Levilactobacillus strains on E. coli, S. aureus, and P. aeruginosa in vitro, 
we examined their antimicrobial activity at 8 h and 22 h. As shown in 
Figure 3, at 8 h for the Levilactobacillus strains tested, NE inhibited the 
antimicrobial activity of 3 (30%) strains against E. coli, with 2 of them 
being significantly inhibited; NE inhibited 3 (43%) strains against 
S. aureus, with 1 of them was significantly inhibited; and NE inhibited 7 
(70%) strains against P. aeruginosa, with 4 of them being significantly 
inhibited. At 22 h, NE inhibited the antimicrobial activity of 8 (80%) 
Levilactobacillus strains against E. coli, with 6 of them being significantly 
inhibited; NE inhibited 6 (86%) Levilactobacillus strains against S. aureus, 
with 5 of them being significantly inhibited; and NE inhibited the 10 
(100%) Levilactobacillus strains against P. aeruginosa, with 6 of them 
being significantly inhibited. In summary, the addition of NE reduced 
the antimicrobial activity of the majority of the Levilactobacillus strains.

3.3 NE increased the number of viable 
Escherichia coli in co-culture

To simulate the intestinal environment in which the three factors 
NE, L. brevis 23,017, and E. coli CVCC230 coexist in the intestine and 
to investigate the effect of catecholamine on the mixed bacteria, 
we  performed co-culture experiments. Figure  4A and 
Supplementary Figure S3 depict the viable counts of E. coli. In the 
early phase (0–24 h), in most groups (50%), mixed cultures were 
higher than controls, and this proportion increased to 70% after 24 h. 
Overall, in the co-culture system, the addition of NE increased the 
number of viable E. coli.

3.4 NE promotes the acid production 
capacity of the 10 Levilactobacillus strains

To investigate the reason why NE reduces the antimicrobial 
activity of Levilactobacillus strains, we examined their acid production 
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capacity. As shown in Figure 4B and Supplementary Figure S4, for 
60% of the tested strains, Levilactobacillus strains grown with NE 
generated higher concentrations of acid than those grown without it. 
However, for the ATCC4356, 27,197, 27,053, and 21,060 strains, the 
capacity of acid production was similar with or without NE. The 
addition of NE did not affect the ability of Levilactobacillus strains to 
produce hydrogen peroxide (data not shown).

3.5 NE reduces the ability of 
Levilactobacillus brevis 23,017 in inhibiting 
intestinal colonization by pathogenic 
bacteria

Mice orally administered with 8.45 mg/kg/day (50 μM) NE 
showed depression and loss of appetite within 48 h. Symptoms were 
relieved after 72 h, and normal diet was resumed. The mice in the 
high-concentration group of 16.9 mg/kg/day (100 μM) showed 
depression, trembling bodies, no eating or drinking, loss of appetite, 
weight loss, and even death within 72 h. Therefore, the 8.45 mg/kg/
day (50 μM) concentration of NE was considered optimal.

To investigate whether NE regulates the competition between 
Levilactobacillus and pathogenic bacteria for colonization sites, 
we  examined the viable E. coli count. The viable E. coli count was 
recorded as log10 CFU/g. E. coli CVCC230 was not detected in the livers 
of each group of mice. In duodenum tissues, the 23,017 + CVCC230 
(6.55 ± 0.19) group and the 23,017 + NE + CVCC230 (7.15 ± 0.13) 
group significantly reduced the number of E. coli compared to the 

CVCC230 group (7.32 ± 0.12), while the number of E. coli increased in 
the 23,017 + NE + CVCC230 group compared to the 23,017 + CVCC230 
group. In colon tissues, the 23,017 + CVCC230 (5.38 ± 0.15) group and 
the 23,017 + NE + CVCC230 (5.95 ± 0.17) group also reduced the 
number of E. coli in comparison to the CVCC230 (6.98 ± 0.16) group, 
while the level of duodenum tissues in the number of E. coli was 
increased in comparison to the colon tissues, proving that the 
duodenum may be the main colonization site. We deduced that the 
addition of NE gives E. coli an advantage in the competition with 
Levilactobacillus for colonization sites.

