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Background: The current evidence regarding the relationship between baseline 
hepatitis B virus (HBV) DNA levels and survival outcomes in liver cancer patients 
receiving immune checkpoint inhibitors (ICIs) remains inconsistent. Therefore, 
this review was intended to explore the impact of the baseline HBV-DNA level 
on the efficacy and safety of ICIs in patients with liver cancer.

Methods: Relevant studies were identified through a comprehensive search 
in PubMed, EMBASE, Cochrane Library, and Web of Science up to August 1, 
2024. The outcomes were hazard ratios (HRs) for overall survival (OS) and 
progression-free survival (PFS), as well as odds ratios (ORs) for objective 
response rate (ORR), disease control rate (DCR) and HBV reactivation (HBVr). 
Subgroup analysis, publication bias, and sensitivity analysis were conducted 
with STATA 14.0.

Results: This meta-analysis comprised 17 articles involving a total of 2,130 
patients. The pooled results demonstrated that high HBV DNA was associated 
with a worse OS (HR = 1.48 95% CI 1.11–1.96). Further subgroup analysis 
showed that there was no difference in OS between the high HBV DNA group 
and low HBV DNA group when all patients received antiviral treatment. No 
associations between baseline HBV DNA and PFS (HR = 1.08, 95% CI 0.90–1.29), 
ORR (OR = 0.91, 95% CI 0.65–1.28), or DCR (OR = 0.83, 95% CI 0.58–1.20) were 
observed. The risk of HBVr in the high HBV DNA group was lower than that 
in the low HBV DNA group (OR = 0.30, 95% CI 0.15–0.58), especially among 
patients who received antiviral therapy (OR = 0.42, 95% CI 0.18–0.98).

Conclusion: High HBV DNA was associated with worse OS, but not with 
PFS, ORR, or DCR in liver cancer patients receiving ICIs. When patients were 
simultaneously treated with antiviral treatment, elevated HBV DNA level had no 
unfavorable impact on the efficacy of ICIs. Furthermore, the risk of HBVr in the 
high HBV-DNA group was lower than that in the low HBV DNA group. More 
prospective studies with larger sample sizes are essential to confirm the results.
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1 Introduction

Primary liver cancer, subclassified into combined hepatocellular-
cholangiocarcinoma (cHCC-ICC), intrahepatic cholangiocarcinoma 
(ICC), and hepatocellular carcinoma (HCC) (Hu et al., 2024), ranks 
as the sixth most common cancer worldwide (Sung et  al., 2021). 
Specific agents, such as viral infections induced by hepatitis B virus 
(HBV) and hepatitis C virus (HCV), serve as crucial risk factors for 
the progression of liver cancer (Clements et al., 2020; Singal et al., 
2020). The etiology of liver cancer differs by region. For Western 
patients, the primary contributors to liver cancer are HCV infection 
and alcohol misuse, whereas in China, chronic HBV infection is the 
main etiology, with nearly 85% of liver cancer patients having a history 
of HBV or currently being infected with HBV (Wang et al., 2017; 
Villanueva, 2019).

Immune checkpoint inhibitors (ICIs) therapy have revolutionized 
the treatment strategies for HCC with the rapid development of 
molecular biology and immunology (Sangro and Sarobe, 2021). In the 
CheckMate-040 study, all advanced HCC patients, including fifty-one 
patients with HBV, had similar tumor responses when they were 
treated with nivolumab (El-Khoueiry et  al., 2017). The phase III 
IMbrave150 trial demonstrated that the efficacy and safety of the 
combination of atezolizumab and bevacizumab were superior to those 
of sorafenib in HCC (Finn et al., 2020). However, in the above trials, 
patients with high baseline HBV DNA level (>100 IU/mL or > 500 IU/
mL) were excluded. The reason for the exclusion of patients with high 
HBV-DNA was that PD-1 inhibitors may trigger HBV reactivation 
(HBVr) (Cho et al., 2017; Lake, 2017). The occurrence of HBVr might 
negatively influence the survival of HCC patients by deteriorating liver 
function or impeding the continuation of potentially life-saving HCC 
treatment (Lee et al., 2021; Wu et al., 2012; Papatheodoridi et al., 
2022). The impact of baseline HBV DNA levels on clinical outcomes 
and whether ICIs induce HBVr in HCC patients receiving anti-PD-1 
therapy have not been assessed in most clinical trials. In clinical 
practice, a significant portion of patients with HBV-related cancer 
exhibited high HBV DNA at the time of diagnosis (Shi et al., 2013). 
Therefore, the impact of high HBV-DNA on the efficacy and safety of 
immunotherapy in liver cancer patients needs to be fully demonstrated.

