
TYPE Original Research
PUBLISHED 20 March 2025
DOI 10.3389/fmicb.2025.1486661

OPEN ACCESS

EDITED BY

Hema Prasad Narra,
University of Texas Medical Branch at
Galveston, United States

REVIEWED BY

Bojana Banović Ðeri,
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Introduction: The microbiota has been unequivocally linked to various
diseases, yet themechanisms underlying these associations remain incompletely
understood. One potential contributor to this relationship is the extracellular
vesicles produced by bacteria (bEVs). However, the detection of these bEVs is
challenging. Therefore, we propose a novel workflow to identify bacterial RNA
present in circulating extracellular vesicles using Total EV RNA-seq data. As a
proof of concept, we applied this workflow to a dataset from individuals with
multiple sclerosis (MS).

Methods: We analyzed total EV RNA-seq data from blood samples of healthy
controls and individuals with MS, encompassing both the Relapsing-Remitting
(RR) and Secondary Progressive (SP) phases of the disease. Our workflow
incorporates multiple reference mapping steps against the host genome,
followed by a consensus selection of bacterial genera based on various
taxonomic profiling tools. This consensus approach utilizes a flagging system to
exclude genera with low abundance across profilers. Additionally, we included
EVs derived from two cultured species that serve as biological controls, as well
as artificially generated reads from 60 species as a technical control, to validate
the specificity of this workflow.

Results: Our findings demonstrate that bacterial RNA can indeed be detected
in total EV RNA-seq from blood samples, suggesting that this workflow can be
a powerful tool for reanalyzing RNA-seq data from EV studies. Additionally, we
identified promising bacterial candidateswith di�erential expression between the
RR and SP phases of MS.

Discussion: This approach provides valuable insights into the potential role of
bEVs in themicrobiota-host communication. Finally, this approach is translatable
to other experiments using total RNA, where the lack of a robust pipeline can lead
to an increased false positive detection of microbial genera. The workflow and
instructions on how to use it are available at the following repository: https://
github.com/NanoNeuro/EV_taxprofiling.
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1 Introduction

Extracellular vesicles (EVs) can be defined as membrane
vesicles, naturally produced as lipid bilayer vesicles that contain a
cargo (DNA, RNA, protein, lipids, etc.). The term has been used
to refer to eukaryotic EVs and they have been widely studied
in human blood demonstrating their huge importance in health
and disease (Alberro et al., 2021). However, eukaryotic vesicles
are not the only ones found in human biofluids. Bacterial EVs
(bEVs) arise from the outer and inner membranes of gram-
negative bacteria and cytoplasmic membranes of gram-positive
bacteria through blebbing and lytic biogenesis pathways (Effah
et al., 2024). Although bEVs from Gram-negative bacteria have
been referred to as outer-membrane-vesicles (OMVs), bEVs could
involve all the vesicles produced by bacteria (Hosseini-Giv et al.,
2022). The presence of bEVs has been reported in human tissues
such as saliva, feces and also in blood. Despite the potentially
pathogenic component of these bEVs, they could also be a relevant
communication tool between microbiota and the host organism
(Tartaglia et al., 2018).

The influence of microbiota in several diseases is widely
reported, including neurological and autoimmune diseases.
Multiple sclerosis (MS) is a chronic, demyelinating, and immune
mediated disease of the central nervous system (CNS) caused by
a complex combination of genetic, epigenetic, and environmental
factors. While variations in microbiome studies arise due
to geographical, cultural, and dietary differences, there is
consensus on certain microbial alterations in people with MS
(pwMS), through several experiments in mice (Berer et al., 2017;
Cekanaviciute et al., 2017) and through a huge collaborative effort
that characterizes the microbiome in a large cohort of pwMS (Zhou
et al., 2022).

These differences include a decrease in short-chain fatty acid
(SCFA)-producing species and an increase in mucin-degrading
species (Ghezzi et al., 2021). Broadly, MS is characterized
by preserved microbial diversity with subtle alterations at
the phylum level, notably an increased Firmicutes/Bacteroidetes
ratio. However, more pronounced dysbiosis occurs at lower
taxonomic levels, marked by increases in genera such as
Methanobrevibacter, Akkermansia, Acinetobacter, Pseudomonas,
Blautia, and Ruminococcus, including several mucin-degrading
groups; and decreases in Sutterella, Faecalibacterium, Prevotella,
Fusobacterium, Anaerostipes, Clostridium clusters XIVa and IV,
Parabacteroides, and Butyricimonas (Ochoa-Repáraz et al., 2018;
Ghezzi et al., 2021).