3.6 NE attenuated the protective effect of 
Levilactobacillus brevis 23,017 on intestinal 
tissue integrity

To investigate the effect of NE on the capability of L. brevis 23,017 to 
protect the integrity of intestinal tissue, we performed a histological 
evaluation. As shown in Figure  5, microscopic duodenum damage 
observed in the CVCC230 group was significantly higher than that in the 
untreated control and NE groups (Figures 5C,H). There is a large area of 
tissue shedding, interstitial congestion, and other pathological changes. 
However, the histopathological signatures were ameliorated by L. brevis 
23,017 monotherapies (Figures 5D,I), which obviously ameliorated the 
deterioration of mucosal tissue caused by E. coli CVCC230. Moreover, 
the degree of mucosal inflammation deteriorated in mice that were given 
the probiotic and NE acting together, with observations of increased 
mucosal lesions, vasodilation, and increased inflammatory infiltration 

FIGURE 2

The effect of norepinephrine (NE) on the growth of Levilactobacillus. (A) Heatmap representing the OD600 value of Levilactobacillus growth within 
0–48 h. Asterisks indicate strains with NE enhanced growth at 0–48 h. (B) Heatmap of the number of viable bacteria of Levilactobacillus growth within 
0–48 h, the unit is colony-forming units per milliliter (107 CFU/mL). Asterisks indicate strains with NE enhanced growth at 0–24 h.
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(Figures 5E,J). That is, the addition of NE reduced the level of cellular 
integrity protection effect of L. brevis 23,017 on intestinal tissues.

3.7 NE reduces the antioxidant capacity of 
Levilactobacillus brevis 23,017

To determine whether NE acts on Levilactobacillus strains to 
influence their ability in reducing oxidative stress, we measured 

some indicators of the antioxidant enzyme system. As shown in 
Table 1, the CVCC230 group in the mice exhibited significantly 
elevated SOD (p < 0.05), GSH-Px (p < 0.05), and T-AOC activity 
in the duodenum in comparison to the control group. The 
23,017 + CVCC230 group resulted in significantly elevated SOD, 
GSH-Px (p < 0.05), and T-AOC activity compared to the 
CVCC230 group, while the level of MDA is the opposite. At the 
same time, the levels of SOD (p < 0.05), GSH-Px (p < 0.05), and 
T-AOC are significantly reduced, while the level of MDA is 

FIGURE 3

Effect of NE on antibacterial ability of Levilactobacillus to E. coli, Staphylococcus aureus and Pseudomonas aeruginosa in 8 h and 24 h. Different colors 
represent different strains, blank columns represent Levilactobacillus acted alone, and columns with slashes represent Levilactobacillus groups acting 
with NE. Experiments were repeated three times, *, **, respectively, represent significant differences (p < 0.05), significant differences (p < 0.01).
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elevated in comparison to the 23,017 + CVCC230 group. 
Taken together, these data show that the addition of NE 
increases oxidative damage induced by E. coli in the organism, 
indicating that NE decreased the antioxidant capacity of 
L. brevis 23,017.

3.8 NE modulates the ability of 
Levilactobacillus brevis 23,017 in regulating 
inflammatory factors of serological levels

To reflect the effect of NE on the ability of Levilactobacillus in 
modulating the inflammatory response at serological levels, serum 
IL-6, IL-1β, IL-10, and MPO were tested (Figure  6). In the 
CVCC230 group, the expressions of IL-6 (p < 0.01), IL-1β 
(p < 0.05), IL-10, and MPO (p < 0.01) were upregulated compared 
to the control group. The mice in the 23,017 + CVCC230 group 
were found to have downregulated levels of IL-6 (p < 0.01), IL-10 
(p < 0.05), and MPO (p < 0.01) compared to the CVCC230 group, 
with increased expression of IL-1β. The expressions of IL-10 
(p < 0.05) and MPO (p < 0.05) were upregulated, while those of 
IL-6 (p < 0.05) and IL-1β (p < 0.01) were downregulated 
in the 23,017 + NE + CVCC230 group compared to the 
23,017 + CVCC230 group. Overall, the addition of NE affects the 
ability of L. brevis 23,017 in modulating the inflammatory response 
at serological levels.