Recently, several studies have investigated the efficacy and safety 
of using ICIs in liver cancer patients with high HBV DNA levels, but 
the results were inconsistent (An et al., 2022; Chen et al., 2020; Chen 
et al., 2023; Chen et al., 2022; Han et al., 2024; He et al., 2021; Hu et al., 
2022; Lee et al., 2020; Liang et al., 2024; Pan et al., 2024; Pan et al., 
2022; Shen et al., 2024; Sun et al., 2020; Wang et al., 2021; Wang et al., 
2024; Yang et al., 2024; Yuan et al., 2021). For instance, several studies 
demonstrated a significant association between elevated HBV level 
and poor clinical outcomes (Chen et al., 2022; Liang et al., 2024), while 
other investigations reported no substantial correlation between HBV 
viral load and prognosis in liver cancer patients who received ICIs 
treatment (An et al., 2022; Chen et al., 2020; Chen et al., 2023; Pan 
et al., 2024; Pan et al., 2022; Shen et al., 2024; Sun et al., 2020). To the 
best of our knowledge, there has been no meta-analysis to compare 
the effectiveness and safety of high HBV DNA group and low HBV 

DNA group. To this end, we performed this meta-analysis on the basis 
of the current research status to clarify the impact of baseline HBV 
DNA levels on the effectiveness and safety of ICIs in liver 
cancer patients.

2 Methods

The review was prepared adhering to the Preferred Reporting 
Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines 
(Liberati et al., 2009). The protocol for this review was pre-registered 
on PROSPERO (CRD42024578829).

2.1 Search strategy

A comprehensive literature search of PubMed, EMBASE, 
Cochrane Library, and Web of Science was conducted. The latest 
search date was August 1, 2024. The search terms included 
“Neoplasms” [Mesh], “Immune Checkpoint Inhibitors” [Mesh], 
“Hepatitis B virus” [Mesh], and their entry terms. See 
Supplementary Table S1 for the detailed search strategies. First, titles 
and abstracts were screened for relevance, and then the full texts were 
screened for available studies. In addition, to obtain eligible reports, 
we further scanned the reference lists of the included articles.

2.2 Selection criteria

The eligibility criteria based on the Population-Intervention-
Control-Outcome-Study (PICOS) framework were as follows: (1) 
population: the patients were diagnosed with liver cancer and treated 
with ICIs, and patients were classified into two groups according to 
baseline HBV DNA; (2) intervention: patients with high baseline HBV 
DNA; (3) control: patients with low baseline HBV DNA; (4) outcomes: 
studies needed to provide at least one of the outcomes of interest: HRs 
for overall survival (OS), HRs for progression-free survival (PFS), 
odds ratios (ORs) for objective response rate (ORR), ORs for disease 
control rate (DCR), ORs for incidence of hepatitis B virus reactivation 
(HBVr), comparing patients with high HBV DNA and patients with 
low HBV DNA. (5) study design: prospective or retrospective studies 
published in English. Duplicate, case report, letter, comment, animal 
study, review or meta-analysis were excluded. If studies with duplicate 
patients were given, the most recent study was selected.

2.3 Data extraction and quality evaluation

Two investigators separately extracted the following relevant data: 
first author, publication year, region, cancer type, sample size, number 
of male and female patients, follow-up, treatment, use of antiviral 
treatment, cut-off value of HBV DNA, clinical outcomes, source of 
HRs, HRs for OS and/or PFS, number of complete response (CR), 
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partial response (PR) and stable disease (SD) (ORR = CR + PR, 
DCR = CR + PR + SD), and number of HBVr. All included studies 
were retrospective cohort studies, and we  evaluated their quality 
through the NOS score. The NOS ranged from 0 to 9, and a study with 
NOS score of 7 or above was considered high-quality (Stang, 2010).

2.4 Data analysis

The associations of HBV DNA with OS and PFS were estimated 
by pooled HRs and 95% CIs. If the multivariate and univariate analysis 
were simultaneously reported in studies, we prioritized the results of 
the multivariate analysis. If no HRs and 95% CIs were available in 
studies, we  extracted data from the survival curves based on the 
methods proposed by Tierney et al. (2007). Combined ORs with 95% 
CIs were utilized to assess the predictive significance of HBV DNA for 
ORR, DCR, and HBVr. We combined outcomes utilizing either a 
random-effects model or a fixed-effects model based on the 
homogeneity among studies. Heterogeneity was assessed through 
Cochran’s Q and I2 tests. A random-effects model was applied when 
p < 0.1 or I2 > 50%, indicating significant heterogeneity.

In addition to the overall analysis, subgroup analyses were 
performed to investigate the associations of treatment method, cut-off 
value, source of HRs and antiviral therapy with outcomes. To assess 
the stability of the combined results, sensitivity analysis was conducted 
by omitting one study at a time. Publication bias assessment was 
performed using funnel plots, Begg’s test, and Egger’s test. Statistical 
analyses were performed with Stata 14.0, and a p-value of less than 
0.05 was considered statistically significant.