Recently, the international consortium for the study of the
microbiome in MS (iMSMS) published findings highlighting a
reduction in beneficial microorganisms associated with butyrate
production, regulatory T-cell promotion, and inflammation
attenuation. This reduction disrupts key metabolic pathways,
potentially exacerbating inflammation and compromising the
intestinal barrier (Zhou et al., 2022). Although most studies have
focused on the gut microbiota in the relapsing-remitting (RR)
form of MS, efforts are increasingly directed toward understanding
its role in progressive forms of the disease. Progressive MS
patients exhibit microbiota changes shared with RR patients when
compared to healthy controls, including increased Akkermansia

and Clostridium, and decreased Dorea and Blautia (Cox et al.,
2021). The authors further identified, after adjusting for variables
such as age, sex, race, ethnicity, and BMI, that Enterobacteriaceae,
Clostridium g24 FCEY, and Ruminococcaceae FJ366134 were
uniquely elevated in progressive MS. Their analysis concluded
that disease status exerts the greatest influence on microbiota
composition compared to other demographic factors.

Although traditional microbiota studies have primarily relied
on sequencing the 16S rRNA region, recent approaches have
emerged that integrate the analysis of RNA sequencing data.
Several of these methods, along with their associated bioinformatic
pipelines, have been described in prior studies (Bharti and Grimm,
2019; Calgaro et al., 2020; McClure et al., 2013). Most pipelines
emphasize the importance of rigorous quality control (QC) and
read filtering as highly relevant steps in the analysis (Bharti and
Grimm, 2019).

Focusing specifically on EVs, Miceli et al. (2024) recently
reviewed existing bioinformatic pipelines for the analysis of EV-
derived RNA-seq data, complementing earlier research on EV
characterization (Su et al., 2022; Saravanakumar et al., 2022).
However, bioinformatic studies of EVs predominantly center on
human EV characterization. Insights applicable to bacterial EVs
are largely derived from adaptations of metagenomic analysis
pipelines. Furthermore, most bioinformatics research in this
area tends to prioritize the development of EV databases,
species network analysis, or other downstream analyses, while
the earlier stages of RNA-seq read processing and analysis
remain relatively unexplored and offer significant opportunities for
further improvement.

The primary aim of this study is to investigate the presence of
bacterial transcripts as potential indicators of bacterial extracellular
vesicles (bEVs) circulating in the blood of pwMS. To achieve this,
we focus on analyzing how variations in sensitivity parameters
and prior host genome mapping affect the detection of bacterial
transcripts, among other fundamental tasks. These methodological
adjustments aim to enhance the reliability and accuracy of bacterial
read assignments, addressing potential sources of error from RNA-
seq workflows. In addition to refining sensitivity and mapping
strategies, this work also evaluates the use of multiple taxa profilers
to analyze RNA-seq data. This integrative approach allows for a
more robust evaluation of bacterial taxa and minimizes biases
associated with relying on a single profiler.

2 Materials and methods

2.1 Sample and EV extraction

Whole blood was obtained from pwMS (10 RR and 10 SP) and
age-matched healthy controls (n = 8) at the Donostia University
Hospital (Iparraguirre et al., 2021) (Supplementary Table S1).
Peripheral blood was collected by venipuncture into EDTA tubes
and centrifuged at 1258g for 20 minutes.

EVs were isolated following a differential centrifugation step
protocol as previously described by our group (Sáenz-Cuesta,
2015). Briefly, plasma aliquots were centrifuged at 13,000g for 2
min at 4◦C. The supernatant was transferred to a new tube and
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centrifuged at 20,000g for 20 min at 4◦C. The resulting pellet
was resuspended with 100 µL DPBS (GIBCO, ThermoFisher,
Waltham, MA, USA), which had been previously double-filtered
through a 0.22 µm-pore filter to remove particles and aggregates,
and was recentrifuged at 200,000×g for 60 min. RNA was
isolated using Trizol LS (ThermoFisher, Waltham, MA, USA) as
previously described (Iparraguirre et al., 2021). RNA quantification
was performed using a NanoDrop ND-1000 spectrophotometer
(ThermoFisher, Waltham, MA, USA). The most frequent particle
size ranges between 150 and 200 nm (Iparraguirre et al., 2021).