3.9 NE modulates the ability of 
Levilactobacillus brevis 23,017 in regulating 
inflammatory factors of mRNA levels

To reflect the effect of NE on the ability of Levilactobacillus in 
modulating the inflammatory response at mRNA levels, IL-6, IL-1β, 
and TNF-α were tested (Figure 7A). IL-6 (p < 0.01), IL-1β (p < 0.01), 
and TNF-α (p < 0.01) were all upregulated in the NE-treated group 
compared to the control group. Compared to the control group, the 
expressions of IL-1β and TNF-α were downregulated, and the level 
of IL-6 was unchanged in the CVCC230 group. IL-6 (p < 0.01) and 
IL-1β (p < 0.05) expressions were upregulated and TNF-α expression 
was downregulated in the 23,017 + CVCC230 group compared to the 
CVCC230 group. Compared to the 23,017 + CVCC230 group, the 
expressions of IL-6 and IL-1β were downregulated and the expression 
of TNF-α was upregulated in the 23,017 + NE + CVCC230 group. 
Overall, the addition of NE affects the ability of L. brevis 23,017 in 
modulating the inflammatory response at mRNA levels.

3.10 NE modulates Levilactobacillus brevis 
23,017 in downregulation of Nrf2 expression

To determine the potential role of NE in the antioxidant effect of 
Levilactobacillus, we  detected the mRNA levels of Nrf2 and its 
downstream genes, an important transcription factor of the oxidative 

FIGURE 4

The effect of NE on the antimicrobial and acid production capacity of Levilactobacillus. (A) Effect of NE on the number of viable Escherichia coli (E. 
coli) bacteria under co-culture conditions, heatmap of the number of viable bacteria of E. coli (107 CFU/mL). Asterisks indicate that co-culture with NE 
enhanced the number of viable bacteria of E. coli. (B) Effect of NE on acid production of Levilactobacillus, heatmap of the pH values of culture 
supernatant. Asterisks indicate that co-culture with NE enhanced the acid production capacity.
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stress response (Figure 7B). As expected, treatment with CVCC230 
significantly downregulated the Nrf2 (p < 0.01), HO-1 (p < 0.05), and 
NQO1 expressions compared to the control group, while after 
preventive Levilactobacillus treatment, the levels were significantly 
upregulated (p < 0.01). In contrast, preventive NE and Levilactobacillus 
treatments induced downregulation of the Nrf2 (p < 0.01), HO-1, and 
NQO1 (p < 0.01) expressions compared to the 23,017 + CVCC230 
group. These results show that NE inhibits the expression of Nrf2 and 
its downstream genes in mRNA levels.

3.11 Action of NE on Levilactobacillus 
brevis 23,017 affects mRNA expression 
levels of functional genes related to 
intestinal mucosal barrier

To investigate whether the action of NE on Levilactobacillus 
strains affects their ability to protect the integrity of the intestinal 
mucosa, we examined the mRNA levels of intestinal mucosal barrier-
related genes. As shown in Figure 8, the mRNA expression profiles of 
CRS4C, Cryptdin-1, ZO-1, mucin-2, and iNOS in the CVCC230 
group were decreased when compared to those of control mice, 
whereas OCLN (p < 0.01), TLR2 (p < 0.01), and TLR4 were increased. 
The mRNA expression profiles of CRS4C (p < 0.01), Cryptdin-1 
(p < 0.01), ZO-1 (p < 0.01), mucin-2 (p < 0.01), OCLN, TLR4, and 
iNOS in the 23,017 + CVCC230 group were significantly elevated 
when compared to the CVCC230 group, while TNF-α and TLR2 

(p < 0.01) expressions were downregulated. Compared to the 
23,017 + CVCC230 group, the expressions of ZO-1, mucin-2, and 
TLR2 (p < 0.01) in the 23,017 + NE + CVCC230 group were increased, 
while the expressions of CRS4C, Cryptdin-1, OCLN, TLR4, and iNOS 
were decreased. In conclusion, NE affects the ability of L. brevis 
23,017  in enhancing the expression of intestinal mucosal barrier-
related genes.