3 Results

3.1 Literature search

A total of 1773 records were retrieved from PubMed (n = 311), 
Embase (n = 648), Web of Science (n = 707), and Cochrane Library 
(n = 107). After eliminating duplicates (n = 475), 1,298 articles were 
left. Following the review of titles and abstracts, we excluded 1,253 
papers owing to irrelevance, animal studies, case reports, letters, 
comments, meta-analyses or reviews. The remaining 45 reports were 
further screened through full-text review. Among them, 28 studies 
were eliminated for the following reasons: irrelevant research (n = 12), 
no sufficient data (n = 9), reviews or meta-analysis (n = 5), overlapping 
patients (n = 1) and pan-cancer (n = 1). Ultimately, we recruited 17 
articles involving 2,130 liver cancer patients. Figure 1 presents the 
process of literature screening.

3.2 Study characteristics and quality 
evaluation

All 17 studies were conducted in China, and were published 
between 2020 and 2024. The majority (81.2%) of the participants 
were males. Considering the category of liver cancer, all the studies 
focused on HCC, except for one study that included HCC and 
ICC. Regarding treatment approaches, 2 studies focused on anti-
PD-1 monotherapy, 8 studies involved a combination of anti-PD-1 

with other therapies, and the remaining 7 studies included either 
monotherapy or combination therapy. The cut-off value for HBV 
DNA varied. For instance, the cut-off was not specified in one 
study, it was 100 IU/mL in one study, 500 IU/mL in five studies, 
1,000 IU/mL in one study, 2,000 IU/mL in six studies, 215 copy/
ml in one study, and 1,000 copy/ml in one study. Among the 
studies included, 10 studies examined the effect of baseline HBV 
DNA on OS, whereas 8 focused on its impact on PFS in liver 
cancer patients receiving ICIs. The ORR, DCR and HBVr were 
reported in 6,6 and 8 studies, respectively. All included studies 
were retrospective cohort studies, and the NOS criteria was applied 
to evaluate quality. The NOS scores for the 10 studies ranged from 
5 to 8, which suggested medium or high quality 
(Supplementary Table S2). Table 1 lists the characteristics of the 17 
included studies.

3.3 Baseline HBV DNA levels and OS

Ten studies, including 1,126 patients, assessed the significance of 
baseline HBV DNA levels in predicting the OS of liver cancer patients. 
Assessment of heterogeneity suggested significant heterogeneity 
(I2 = 58.8%, p = 0.009). Thus, a random-effects model was utilized to 
estimate the pooled effect. The pooled HR of 1.48 (95% CI 1.11–1.96) 
revealed that elevated HBV DNA was associated with worse OS in 
liver cancer patients who received ICIs (Figure 2A).

To identify potential sources of heterogeneity and factors that may 
affect the results, subgroup analyses were conducted based on the 
following factors: treatment method (monotherapy, combination 
therapy, and monotherapy or combination therapy), cut-off value 
(500 IU/m and ≥ 2000 IU/m), and antiviral treatment (all and partial). 
When patients were treated with monotherapy, high HBV DNA still 
significantly decreased OS (HR = 3.54, 95% CI 1.22–10.27), and there 
was a trend toward worse OS in the combination therapy group, this 
difference was not statistically significant (HR = 1.14, 95% CI 0.90–
1.45). In terms of the cut-off value, in studies with cut-off value of 
2000 IU/mL, patients with high HBV DNA had worse OS than those 
with low HBV DNA (HR = 1.39, 95% CI 1.02–1.91). However, in 
studies with cut-off value of 500 IU/mL, a significant difference was 
not detected (HR = 1.43, 95% CI 0.91–2.27). In cases where partial 
patients underwent antiviral treatment, high HBV DNA was related 
to poor prognosis (HR = 1.38, 95% CI 1.02–1.87). However, when all 
patients received antiviral therapy, high HBV DNA was not 
significantly associated with OS (HR = 1.51, 95% CI 0.85–2.68). 
Heterogeneity was not significantly reduced in the above subgroups. 
The results of the subgroup analyses are shown in Table  2 and 
Supplementary Figure S1.

3.4 Baseline HBV DNA levels and PFS

As shown in Figure 2B, 8 studies with 983 patients investigated the 
impact of baseline HBV DNA on PFS. Cochran’s Q and I2 tests 
indicated no significant heterogeneity (I2 = 0%, p = 0.817). 
Consequently, a fixed-effects model was adopted. The pooled HR was 
1.08 (95% CI 0.90–1.29), which indicated that there was no significant 
difference in PFS between patients with high HBV DNA and those 
with low HBV DNA.
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To determine whether the association of HBV DNA with PFS 
would vary in accordance with certain factors, subgroup analysis was 
conducted. As shown in Table 2 and Supplementary Figure S2, the 
subgroup analyses also indicated that HBV DNA level was not 
associated with PFS regardless of the treatment method, cut-off value 
of HBV DNA or antiviral treatment. Additionally, there was no 
significant heterogeneity among studies in all subgroups.