Samples were pooled (Supplementary Table S2) to achieve a
minimum amount of 2µg RNA. Following rRNA removal, libraries
were prepared, and paired-end sequencing was carried out using
Illumina HiSeq X Ten, obtaining an average of 40–50 × 106 reads
per sample.

2.2 Generation of control and in silico

samples

To control for potential errors and biases in the analysis,
both in silico and biological control samples were created.
Biological control samples were generated by sequencing reads
from EVs extracted from cultured Lactobacillus acidophilus and
Bifidobacterium lactis. Notably, both species are commonly found
in the human gut, making them suitable as positive controls.

In silico reads were generated from 61 species in varying
proportions, includingHomo sapiens, 25 bacterial species, 20 fungal
species, and 15 viral species (detailed in Supplementary Table S3),
using InSilicoSeq (v1.6.0) (Gourlé et al., 2018). Of the total
50 million reads, 40 million (80%) were assigned to Homo

sapiens, while the remaining reads were distributed across the
other species with relative abundances ranging from 0.1% to
0.625%. Some species were selected to belong to the same genera
(e.g., Blautia, Bacteroides, Aspergillus, and Rotavirus) to evaluate
potential profiling biases between species within the same genus
and those across different genera.

The genomes used to generate the reads were downloaded from
NCBI using the following command of BLAST suite (v0.3.3):

ncbi-genome-download -F fasta -t {TAXID}

--flat-output all

-o {OUTPUT}/{TAXID} &&

zcat {OUTPUT}/{TAXID}/*.fna.gz >

{OUTPUT}/{TAXID}.fna

Reads were generated with the command:

iss generate --genomes {TAXID}.fna --model

hiseq --cpus 8

--output {OUTPUT}/{TAXID}_reads --n_reads

{LENGTH_TAXID}

An individual FASTQ file was generated for each species.
The reads were then sorted using the bash sort command,
merged using cat, and shuffled with the bash shuf command.
This approach ensured that no species was overrepresented in
subsequent commands that utilized subsets of the FASTQ files to
verify their integrity.

2.3 Generation of unified taxa profiler
databases

To minimize profiler bias, a set of databases were generated
that are based on the same set of organisms. A custom script was
developed to create these databases, one for each profiler, following
these steps:

(1) Protein FASTA and genome FASTA files were downloaded
using ncbi-genome-download with the parameters -P
-l complete,chromosome --flat-output for
human, archaea, bacteria, protozoa, and viral taxa. For fungi,
the parameter -l complete,chromosome,scaffold

was applied. The following numbers of species were
downloaded: archaea (628), bacteria (51,772), fungi (441),
protozoa (53), and viral (14,977). Protein FASTA was used
for kaiju, whereas genome FASTA was used for the rest of
profilers.

(2) Individual protein and genome files were masked using
dustmasker and segmasker, respectively, from the BLAST suite
(v2.16.0).

(3) Databases were generated for each profiler.
Additional details are provided in the source code
(1A_build_profiler_dbs.sh).

Database generation and taxa profiling were performed on
the Hyperion HPC at the Donostia International Physics Center,
utilizing Intel Xeon Platinum 8362 and Intel Xeon Gold 6342
processors. Resources ranged from 4 to 32 CPUs and 256GB to
1,500GB of RAM, depending on the profiler.

2.4 Taxa profiling workflow

The processing workflow, depicted in Figure 1, consists of the
following steps: (1) read mapping with to host reference with
pass0 and pass2 strategies, (2) profiling using 9 different modes, (3)
standardization of profiler output, (4) read count normalization,
(5) profiler metric generation, (6) flagging, (7) inter-profiler data
merging, and (8) filtering of species and genera.