3.12 NE affects the ability of Levilactobacillus 
in maintaining the balance of the intestine 
bacterial microbiota composition

To investigate whether NE affects the function of Levilactobacillus in 
regulating intestinal health, we performed an analysis of the microbial 
composition of the intestinal flora (Figure 9). The 11 dominant bacterial 
phyla (with mean relative abundance >1%) are shown in Figure 9A, and 
at the genus level (Figure 9B), 16 dominant bacterial genera (average 
relative abundance >1%) could be  identified. In comparison of the 
relative abundance of Levilactobacillus in each group, the relative 
abundance of Levilactobacillus was the highest in the NE group, followed 
by the normal control group. The members of the Levilactobacillus 
family were in low abundance in the 23,017 + NE + CVCC230 group as 
compared to the 23,017 + CVCC230 group. From the above results, 
we can see that NE induces an increase in the relative abundance of 
probiotics in the intestinal flora, and oral administration of NE affects 
the balance of intestinal flora.

TABLE 1 Antioxidant indices in duodenum results.

Duodenum MDA (nmol/
mgprot)

SOD
(U/mgprot)

GSH-Px
(U/mg prot)

T-AOC
(U/mg prot)

Control 2.24 ± 1.26 33.9 ± 2.62 484.92 ± 1.56 0.76 ± 0.56

NE 3.43 ± 0.35 19.13 ± 2.4 523.2 ± 2.95 0.49 ± 0.67

CVCC230 5.03 ± 1.16 27.12 ± 0.67ab** 452.63 ± 1.83ab** 0.48 ± 0.11

23,017 + CVCC230 3. 9 ± 0.95 30.87 ± 3.01b** 642.77 ± 1.52ab**c 0.57 ± 0.11

23,017 + NE + CVCC230 5.1 ± 2.86 18.92 ± 1.4acd 571.37 ± 0.97ab**cd 0.35 ± 0.02c

a, b, c Mean significant differences between different groups under the same indicator (p < 0.05); “a” means a significant difference between the control and treatment, “b” means a significant 
difference between the NE and treatment, “c” means a significant difference between the 23,017 + CVCC230,23017 + NE + CVCC230 with CVCC230, “d” means a significant difference 
between the 23,017 + CVCC230 and 23,017 + NE + CVCC230. **respectively represent significant differences (p < 0.01).

FIGURE 5

Histological image of duodenum. (A,F) Group control; (B,G) Group NE; (C,H) Group CVCC230; (D,I): Group 23,017 + CVCC230; (E,J): 
Group 23,017 + NE + CVCC230. (A–E) Histological image of duodenum (100×); (F–J) Histological image of duodenum (400×). The red arrows in the 
figure mark the areas where the damage mainly occurs.
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3.13 NE modulates the ability of 
Levilactobacillus in maintaining the balance 
of species richness and diversity in 
intestinal flora

To investigate whether NE affects the function of 
Levilactobacillus in regulating intestinal flora species diversity, 
we measured the richness and diversity of the intestine’s bacterial 
microbiota. The α diversity indices of the samples are shown in 

Table 2. The values of Chao1, ACE, and Simpson were increased in 
the CVCC230 and 23,017 + CVCC230 groups compared to the 
control group, while the value of Shannon was decreased. The 
values of Chao1, ACE, and Shannon in the 23,017 + NE + CVCC230 
group were increased when compared to the 23,017 + CVCC230 
group, while Simpson was decreased. There is no significant 
difference between each group. Overall, this result indicates that the 
23,017 + NE + CVCC230 group had the highest species richness 
and the highest community diversity.

FIGURE 6

Detection of inflammatory response at serological levels by Elisa method, abscissas represent groups and ordinates represent the concentration of 
IL-6, IL- IL-1β, IL-10 and MPO. Experiments were repeated three times, *, **, respectively, represent significant differences (p < 0.05), significant 
differences (p < 0.01).
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4 Discussion