3.5 Baseline HBV DNA levels and 
immunotherapy responses

Six studies (638 patients) examined the association between 
baseline HBV DNA and ORR. The pooled OR was 0.91 (95% CI 0.65–
1.28, Figure 3A) according to a fixed-effects model (I2 = 0, p = 0.429), 
suggesting that baseline HBV DNA levels did not correlate 
significantly with the ORR. Furthermore, we pooled the data from 6 
studies encompassing 638 patients to analyze the association between 
baseline HBV DNA and DCR. The degree of between-study 
heterogeneity was low (I2 = 5.5%, p = 0.381%), so the analysis was 
conducted using a fixed-effects model. The results revealed that there 

was no significant relationship between baseline HBV DNA and DCR 
(OR = 0.83, 95% CI 0.58–1.20, Figure 3B).

Considering that the treatment method, the cut-off value of HBV 
DNA and antiviral treatment might have an impact on the merged 
results, subgroup analyses for ORR and DCR were implemented. The 
pooled results of subgroup analyses suggested that patients with high 
baseline HBV DNA exhibited comparable ORR and DCR to those 
with low baseline HBV DNA in all subgroups, except for the subgroup 
with cut-off of 500 IU/mL, where the DCR of the high baseline HBV 
DNA group was lower than that of the low baseline HBV DNA group 
(OR = 0.57, 95% CI 0.33–0.98). The results of the subgroup analyses 
are shown in Table 3 and Supplementary Figures S3, S4.

3.6 Baseline HBV DNA levels and HBVr

Data regarding HBVr was available from 8 studies involving a total 
of 1,237 patients. Low heterogeneity was observed in these studies 
(I2 = 8.2, p = 0.367). Therefore, we synthesized the data via a fixed-
effects model. The pooled OR revealed a significant reduction in the 
risk of HBVr for patients in high HBV DNA group compared with 

FIGURE 1

Procedure of literature screening.
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those in low HBV DNA group (OR = 0.30, 95% CI 0.15–0.58, 
Figure 4).

We performed subgroup analyses to investigate the influence of 
risk factors on HBVr. As for cut-off value, higher HBV DNA was 
associated with lower HBVr when cut-off value was 500 IU/mL 
(OR = 0.27, 95% CI 0.07–0.98) and 2000 IU/mL (OR = 0.13, 95% CI 
0.04–0.49). With respect to antiviral treatment, in the subgroup where 

all patients received antiviral therapy, the high HBV DNA group 
exhibited a lower risk of HBVr than the low HBV DNA group did 
(OR = 0.42, 95% CI 0.18–0.98). When partial patients underwent 
antiviral treatment, there was no difference in the rate of HBVs 
between high HBV DNA and low HBV DNA (OR = 0.36 95% CI 
0.04–2.89). The results of the subgroup analyses are shown in Table 4 
and Supplementary Figure S5.

TABLE 1 The main characteristics of the studies included in the meta-analysis.

Author Year Country Cancer 
type

Sample 
size

Sex/
man

Age (y) Treatment Cut-off Outcomes NOS

An et al. 

(2022)
2023 China HCC 165 147 NA

Anti-PD-1 

monotherapy/ 

combination therapy

500 IU/mL
PFS, OS, ORR, 

DCR
7

Chen et al. 

(2020)
2020 China HCC 22 19 53 (36–71)a

Anti-PD-1 

combination therapy
215 copy/mL PFS, OS 8

Chen et al. 

(2023)
2023 China HCC 149 128 NA

Anti-PD-1 

combination therapy
500 IU/mL

PFS, OS, ORR, 

DCR, HBVr
8

Chen et al. 

(2022)
2022 China HCC 49 NA NA

Anti-PD-1 

monotherapy
500 IU/mL PFS, OS 5

Han et al. 

(2024)
2024 China HCC 155 136 NA

Anti-PD-1/PD-

L1monotherapy/

combination therapy

NA PFS 5

He et al. 

(2021)
2021 China HCC 202 170 49 (19–74)a

Anti-PD-1 

monotherapy/ 

combination therapy

500 IU/mL HBVr 7

Hu et al. 

(2022)
2022 China HCC 70 66 52.5 ± 12.2b

Anti-PD-1 

combination therapy
2000 IU/mL

PFS, ORR, 

DCR, HBVr
5

Lee et al. 