2.4.1 Read mapping to host reference
Reads from the samples were mapped to human reference

genomes in two separate steps: first they were aligned to the
GRCh38 genome and then to the more extensively sequenced
CHM13 genome, as described by Gihawi et al. (2023).

The genomes used were downloaded via
ncbi-genome-download (GRCh38 accession:
GCF_000001405.40_GRCh38.p14; CHM13 accession:
GCF_009914755.1_T2T-CHM13v2.0). Index generation for
GRCh38 was performed with STAR (v2.7.10a) using the command
STAR --runMode genomeGenerate with the additional
parameter --genomeSAindexNbases 14. The salmon index
was constructed using salmon (v1.10.2) with default parameters.

The first mapping was conducted using the nf-core rnaseq

module (r version 3.14.0) with the GRCh38 genome. The
following parameters were applied: --aligner star_salmon
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FIGURE 1

Summary of sample processing pipeline. Steps and sample origins are marked with their respective colors.

–skip_bbsplit --extra_salmon_quant_args

"--minAssignedFrags 1" --save_unaligned

--skip_qualimap --skip_pseudo_alignment.
The second mapping was carried out using bowtie2 (v2.5.4)

with the CHM13 genome. The index for CHM13 was built using
default parameters, and reads were aligned with bowtie2 using
the --very-sensitive argument.

In order to determine how host mapping affects the detection
of non-host species by profilers, reads were profiled in two passes:
pass0 refers to the fact that reads were not mapped to the host,
whereas in pass2 reads were mapped to twice to the host, as
mentioned in this section.

2.4.2 Read profiling
Reads from plasma-derived EVs, biological controls, and in

silico samples were mapped using the following profilers: kaiju
(v1.10.1) (Menzel et al., 2016), kraken2 (v2.1.3) (Wood et al.,
2019), krakenuniq (v1.0.4) (Breitwieser et al., 2018), centrifuge
(v1.0.4.2) (Kim et al., 2016), and ganon (v2.1.0) (Piro et al., 2020).
Additionally, KMCP (v0.9.4) (Shen et al., 2022) was included but
later discarded due to technical issues.

To account for variations in profiler sensitivity, nine unified
modes (mode 1 to mode 9) were created, each with adjusted
parameters specific to each profiler. Highermode values correspond
to a more lenient profiling, yielding a higher number of reads
per genera or species, as well as more genera or species
being discovered; whereas lower mode values result in a more
stringent profiling.

For instance, in mode 1, krakenuniq used the parameter
--hll-precision 18, while kraken2 used --confidence
0.9. A detailed list of parameters is provided in
Supplementary Table S4.

2.4.3 Standardization of profiler output
Profiler outputs were standardized using taxpasta (v0.7.0) with

the command: taxpasta standardize --add-name

--add-lineage.
Standardization was performed in two levels: for biological

samples the standardization was performed at genus level, whereas
for in silico samples it was performed at species level. For that,
the flags --summarize-at genus and --summarize-at

species were used.
The reason for the two-level standardization is that one of the

objectives within the analysis of in silico samples is the evaluation
of the accuracy of within-genera species detection, whereas for
biological samples we follow standard practice of reporting results
at a genus level.

The profiling output consisted of a table detailing the number of
species or genera and their respective read counts for each profiler.
One table is obtained for each combination of profiler andmode.

Then, in order to obtain one merged table across profilers, read
counts from individual profilers were concatenated using an outer
join to consider all possible species. The read counts (Rij) were
defined as the vector of counts assigned to all species shared across
profilers after the join:
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Rij =
(

rij1, rij2, . . . , rijn
)

, n ∈ species

where rijk represents the count of reads assigned to species k by
profiler j in sample i.

Species with zero counts across all profilers were discarded.

2.4.4 Read count normalization
To account for differences in sequencing depth, raw read

counts (Rij) for each profiler in sample i were normalized using
a correction factor (CF) based on the ratio of the median FASTQ
length across all samples (MedianLength) to the FASTQ length of
sample i (Li):

CFi =
MedianLength

Li

Normalized counts (Rnormij ) for profiler j in sample i were
calculated as:

Rnormij = Rij · CFi

This normalization step is skipped for in silico data because only
one sample was generated.

