The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Food Microbiology
Volume 16 - 2025 |
doi: 10.3389/fmicb.2025.1509882
Impact of Climate Change on the Distribution of Isaria cicadae Miquel in China: Predictions Based on the MaxEnt Model
Provisionally accepted- 1 College of Life Science, China West Normal University, Nanchong, China
- 2 Department of Botany, Government Khawja Fareed Post-Graduate College, 64200, Rahim Yar Khan, Pakistan, Rahim Yar Khan, Punjab, Pakistan
Isaria cicadae, a historically valued edible and medicinal fungus in China, has been experiencing a critical decline in abundance due to ecological degradation and overexploitation. Understanding its potential distribution is essential for promoting sustainable harvesting practices. This study utilizes the MaxEnt model, combined with known distribution records and 22 environmental variables, to predict the potential distribution of I. cicadae under three representative emission scenarios (CMIP6: SSP1-2.6, SSP2-4.5, and SSP5-8.5) for the 2050s and 2070s. The analysis identifies seven key environmental variables influencing the habitat suitability of I. cicadae: the mean temperature of the driest quarter (bio09), the mean temperature of the wettest quarter (bio08), precipitation in the wettest month (bio16), the mean diurnal range (bio02), isothermality (bio03), elevation, and slope. Currently, I. cicadae is mainly found in the provinces of Yunnan, Sichuan, Hunan, Hubei, Guizhou, Jiangxi, Guangxi, Fujian, Anhui, and Zhejiang, with Yunnan and Sichuan having the largest areas of high suitability at 25.79×104 km2 and 21.36×104 km2, respectively. Jiangxi, Hunan, Yunnan, Guizhou, Fujian, and the Guangxi Zhuang Autonomous Region are identified as primary regions of high suitability. This study aims to further elucidate the impact of the environment on the distribution of I. cicadae from a geographical perspective and provid theoretical insights for the future cultivation and conservation strategies of this species.
Keywords: Isaria cicadae, Maxent, Climate Change, Potential distribution, environmental
Received: 11 Oct 2024; Accepted: 20 Jan 2025.
Copyright: © 2025 He, Ali, Wu, Liu, Wei and Zhuo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Zhihang Zhuo, College of Life Science, China West Normal University, Nanchong, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.