(2020)
2020 China HCC 60 50 NA

Anti-PD-1 

monotherapy/ 

combination therapy

100 IU/mL HBVr 6

Liang et al. 

(2024)
2024 China HCC 44 38 NA

Anti-PD-1 

monotherapy
1,000 copy/mL RFS, OS 6

Pan et al. 

(2024)
2024 China HCC 120 75 NA

Anti-PD-1 

combination therapy
2000 IU/mL

PFS, OS, ORR, 

DCR, HBVr
5

Pan et al. 

(2022)
2022 China HCC/ ICC 48 41 55.96 ± 9.72b

Anti-PD-1 

combination therapy
NA OS, ORR, DCR 5

Shen et al. 

(2024)
2023 China HCC 119 109 57 (19-82)a

Anti-PD-1 

combination therapy
2000 IU/mL OS, HBVr 5

Sun et al. 

(2020)
2020 China HCC 253 217 NA

Anti-PD-1 

monotherapy/ 

combination therapy

2000 IU/mL PFS, OS 6

Wang et al. 

(2021)
2021 China HCC 157 140 NA

Anti-PD-1 

monotherapy/ 

combination therapy

500 IU/mL OS 7

Wang et al. 

(2024)
2024 China HCC 218 194 53.35 ± 10.82b

Anti-PD-1 

monotherapy/ 

combination therapy

1,000 IU/mL HBVr 8

Yang et al. 

(2024)
2024 China HCC 213 194 51.4 ± 10.4b

Anti-PD-1 

combination therapy
2000 IU/mL HBVr 7

Yuan et al. 

(2021)
2021 China HCC 86 72 55b

Anti-PD-1 

combination therapy
2000 IU/mL

ORR, DCR, 

HBVr
7

HCC, Hepatocellular carcinoma; ICC, Intrahepatic Cholangiocarcinoma; OS, overall survival; PFS, progression-free survival; ORR, objective response rate; DCR, disease control rate; HBVr, 
hepatitis B virus reactivation; UV, univariate analysis; ICIs, immune checkpoint inhibitors; NA, not available.
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3.7 Sensitivity analysis and publication bias

As shown in Figure  5, the combined HR and combined OR 
remained consistent with the aforementioned results after one single 
study was excluded at a time, suggesting that the results of the precent 
review were relatively stable.

The funnel plots for PFS, DCR, and HBVr displayed symmetry. 
However, the funnel plots for OS and ORR showed asymmetry 
(Supplementary Figure S6). Furthermore, there was no significant 
publication bias according to Egger’s test and or Begg’s test for OS 
(Egger’s test: p = 0.056, Begg’s test: p = 0.107), PFS (Egger’s test: 
p = 0.642, Begg’s test: p = 0.711), ORR (Egger’s test: p = 0.760, Begg’s 

FIGURE 2

Forest plot of pooled HR for OS (A), PFS (B).

TABLE 2 Subgroup analyses of baseline HBV DNA level for OS and PFS.

Subgroup No. of studies Sample size Effects model HR and 
95%CI

Heterogeneity

I2 (%) p value

OS 10 1,126 Random 1.48 (1.11–1.96) 58.8 0.009

Treatment method

  Combination therapy 5 458 Random 1.14 (0.90–1.45) 16.4 0.310

  Monotherapy 2 93 Random 3.54 (1.22–10.27) 71.6 0.060

  Mixed 3 575 Random 1.41 (1.01–1.97) 0 0.607

Cut-off criteria

  500 4 520 Random 1.43 (0.91–2.27) 60 0.058

  2,000 3 492 Random 1.39 (1.02–1.91) 0 0.636

Antiviral treatment

  All 4 398 Random 1.51 (0.85–2.68) 81.3 0.001

  Partial 4 548 Random 1.38 (1.02–1.87) 0 0.820

PFS 8 983 Fixed 1.08 (0.90–1.29) 0 0.817

Treatment method

  Combination therapy 4 361 Fixed 1.07 (0.83–1.39) 0 0.94

  Monotherapy 1 49 Fixed 1.44 (0.57–3.64) 0 0

  Mixed 3 573 Fixed 1.06 (0.82–1.37) 30.4 0.238

Cut-off criteria

  500 3 363 Fixed 1.29 (0.97–1.70) 0 0.701

  2,000 3 443 Fixed 0.95 (0.72–1.25) 0 0.890

Antiviral treatment

  All 2 384 Random 1.14 (0.82–1.60) 0 0.934

  Partial 3 373 Random 1.06 (0.83–1.37) 27.9 0.250
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test: p = 1.000), DCR (Egger’s test: p = 0.260, Begg’s test: p = 0.3000) 
or HBVr (Egger’s test: p = 0.710, Begg’s test: p = 1.000), as illustrated 
in Supplementary Figure S7.