For biological samples, considering that biological samples
and controls were sequenced at different depths (approximately
50M reads per sample and 2.5M reads per control) two
types of normalization were performed. The first normalization
method is a joint normalization of samples and controls jointly,
whereas in the second normalization samples and controls are
normalized separately.

2.4.5 Profiler metric generation
After normalization, the weighted average, standard deviation

(SD), and coefficient of variation (CV) were calculated for both raw
and normalized counts. The weighted average (µ) for each sample
was defined as:

µj =

∑

j∈profilers Rij · wj
∑

j∈profilers wj

where wj is the weight associated with profiler j, calculated as:

wj =
1

TotalCountsj

The weighted standard deviation (σ ) was computed as:

σj =

√

√

√

√

∑

j∈profilers wj(Rij − µ)2
∑

j∈profilers wj

The coefficient of variation (CV) was calculated as:

CVj =
σ

µ

Therefore, for each sample a set of metrics is generated for raw
counts (µraw

j , σ raw
j , CVraw

j ) and normalized counts (µnorm
j , σ norm

j ,
CVnorm

j ).

2.4.6 Flagging
In the flagging step, species or genera in each sample are

marked (flagged) as “accepted” or “rejected” based on theis values in
themetric columns (counts of each profiler and associated statistics,
both raw and normalized). In this step, species or genera were
sorted by value, and the kneedle algorithm, as implemented in
the kneed package (v0.8.5) (Satopaa et al., 2011), was applied to
determine a cut-off value. Species or genera with values below this
cut-off were flagged as rejected.

The kneedle algorithm is a curve point detection method that
identifies the point of maximum curvature on a rank distribution.
This approach is effective when the distribution of reads counts–or
other values–, sorted by rank, exhibits a “hockey stick” shape, where
a small number of read counts have significantly higher values
compared to the rest. Species or genera falling in the lower end of
the curve can be interpreted as unlikely to be present in the sample,
that is, they are likely generated as a byproduct during the profiling
step; or can also be interpreted as potential contaminants with a low
abundance in the sample.

The kneedle algorithm incorporates a hyperparameter, S, which
adjusts the curve point. Higher S values lower the cut-off threshold,
resulting in more species or genera being flagged as accepted. To
account for variability, an array of S values (0, 1, 2, 3, 4, 5, 6, 7, 10,
and 15) was used. These values were arbitrarily chosen, reflecting
a range between a conservative flagging (S = 0) to a very lenient
flagging (S = 15).

The output of the flagging process include (1) a counts table
containing raw and normalized counts per profiler, along with
their weighted mean, standard deviation (SD), and coefficient of
variation (CV) across profilers; and (2) a boolean flag table with
the same dimensions as the counts table, indicating species selected
based on the curve point detection criteria.

2.4.7 Inter-profiler data merging
After processing individual samples, a merged table was created

by combining the normalized counts of weighted averages for each
sample (12 plasma-derived EV samples and 2 biological controls),
using an outer join, to retain species that were not captured in
all sample. Empty values were filled with NaN instead of 0 to
differentiate non-existing genera from low-abundance genera.

This step was not applied to in silico data, because only one
sample was generated.

2.4.8 Filtering of species and genera
Similarly to the previous step, this step was only performed to

the merged table of biological samples and controls.
The merged weighted averages table was subjected to three

additional filtering steps.
In the first filtering step, genera present in less than 65% of

samples were discarded. This value was set to ensure that genera
belonging to at least two of three scenarios (HC, SP or RR)
were retained, and therefore can be adjusted base on the specific
attributes of each dataset.

The second filtering step assessed the number of flags assigned
to each genus across samples. For each genus, the number of
samples passing the cut-off criteria defined in the Flagging section
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was computed using the flag table. A cumulative sum curve of
species versus the number of flags was generated, resulting in a
ranked distribution. The kneedle algorithm was applied to this
curve to determine the minimum number of flags required for a
genus to be retained. For this step an Sflag value of 0 was set–
default value–, although it can be adapted based on the attributes
of the dataset. Genera meeting this threshold were selected for
further analysis.

The aim of these first two steps is to retain species with
considerable abundances that are stable across samples, in order
to reduce false positive bias, that is, to avoid reporting on species
that are exclusive of one type of sample, which may be a product of
sample processing.