Microbial endocrinology is a relatively young scientific field, and 
for decades, scientists have studied the activity of catecholamines only 
in terms of host immune response, vasoconstriction, and so on. The 
direct effects on bacteria have been explored mostly in pathogenic 
bacteria and very few in probiotics (Boukerb et  al., 2021). Many 
clinical diseases are induced by enterotoxigenic E. coli (ETEC), and 
several stress hormones, especially catecholamines, can aggravate the 
condition and cause anorexia, intestinal inflammation, and intestinal 
flora imbalance (McCracken et  al., 1999; Bomba et  al., 2014). 
Currently, treatment for E. coli infection relies primarily on antibiotics, 
but they can cause many side effects. As an antibiotic alternative, 
Levilactobacillus is extremely widespread in nature and plays a vital 
role in resistance to pathogen infection and keeping the gastrointestinal 
tract healthy (Round and Mazmanian, 2009; Liu et al., 2014; Ritze 
et al., 2014; Dowarah et al., 2017; Vinasco et al., 2019). However, it has 
different effects in different individuals, or in laboratory and clinical 
applications. Therefore, in this study, we tried for the first time to 
analyze the effects of NE on the probiotic properties of Levilactobacillus 
strains in vivo to resolve the inconsistent effect of the application of 
Levilactobacillus. This study fills some of the gaps in microbial 
endocrinology with respect to probiotics and is important for both the 

theoretical basis and clinical application of the study of stress hormone 
interactions with probiotics.

When the Levilactobacillus strains were tested in  vitro in the 
presence of NE, 80% of the strains showed an increase in growth rate 
and the number of viable bacteria. This is in general agreement with 
majority of the previous studies of pathogenic Gram-positive bacteria 
(Belay and Sonnenfeld, 2002; Lyte et al., 2003; Sandrini et al., 2014; 
Boyanova, 2017). We  speculate that NE-induced growth of 
Levilactobacillus strains may be related to iron homeostasis and gene 
transcription. The study by Bearson et al. indicated that Salmonella 
Typhimurium changes the biosynthesis of numerous cellular pathways 
to increase its growth rate in serum-SAPI minimal media to utilize the 
increased availability of iron provided by NE (Bearson et al., 2008; 
Boukerb et  al., 2021). Iron sequestration is mainly due to the 
mammalian ferric-iron-binding proteins transferrin in serum and 
lactoferrin in mucosal secretions (Mietzner and Morse, 1994). Many 
studies demonstrating the influence of catecholamines on bacterial 
growth used a serum-like medium containing transferrin (Tf) and 
lactoferrin (Lf). Serum-SAPI minimal media more accurately simulate 
a stressful and bacteriostatic environment for the bacteria, and so 
more precisely they resemble the conditions that the bacteria may 
experience within the host (Mietzner and Morse, 1994; Freestone 
et  al., 2003; Lyte, 2004). In several other studies, NE inhibits the 

FIGURE 7

(A) Detection of inflammatory response at mRNA levels. (B) Detection of mRNA levels of Nrf2 and its downstream genes. Real-time qPCR reactions 
were used to detect, and β-actin was seen as house-keeping gene. The abscissas represent groups, the ordinates represent 2−ΔΔCt value. Experiments 
were repeated three times, *, **, respectively, represent significant differences (p < 0.05), significant differences (p < 0.01).
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FIGURE 8

Detection of genes related to the intestinal mucosal barrier at mRNA levels. Real-time qPCR reactions were used to detect, and β-actin was seen as 
house-keeping gene. The abscissas represent groups, the ordinates represent 2−ΔΔCt value. Experiments were repeated three times, *, **, respectively, 
represent significant differences (p < 0.05), significant differences (p < 0.01).

FIGURE 9

(A) The intestinal microbiota at the phylum level were analyzed using 16S rRNA sequencing results. The horizontal axis represents the sample, and the 
vertical axis represents the relative richness value. (B) The intestinal microbiota at the genus level were analyzed using 16S rRNA sequencing results. 
The horizontal axis represents the sample, and the vertical axis represents the relative richness value.
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growth of Prevotella intermedius (Jentsch et  al., 2013) and 
Porphyromonas pulposus (Calil et al., 2014). The difference between 
promotion and inhibition may be  related to the concentration of 
hormones (Roberts et al., 2002; Hegde et al., 2009; Jentsch et al., 2013; 
Calil et al., 2014), but we only selected the optimal concentration for 
investigation based on the clues provided by previous experiments. In 
the next step, we selected representative numbers of concentrations to 
investigate. Overall, our study demonstrates that NE has a beneficial 
effect on the growth of Levilactobacillus strains, and this study fills the 
gaps in microbial endocrinology in the study of probiotic 
Levilactobacillus strains.