4 Discussion

PD-1 and CTLA-4 suppress cytotoxic T cells and play critical roles 
in preventing the destruction of virus-infected hepatocytes (Cho et al., 
2017). Thus, immunotherapy via interference with the PD-1/PD-L1 
axis may cause hepatocyte destruction and previously latent viruses 
may be released into the circulation (Cho et al., 2016; Knolle and 

Thimme, 2014). These mechanisms disclosed that patients with high 
HBV DNA might undergo HBV reactivation and liver injury during 
ICIs therapy. For this reason, many clinical trials have excluded the 
patients with high HBV DNA (El-Khoueiry et al., 2017; Finn et al., 
2020). However, numerous patients with high-level require ICIs to 
prolong survival in clinical practice. Therefore, it is crucial to clarify 
the safety and effectiveness of immunotherapy in liver cancer patients 
with high HBV DNA level. This meta-analysis included 17 studies 
with 2,130 patients to comprehensively compare the efficacy and 
safety of immunotherapy between high baseline HBV DNA group and 
low baseline HBV DNA group. No difference in PFS (HR = 1.08, 95% 
0.90–1.29), ORR (OR = 0.91, 95% 0.65–1.28) or DCR (OR = 0.83, 

FIGURE 3

Forest plot of pooled OR for ORR (A), DCR (B).

TABLE 3 Subgroup analyses of baseline HBV DNA level for ORR and DCR.

Subgroup No. of studies Sample size Effects model OR and 
95%CI

Heterogeneity

I2 (%) P value

ORR 6 638 Fixed 0.91 (0.65–1.28) 0 0.429

Treatment method

  Combination therapy 5 473 Fixed 1.05 (0.70–1.58) 0 0.510

  Mixed 1 165 Fixed 0.65 (0.34–1.22) 0 0

Cut-off criteria

  500 2 314 Fixed 0.73 (0.46–1.17) 0 0.562

  2,000 3 276 Fixed 1.25 (0.73–2.17) 17.5 0.297

Antiviral treatment

  All 4 285 Random 0.85 (0.53–1.36) 0 0.997

  Partial 2 353 Random 1.11 (0.36–3.42) 78.5 0.031

  DCR 6 638 Fixed 0.83 (0.58–1.20) 5.5 0.381

Treatment method

  Combination therapy 5 473 Fixed 0.96 (0.63–1.47) 0 0.503

  Mixed 1 165 Fixed 0.51 (0.23–1.10) 0 0

Cut-off criteria

  500 2 314 Fixed 0.57 (0.33–0.98) 0 0.685

  2,000 3 276 Fixed 1.17 (0.68–2.03) 0 0.397

Antiviral treatment

  All 4 285 Fixed 0.93 (0.57–1.51) 7.1 0.358

  Partial 2 353 Fixed 0.72 (0.41–1.25) 41.3 0.192
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95% 0.58–1.20) was observed in patients with high HBV DNA and 
low HBV DNA. However, patients with high HBV DNA had worse 
OS than those with low HBV DNA did (HR = 1.48, 95% CI: 
1.11–1.96).

The human papilloma viral load has been reported to influence 
the clinical outcomes of ICIs therapy for virus-dependent anal 
squamous cell carcinoma (Balermpas et al., 2017). Data suggested that 
patients with high baseline HBV DNA level have unfavorable impact 
on prognosis of liver cancer after hepatic resection (Yang et al., 2012; 
Sohn et  al., 2014; Sun et  al., 2021). Zhou’s meta-analysis, which 
evaluated the impact of HBV DNA level on post-hepatectomy 
recurrence of HBV-related HCC, suggested that high viral load was 
associated with poorer OS (Zhou et  al., 2014). In patients with 
advanced HBV-related HCC who were treated with sorafenib, a high 

initial HBV load was recognized as a detrimental prognostic factor for 
survival (Yang et al., 2015). Our results also revealed that high HBV 
DNA level was associated with poor OS in liver cancer patients treated 
with ICIs. The exact mechanism by which high HBV DNA lead to 
poor OS was unclear. One possible mechanism was that adhesion 
molecules on the sinusoidal cells were upregulated in patients with 
high HBV DNA, which in turn may enhance tumor progression and 
spread (Yang et al., 2012). Another reason could be that, unlike other 
tumors, the prognosis of liver cancer patients was associated not only 
with the status of intrahepatic tumors but also with liver function (Yu 
and Kim, 2014). A previous study reported that the significant impact 
of elevated HBV DNA on OS was linked to both tumor-related 
mortality and liver-related mortality. Patients with high HBV DNA 
were confirmed to have a higher liver-related mortality rate (Yang 

FIGURE 4

Forest plot of pooled OR for HBVr.

TABLE 4 Subgroup analyses of baseline HBV DNA level for HBVr.

