![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Infectious Agents and Disease
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1515576
This article is part of the Research Topic Insights in Infectious Agents and Disease: 2023/2024 View all 31 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Salmonella detection in retail pork is increasing, yet studies on its antimicrobial resistance (AMR) profiles and genomic characteristics remain limited. Moreover, it is still unclear whether certain Salmonella sequence types (STs) are consistently or rarely associated with pork as a transmission source. Sichuan province, the largest pork-production region in China, provides a critical setting to investigate these dynamics. In this study, 213 Salmonella strains isolated from pork and human sources (2019–2021) underwent phenotypic AMR testing and whole-genome sequencing (WGS). Resistance profiling revealed a higher prevalence of AMR in the pork-derived strains, particularly to veterinary-associated antibiotics. We identified STs that were not observed in pork in this study, such as ST23 (S. Oranienburg) and the poultry-commonly associated ST32 (S. Infantis), suggesting potential non-pork transmission routes for these Salmonella STs. To quantify sequence type diversity within each sample source, we introduced the sequencing type index (ST index = number of different STs/ total isolates). The ST index was 32% (49/153) for human-derived isolates and 20% (12/60) for pork-derived isolates. PERMANOVA analysis revealed significant differences in the structural composition of sequence types between human- and pork-derived isolates (P=0.001), indicating that pork may harbor specific Salmonella STs more frequently. These findings highlight the role of pork as a reservoir for certain Salmonella STs, while also implying potential non-pork transmission pathways. The ST index represents a novel metric for assessing Salmonella diversity across different sample sources, offering better understanding into genetic variation and transmission dynamics.
Keywords: Salmonella, antimicrobial resistance, whole genome sequencing, human, pork
Received: 23 Oct 2024; Accepted: 17 Feb 2025.
Copyright: © 2025 Zuo, Yang, Su, Weifeng, Wang, Lei, Kong, Chen, Leng, Yuan, Zhao, Miao, Li, Xu, Lu, Yang and Tian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Haojiang Zuo, Sichuan University, Chengdu, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.