The antimicrobial activity of more than 80% of the Levilactobacillus 
strains against three indicator bacteria at 22 h was decreased due to 
the presence of NE. This study investigates the effect of catecholamine 
hormones on the antimicrobial activity of probiotic Levilactobacillus 
strains. According to the results of the preliminary pre-experiment, 
we found that the effect of Levilactobacillus strains on E. coli, S. aureus, 
and P. aeruginosa was stronger, so we explored the effect of NE on the 
antimicrobial activity of Levilactobacillus strains using three indicator 
bacteria in this experiment. Metabolites of Levilactobacillus strains 
such as organic acids, hydrogen peroxide, antimicrobial peptides, and 
bactericidal proteins are the main substances that exert antibacterial 
effects (Awaisheh and Ibrahim, 2009; Gupta and Srivastava, 2014). 
Some studies have shown that catecholamines can play a role in free 
radical generation (Borisenko et al., 2000), and bacteria may promote 
adrenaline oxidation to adrenochrome and produce superoxide 
(Toulouse et al., 2019; Reiske et al., 2020). We hypothesized that if NE 
also reacted in this way, it would affect the probiotic viability of 
Levilactobacillus. We imply that NE may reduce the antibacterial effect 
of Levilactobacillus strains by affecting their metabolites. The results 
provide a theoretical basis for the next application of Levilactobacillus 
in practice.

By simulating the coexistence of three factors in the intestine 
in vivo, the interaction increases the number of viable bacteria of 
E. coli. Our previous study has shown that NE promotes the growth of 
E. coli CVCC230. Although we found that NE inhibited the anti-E. coli 
ability of Levilactobacillus strains and significantly increased the viable 
E. coli count in the three-factor mixed environment, it was impossible 
to conclude that NE reduced the antimicrobial activity of 
Levilactobacillus against E. coli CVCC230 in this environment as the 
competition for nutrients in the medium could also contribute to the 
higher counts. The role of NE in the organism is very complex and 
needs to be analyzed from multiple perspectives. Our discussion of 
the coexistence of the three factors in the intestine is not 
comprehensive enough, and we wish to provide clues for the next 
studies in the microbial endocrinology field, in vitro or in vivo.

In the presence of NE, the acid production capacity of 60% 
Levilactobacillus strains was enhanced without any effect on the 

hydrogen peroxide production capacity. Past studies have shown that 
the primary antimicrobial activity of certain strains depends on the 
production of acid or hydrogen peroxide (Blajman et  al., 2015). 
However, we speculate that the diminished antimicrobial activity of 
NE on Levilactobacillus strains is not acting through these two 
characteristics in this study. NE probably reduces the antimicrobial 
capacity of Levilactobacillus strains by affecting the secretion of 
antimicrobial peptides or antimicrobial compounds (Awaisheh and 
Ibrahim, 2009; Ren et  al., 2018). We  attempted to elucidate the 
mechanism of NE action on Levilactobacillus strains through in vitro 
experiments, and our study provides a basis for the exploration of 
microbial endocrinology in Levilactobacillus.

The results of intestinal colonization and observation of 
pathological sections demonstrated that giving NE and L. brevis 
23,017 together attenuated the inhibitory effect of E. coli CVCC230 
colonization and increased mucosal lesions, vasodilatation, and 
inflammatory infiltration relative to the group given L. brevis 23,017 
alone. The study of Cambronel et  al. showed that catecholamine 
hormones influenced the adhesion of both pathogenic and probiotic 
Enterococcus faecalis (Cambronel et  al., 2020). It has also been 
suggested that catecholamine hormones may have opposite effects on 
the ability of different pathogenic bacteria to adhere (Gonzales et al., 
2013). We  speculate that NE may have affected the adhesion and 
competition for attachment sites of L. brevis 23,017 and weakened its 
inhibitory effect on E. coli colonization. Previously, it was investigated 
that NE at the cellular level enhanced the probiotic properties of 
Enterococcus faecalis, such as resistance to bile salts, autoaggregation, 
and biofilm formation (Scardaci et al., 2021). However, our results 
demonstrate that NE negatively regulates the probiotic effect of 
L. brevis 23,017. In the context of the microbiota–gut axis 
communication, the activities of the organism at all levels are complex 
(Lyte, 2016), and our study is important to elucidate the interactions 
between symbiotic bacteria and their hosts.