Subgroup No. of studies Sample size Effects model OR and 
95%CI

Heterogeneity

I2 (%) P value

HBVr 8 1,151 Fixed 0.30 (0.15–0.58) 8.2 0.367

Treatment method

  Combination therapy 5 671 Fixed 0.15 (0.05–0.44) 0 0.464

  Mixed 3 480 Fixed 0.60 (0.25–1.46) 0 0.378

Cut-off value

  500 2 351 Fixed 0.27 (0.07–0.98) 0 0.699

  2,000 4 522 Fixed 0.13 (0.04–0.49) 17.8 0.302

Antiviral treatment

  All 4 639 Random 0.42 (0.18–0.98) 0 0.829

  Partial 4 512 Random 0.36 (0.04–2.89) 50.7 0.107
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et al., 2012). Furthermore, it has been reported that tumor-infiltrating 
HBV-specific CD8+ T cells are related to improved survival outcomes 
(Cheng et al., 2021). The reduced OS observed in high levels of HBV 
DNA group might be associated with excessive depletion of specific 
CD4+ T cells and CD8+ T cells caused by high HBV DNA (Kalathil 
and Thanavala, 2021).

Notably, the result of subgroup analysis based on antiviral therapy 
revealed that patients with high HBV DNA and patients with low 
HBV DNA had similar OS when all patients were treated with antiviral 
therapy (HR = 1.51, 95% CI: 0.85–2.68), which indicated that antiviral 
therapy may have an effect on prognosis. Our results was consistent 
with the conclusion of another meta-analysis conducted by Ji et al. 

(2024). However, it is noted that the studies we included differed from 
those selected by Ji et al. Specifically, Ji’s meta-analysis was restricted 
to patients with HCC and did not include those with ICC. Furthermore, 
Ji’s inclusion criteria was limited to studies involving ICIs either as 
monotherapy or in combination with targeted drug, excluding those 
that incorporated chemotherapy or radiotherapy. Additionally, the 
sample size of the studies included by Ji et al. (2024) exceeded 40 cases, 
while our meta-analysis did not limit the sample size. In previous 
studies, antiviral therapy has been reported to be  effective in 
improving prognosis of HCC patients. Yang et  al. reported that 
antiviral therapy can improve the prognosis of patients with high HBV 
DNA in comparison with those who did not receive antiviral therapy 

FIGURE 5

Sensitivity analysis of OS (A), PFS (B), ORR (C), DCR (D), HBVr (E).
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in HBV-related HCC (Yang et  al., 2012). The disparate effects of 
antiviral therapy on the prognosis of patients in the high and low 
groups were elucidated by Yang’s research. In the absence of antiviral 
treatment, patients with elevated baseline HBV DNA level continued 
to exhibit high viral loads and patients with elevated baseline HBV 
DNA level maintained a high viral load during therapy. Consequently, 
patients with high baseline HBV DNA level demonstrated significantly 
worse survival outcomes than those with low baseline HBV DNA 
levels due to the adverse effects of high viral loads on prognosis. With 
the administration of antiviral therapy, there was a significant 
enhancement in survival outcomes for high HBV DNA group and low 
HBV DNA group; nevertheless, this improvement was more 
pronounced in the high HBV DNA group than in the low HBV DNA 
group (Yang et al., 2015).

Although antiviral therapy had a more significant influence on 
patients with high HBV DNA level, it was worth noting that effective 
antiviral treatment was also of significance for patients with low HBV 
DNA patients. In Sun’s study, 7 patients from the low group 
demonstrated a significant increase in HBV DNA along with poorer 
prognosis. Among them, 4 patients did not receive antiviral treatment, 
indicating that low HBV DNA was a risk factor for the prognosis of 
HCC in the absence of effective antiviral treatment (Sun et al., 2021). 
Among patients with low HBV DNA levels, antiviral therapy markedly 
decreased HCC recurrence (Huang et  al., 2018). Consequently, 
antiviral prophylaxis is recommended for patients with HBV-related 
HCC, regardless of their HBV DNA levels (Terrault et al., 2018).

In addition to antiviral treatment, the cut-off of HBV DNA was 
vital for assessing the influence of HBV DNA on the effectiveness of 
ICIs. The two subgroups based on cut-off value for OS showed 
different outcomes. At cut-off value of 2000 IU/mL, patients with high 
HBV DNA experienced poorer OS compared to those with low HBV 
DNA. In contrast, no significant difference was observed when the 
cut-off value was set at 500 IU/mL. The KEYNOTE-224 trial (Zhu 
et al., 2018) and the CheckMate-40 trial (El-Khoueiry et al., 2017) 
stipulated that HCC patients should have an HBV load of less than 
100 IU/mL prior to receiving their first dose of ICI. However, in the 
IMbrave 150 trial (Finn et al., 2020), the threshold was set at 500 IU/
mL. The cut-off values reported in the included studies exhibited 
variability. Our subgroup analyses focused on the frequently cited 
cut-off values of 500 IU/mL and 2000 IU/mL; however, because of 
insufficient data, we could not assess the effects of other cut-off values 
on the outcomes. Additional large-scale prospective studies are 
needed to determine the optimal cut-off value for HBV DNA.

