The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Antimicrobials, Resistance and Chemotherapy
Volume 16 - 2025 |
doi: 10.3389/fmicb.2025.1496685
This article is part of the Research Topic Insight Into Antimicrobial Resistance (AMR) With One Health Perspective View all articles
Genomic characterization of antimicrobial-resistant Salmonella enterica in chicken meat from wet markets in Metro Manila, Philippines
Provisionally accepted- University of the Philippines Diliman, Quezon City, Philippines
The emergence of multidrug-resistant (MDR) Salmonella is recognized as a significant public health problem worldwide. This study investigated the occurrence of MDR Salmonella serovars in chicken meat from wet markets in Metro Manila, Philippines from February to July 2022. Using whole genome sequencing (WGS) and phenotypic antimicrobial resistance (AMR) testing, the serovar, drug resistance, and virulence profiles of Salmonella isolates were characterized. Out of 253 chicken cut samples, 95 S. enterica isolates representing 15 distinct serovars were recovered. The most common was S. enterica serovar Infantis (51.58%), followed by S. Brancaster (9.47%), S. Anatum (7.37%), S. London (7.37%), S. Uganda (6.32%), and S. Derby (4.21%). Phenotypic AMR testing revealed that 73.68% of the isolates were resistant to at least one drug class, and 45.26% were MDR. A wide array of antimicrobial resistance genes (ARGs) associated with resistance to 13 different drug classes was identified, including three β-lactamase gene variants: blaCTX-M-65, blaTEM-1, and blaTEM-176. Some of these ARGs were located on MDR plasmids, such as those on IncFIB(K)_1_Kpn3, IncFIA(HI1)_1_HI1, and IncX1_1. A total of 130 virulence genes were detected, some of which conferred pESI-like characteristics to S. Infantis. These findings highlight a potential public health risk posed by pathogenic MDR Salmonella in chicken meat and underscore the urgent need for further research and coordinated AMR surveillance in the Philippines, aiming to stimulate national efforts to combat AMR.
Keywords: Salmonella enterica, antimicrobial resistance genes, Chicken meat, Plasmids, Wholegenome sequencing, Virulence
Received: 22 Sep 2024; Accepted: 13 Jan 2025.
Copyright: © 2025 Nagpala, Mora, Pavon and Rivera. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Windell L. Rivera, University of the Philippines Diliman, Quezon City, Philippines
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.