The third step is applied to filter genera that have similar
abundance level in controls and in samples, which are therefore
assumed to be contaminant. This step also uses the kneedle
algorithm. For each genus, the median number of normalized
weighted average counts across samples and the maximum number
of normalized counts in controls were calculated. A threshold (T)
was defined such that

median(samples) > T ·max(control)

For a threshold range of T ∈ [1, 500], the proportion of
species discarded at each threshold was computed, and the kneedle
algorithm was applied to the rank distribution. Similar to the
previous step, threshold value T is dependent on the S value
assigned at this step (Sdiff = 0), which can also be adapted.

2.5 Analysis of in silico species

The aim of this analysis was to evaluate the performance
of different profilers and assess the effects of (1) profiling with
or without prior host mapping, (2) the sensitivity modes used
during profiling, and (3) the S parameter applied during the
flagging step. Our goal was not to determine the optimal set of
parameters but rather to gain a general understanding of how each
parameter influences the workflow and to identify its underlying
limitations. This knowledge can then be applied to the analysis of
biological samples.

To achieve this, the in silico dataset, which includes 60 “ground
truth” species, was used to create two types of variables: nominal
variables derived from the presence/absence of a species and
numerical variables derived from the counts assigned to the
original species.

2.6 Comparison of detected species
between pass0 and pass2

To understand how prior host mapping affects the detection of
non-human species, the Jaccard index between the species detected
in pass0 and pass2 is computed. If P0 is the set of species detected in
pass0 and P2 is the set of species detected in pass2, the Jaccard index
is computed as:

J =
P0 ∩ P2

P0 ∪ P2

2.6.1 Nominal variable analysis
For nominal variables, the number of true positives (TP),

false positives (FP), false negatives (FN) and true negatives (TN)
is computed, based on the presence or absence of counts to
species originally present in the list of 60 species described in
Supplementary Table S3.

Then, precision ( TP
TP+FP ), recall ( TP

TP+FN ), F1-score

(2 precision·recall
precision+recall ), and Cohen’s kappa (κ) were computed. Cohen’s

kappa was defined as:

κ =
p0 − pe

1− pe
, p0 =

TP + TN

N
, N = TP + FP + FN + TN

pe =

(

TP + FP

N
·
TP + FN

N

)

+

(

TN + FP

N
·
TN + FN

N

)

To evaluate A/B comparisons (e.g., profiling with or without
prior host mapping), the χ

2 statistic was calculated from the
contingency table:

(

TPA FPA FNA TNA

TPB FPB FNB TNB

)

A significance level of α = 0.1 was used to determine
statistically significant differences in the contingency table.

2.6.2 Numerical variable analysis
Numerical value analysis is performed with the species

originally present in Supplementary Table S3, where the number
of observed and expected counts are compared. To that end, the
percent relative error (PRE) and percent absolute error (PAE) were
calculated, along with their means (MRE and MAE) and standard
deviations (MRED and MAED):

PREi = 100 ·
xobs,i − xexp,i

xexp,i
, PAEi = 100 ·

|xobs,i − xexp,i|

xexp,i

MRE = E[PREi] =
100

N

∑ xobs,i − xexp,i

xexp,i
, MRED = σ (PREi)

MAE = E[PAEi] =
100

N

∑ |xobs,i − xexp,i|

xexp,i
, MAED = σ (PAEi)

2.7 Analysis of biological samples

The analysis of biological samples consists of two main aspects:
the effect of the detection of contaminant genera and the analysis
of differentially abundant genera across conditions.
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2.7.1 Detection of contaminant genera
In the section “Read count normalization” of the materials

and methods, two normalization approaches were applied to
normalize counts between biological samples and controls: a joint
normalization including samples and controls (method A) and a
separate normalization (method B).

Based on these normalization strategies, genera were
categorized into three groups: (1) genera discarded using
both normalization methods, which are contaminants with a high
presence in control samples; (2) genera discarded with method
A but retained with method B, which are contaminants with a
lower abundance, which after normalization is comparable to the
abundances of biological samples; and (3) genera retained by both
methods, which have very low abundance in controls and thus are
likely to be present in biological samples.