Regarding HBVr, in our study, the group with high HBV DNA 
presented a lower rate of HBVr in comparison with the group with low 
HBV DNA. This may be  attributed to the fact that HBV DNA 
detection was a standard procedure for HCC patients, and when 
serum HBV DNA levels exceeded the normal range, adequate antiviral 
treatment, which can markedly attenuate the risk of viral reactivation 
and augment the liver function reserve, is initiated to prevent HBV 
reactivation (Li et al., 2020). With respect to patients presenting with 
undetectable or baseline HBV DNA, a number of physicians asserted 
that antiviral prophylaxis can be safely omitted (Zhang et al., 2019). 
Subgroup analysis indicated that when all patients received antiviral 
treatment, those with high HBV DNA level still had a lower HBVr rate 
compared to the low HBV DNA level. These findings suggested that 
antiviral treatment significantly reduced the HBVr in the high HBV 

DNA group. High baseline HBV DNA should not be an absolute 
contraindication to ICIs in liver cancer patients receiving 
antiviral treatment.

There were also several factors that influenced heterogeneity. 
The timing of initiating antiviral therapy was diverse in the included 
studies. In some of the studies, patients had already initiated 
antiviral therapy prior to immunotherapy, whereas in other studies, 
patients initiated antiviral therapy during the period of ICIs. In 
addition, recent research indicated that patients treated with 
tenofovir had a lower risk of HCC occurrence and recurrence 
compared to those receiving entecavir (Choi et al., 2019; Choi et al., 
2021); however, later studies reported no significant difference in 
HCC risk between the two groups (Kim et al., 2019; Lee, 2020). The 
types of antiviral therapy differed, which may lead to heterogeneity. 
Hence, the influence of antiviral therapy on outcomes ought to 
should be interpreted with caution. Moreover, the type of ICIs and 
their combination treatment strategies were complex among the 
included studies, which might influence the outcomes. Finally, given 
the type of liver cancer, HCC and ICC, two subtypes of primary liver 
cancer, differ in terms of cellular origins, morphology, metastatic 
capacity, treatment methods, prognosis, and immune 
microenvironments (Jiang et al., 2024). In our analysis, with the 
exception of one study that encompassed patients with HCC and 
ICC, all the remaining studies included patients with ICC, making 
it difficult to assess the impact of the type of liver cancer on 
the results.

Liu et  al. (2018) study demonstrated that genotype B was 
prevalent in southern China, while Genotype C in northern China. 
Furthermore, the research highlighted that chronic hepatitis B 
patients born in regions between southern and northern China had 
a higher likelihood of carrying B/C intergenotypic recombinants. 
Notably, compared to the parental genotypes B or C, the B/C 
intergenotypic recombinants exhibited significantly higher levels of 
viral DNA load. Different genotypes may lead to varying DNA viral 
load, and none of the studies included in our meta-analysis 
investigated the impact of genotype on the level of HBV DNA, which 
constituted a significant limitation of our study.

Potential limitations of the present meta-analysis included the 
following. First, all included studies were retrospective cohort studies. 
Therefore, the potential for selection of the patients cannot 
be overlooked. Second, the timing of HBV DNA screening varied 
among the enrolled patients because of the retrospective nature of the 
studies, which could introduce bias in the detection rate of HBVr. 
Third, all the included studies were conducted in China, which was 
mainly attributed to the high incidence of HBV-HCC in China, and 
the applicability of the results to other populations was yet to 
be determined. Finally, in this meta-analysis, all patients, except those 
who received anti-PD-L1 blockade, were treated with anti-PD-1 
blockade. Additional studies are needed to assess the relevance of our 
findings to other ICIs.

5 Conclusion

In conclusion, for liver cancer patients treated with ICIs, high 
HBV DNA was associated with worse OS, not with PFS, ORR, or 
DCR. However, subgroup analysis revealed that baseline HBV DNA 
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level had no impact on the prognosis of liver cancer patients receiving 
ICIs in combination with antiviral therapy. Furthermore, the risk of 
HBVr in the high HBV-DNA group was lower than that in the low 
HBV DNA group, particularly in patients who received antiviral 
therapy. HBVr should not be a contradiction for ICIs therapy among 
patients under the protection of antiviral therapy. Considering the 
limitations of our meta-analysis, the results require further verification 
through prospective studies with larger sample sizes.
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