The detection of oxidative stress-related markers concluded that 
NE decreased the antioxidant capacity of L. brevis 23,017. Many past 
studies have indicated that treatment with Levilactobacillus showed 
higher antioxidant capacity than that of other groups; the same was 
true for us (Ge et al., 2021). Previous studies have shown that the 
autotrophic antioxidant enzyme systems, chelated metal ions, and 
regulation of the intestinal bacteria group are the primary ways that 
the antioxidant mechanism of Levilactobacillus is exhibited (Li et al., 
2012). We speculate that NE may also affect the antioxidant capacity 
of L. brevis 23,017  in these ways, and we  intend to continue 
investigating the mechanisms at the gene level or signaling pathway 
in the next step. Overall, this again confirms that NE can reduce the 
probiotic effects of Levilactobacillus strains.

The assay of inflammatory factors at serological levels showed that 
NE acting on L. brevis 23,017 may promote an anti-inflammatory 

TABLE 2 Results of intestinal microflora abundance and diversity in mice.

Group Chao1 ACE Shannon Simpson

Control 346.991 ± 38.28 347.005 ± 65.43 3.375 ± 2.43 0.074 ± 0.012

NE 224.072 ± 22.34 238.287 ± 64.11 2.566 ± 0.94 0.153 ± 0.10

CVCC230 371.317 ± 83.2 371.066 ± 83.62 3.375 ± 1.43 0.102 ± 0.05

23,017 + CVCC230 397.665 ± 43.43 382.862 ± 32.98 3.286 ± 1.11 0.082 ± 0.02

23,017 + NE + CVCC230 412.712 ± 21.11 404.980 ± 73.02 3.950 ± 0.83 0.048 ± 0.01
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environment by downregulating the IL-6 and IL-1β levels and 
upregulating the levels of IL-10 and MPO transcripts. The NE group 
had significantly higher levels of inflammatory factor mRNA 
expression, and the relative tendency in the 23,017 group was 
completely opposite to that in the 23,017 + NE group, demonstrating 
that the addition of NE inhibited the regulation of intestinal 
inflammatory factors by L. brevis 23,017. The results obtained from 
our assay of serum and intestinal levels of inflammatory factors did 
not show a significant trend toward consistency. As reported in a 
previous study, Mu et al. indicated that the transcriptional level was 
not consistent in the intestine, spleen, and serum with Levilactobacillus 
treatment, suggesting gut-specific immunosuppression (Mu et  al., 
2017). Even though in some circumstances IL-6 signaling has been 
characterized as anti-inflammatory, it also plays a crucial role in 
increasing inflammation and immunity (Hirano et al., 2000; Vardam 
et al., 2007; Silver and Hunter, 2010; Rose-John, 2012). Moreover, 
many pro-tumor actions can be supported by stimulation of IL-6 trans 
signaling, which also has the ability to boost adaptive immunity 
against tumors (Fisher et al., 2014). Together, these findings suggest 
that NE has a role in the ability of L. brevis 23,017 to modulate the 
inflammatory response, but the exact pattern of action still needs to 
be explored.

In the mouse duodenum, NE on L. brevis 23,017 decreased 
Nrf2 and its downstream gene expression. Nrf2 is a transcription 
factor that helps regulate the cellular oxidative stress (Ma, 2013). 
It is an important regulator of cellular defense mechanisms against 
xenobiotics and oxidative stress (Tonelli et al., 2018). As a part of 
the gut microbiota, Levilactobacillus benefits in regulating 
oxidative stress in tissues and cells, and the results of Long et al. 
(2021) are similar to ours and show that L. fermentum can also 
promote high-level expression of Nrf2 and other downstream 
antioxidant factors such as HO-1 and NQO1. Previous research 
has shown that Nrf2 signaling pathways mediate the defense 
mechanisms against oxidative stress and inflammation (Fuentes 
et al., 2015; Li et al., 2018). Therefore, we speculate that NE acting 
on L. brevis 23,017 may reduce the antioxidant effect by regulating 
the expression of Nrf2 and its downstream genes then affect their 
protein expression. The addition of NE reduced the L. brevis 23,017 
enhancement of intestinal mucosal barrier-related gene expression 
in  vivo in the mouse. Catecholamines, particularly NE, are 
abundantly present in the intestinal mucosa during stressful 
conditions (Eisenhofer et  al., 2004). Previous research has 
demonstrated that Levilactobacillus can improve intestinal mucosal 
status and increase the expression of intestinal mucosal barrier-
associated proteins (Chaudière and Ferrari-Iliou, 1999; Mao et al., 
2016), which is consistent with our study. However, NE acting on 
L. brevis 23,017 downregulated the expression of antimicrobial 
peptides CRS4C and Cryptdin-1 and the tight junction protein 
OCLN. We  speculate that NE affects the probiotic effects of 
L. brevis 23,017 by affecting its ability to regulate intestinal 
mucosal secretion.

