Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.

Sec. Food Microbiology

Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1501331

A Single Nucleotide Polymorphism Produces Different Transcription Profiles in Campylobacter jejuni's cysM

Provisionally accepted
  • Eastern Regional Research Center, Agricultural Research Service (USDA), Wyndmoor, Pennsylvania, United States

The final, formatted version of the article will be published soon.

    A single nucleotide polymorphism (SNP) in the 126 bp untranslated region (UTR) directly upstream of Campylobacter jejuni’s cysM (cysteine synthase) results in significant effects on gene transcription. UTR sequences, containing the predicted promoter region of cysM, from 264 different strains were compared, and revealed a SNP twenty nucleotides upstream of the cysM translation start site. In 219 strains the UTR sequence contained a guanine at this locus, and the remaining 45 strains had an adenine at the same position. Strains possessing the guanine SNP showed higher amounts of cysM transcripts compared to adenine SNP strains. When both UTR regions were cloned upstream of the major flagellar subunit (flaA) the guanine SNP UTR resulted in significantly greater levels of flaA transcription compared to the adenine SNP containing UTR. Additionally, when the UTR containing the guanine SNP was fused to flaA motility was restored for a flaAB null mutant. Motility was not rescued initially when flaA was fused to the UTR containing the adenine SNP UTR. However, when the flaAB null mutant, containing a copy of flaA fused to the adenine-containing UTR, was incubated in Brucella broth for a minimum of two consecutive passages each lasting 48 H, transcription of flaA increased and motility was restored. Additional analysis of the flaA mRNA produced by the strain containing the adenine SNP UTR fused to flaA grown in Brucella broth versus agar suggests that the effects on motility occurred through blocking of full-length mRNA production.

    Keywords: Campylobacter, transcription, mRNA, regulation, SNP, Cysteine

    Received: 24 Sep 2024; Accepted: 27 Feb 2025.

    Copyright: © 2025 Gunther IV, Kanrar, Abdul-Wakeel, McAnulty, Renye, Uknalis and Uhlich. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Nereus William Gunther IV, Eastern Regional Research Center, Agricultural Research Service (USDA), Wyndmoor, 19038, Pennsylvania, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more