The effect of oral NE modulates the balance of intestinal flora, 
causing a decrease in the relative quantity of probiotic bacteria and 
an increase in the relative abundance of other harmful bacteria. NE 
may act on numerous gut microorganisms. According to the 
in vitro part of this study, NE attenuated the inhibitory effects of 
L. brevis 23,017 on E. coli, S. aureus, and P. aeruginosa. Since 
previous studies have shown that catecholamine hormones have a 

promoting effect on E. coli growth and virulence, we hypothesize 
that one of the reasons why the addition of NE causes an imbalance 
in the intestinal flora may be due to a reduction in the inhibitory 
effect of Levilactobacillus on the harmful microorganisms in the 
intestinal tract. The development and changes of the intestinal 
microbiota have a non-negligible impact on the development and 
treatment of many diseases (Linninge et al., 2019). Previous studies 
have shown that Levilactobacillus strains can regulate the disease 
process by maintaining the balance of intestinal flora (Mu et al., 
2017). We suggest that the imbalance of intestinal flora regulated 
by NE action on Levilactobacillus and the change of intestinal flora 
will also regulate the immune response of the body, leading to the 
occurrence of stress, creating a vicious circle until it affects 
systemic immunity. The highest relative abundance of 
Levilactobacillus was obtained by the assay of intestinal flora in the 
NE group, followed by the normal control group. This was validated 
against the promotion of bacterial growth by in vitro levels of NE, 
demonstrating that NE also enhanced the growth of 
Levilactobacillus under complex conditions in the in vivo organism. 
Overall, the addition of NE modulates the balance of intestinal flora.

This study was only a basic one hoping to provide some clues for 
microbial endocrinology. Owing to the complexity of NE activity in 
the organism and the fact that the addition of NE may also affect some 
other gut microorganisms in the organism, we have examined only 
the changes in the organism that may be induced by the concomitant 
administration of NE and L. brevis. Hopefully, some evidence can 
be given that in animals, the addition of norepinephrine also reduces 
the probiotic effect of lactobacilli on the body. Studies have shown that 
catecholamine receptor antagonists are therapeutically important in 
the treatment of conditions such as hypertension, and adrenergic and 
dopaminergic antagonists block NE, epinephrine, and Dopa responses 
in bacteria (Freestone et  al., 2008). Whether we  can prevent the 
disease by blocking the catecholamine hormones in the body is the 
next major direction of our research. In the next step, we will use this 
study as a basis to investigate the effects of different types of receptor 
inhibitors and catecholamine hormones under different environmental 
conditions and adjust the assay indicators and methods to carry out 
more in-depth studies.

5 Conclusion

In conclusion, this is the first report on how probiotics and 
catecholamine hormones interact in a mouse model. The results 
showed that NE promoted growth while suppressing the 
antimicrobial capacity of Levilactobacillus strains, and the viable 
count of E. coli was increased in the presence of Levilactobacillus 
strains and neurohormone coexistence. In addition, the 
administration of NE in the ETEC-infected mouse model reduced 
the ability of L. brevis 23,017  in inhibiting pathogenic bacterial 
colonization of the intestine, inhibiting intestinal inflammatory cell 
infiltration, antioxidant capacity, protection of the intestinal mucosal 
barrier, and maintaining intestinal flora homeostasis. Our study is 
the first report to investigate the effect of catecholamine hormones 
on the properties of probiotics in  vivo and may provide a new 
direction to address the unstable clinical application of 
Levilactobacillus strains and improve the application of 
Levilactobacillus as an antibiotic alternative.
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