2.7.2 Analysis of di�erentially abundant genera
Once the genera passing the normalization threshold were

selected, their abundance across samples were compared.
Comparisons were performed between the following groups: (1)
HC and RR, (2) HC and SP, (3) RR and SP, and (4) male and
female samples. Statistical significance was evaluated using the
Mann-Whitney U test, with multiple comparisons corrected using
the Benjamini-Hochberg procedure.

Additionally, due to effect of low number of samples in the
statistical analysis, genera with p-value < 0.15 were sorted by
absolute log2 fold change and reported.

3 Results

3.1 Profiler-specific di�erences in host
read assignment and filtering e�ciency

To evaluate the performance of different profilers, the proposed
methodology includes the analysis of three types of samples:
plasma-derived EVs from study subjects, two biological controls
pooled from cultured bacteria-derived EVs, and an artificially
generated dataset combining reads from 60 species, including
human reads.

Taxa profiling studies often face challenges in assigning reads
to the correct taxa due to contaminating reads–arising from the
host species or sequencing kits–being incorrectly assigned to other
species, leading to high rates of false positives (Gihawi et al., 2023).
To mitigate this issue, the pipeline incorporates two critical steps: a
three-fold mapping to the human genome and a flagging system.

The three-fold mapping approach involves sequentially
mapping reads against the host genome three times (twice to the
host genome using two different aligners and a third time during
profiling). Following the first mapping, a median of approximately
9.5% of reads remains unmapped (Supplementary Table S5). This
percentage decreases to 7% after the secondmapping. However, the
third mapping, performed by the profilers themselves, still assigns
1.5% of reads to humans. Notably, the median percentage of reads
mapped to humans varies depending on the profiling mode, with
1.24% assigned at mode 3 and 1.92% at mode 7.

Regarding biological controls, we observe that 1%–4% of reads
are assigned to the human genome during the initial mapping.

However, unlike other samples, subsequent mappings to the
genome in the second pass or by profilers are nearly zero.

The proportion of reads assigned to human and non-human
species differs substantially between profilers. For instance, kaiju
and kraken2 exhibit the lowest human read mapping rates, with
median ranges, calculated across biological samples, for kaiju, of
0.52% (minimum–maximum: 0.27–1.19) for mode 3 and 0.93%
(0.55–1.93) mode 7 respectively; and, for kraken2, of 0.12% (0.07–
0.24) formode 3 and 0.73% (0.39–1.12)mode 7 respectively.

In contrast, centrifuge and ganon demonstrate higher mapping
rates. For centrifuge, it ranges between 1.82% (1.02–3.55) formode3
and 2.92% (1.41–4.71) for mode7; and for ganon the ranges are
between 1.29% (0.63–1.62) for mode3 and for 2.07% (1.05–2.87),
respectively. These differences suggest that each profiler exhibits
specific patterns affecting read detection, which will be further
examined in subsequent analyses.

3.2 Analysis of profiler performance in in

silico samples

3.2.1 Prior host mapping o�ers a slight improve
in profiling

One of the aspects contested by Gihawi et al. (2023) is that
the lack of prior mapping to the host genome is crucial to
minimize false positive biases in the assignment of species. To
evaluate this, we performed taxa profiling under two conditions:
direct profiling without prior host mapping (pass0) and profiling
after reads were mapped twice to the host genome (pass2). We
observed that while the number of reads assigned to humans
varied significantly between profilers, particularly with kaiju and
kraken2, which showed a reduced mapping to human, there were
no substantial differences in the assignment to non-human species,
especially for krakenuniq, kraken2, and centrifuge (Figure 2). For
these cases, the number of assigned reads was almost identical
between pass2 and pass0.

Interestingly, this effect appears to be independent of the
profiling mode for non-human species, although a slight decrease
in assignment was noted for kaiju. Conversely, for human species,
the differences decreased as expected; since higher profiling modes

are less stringent, increasing the likelihood of mapping to human
species. Additionally, the Jaccard index for the total number
of detected species remained consistently above 0.9 across all
profilers and modes (Supplementary Figure S1). The variations in
the Jaccard index depended on the profiler and mode, without a
clear pattern. Expectedly, the number of detected species increased
with themode, formost profilers: linearly for kaiju and kraken2, and
exponentially for centrifuge and ganon. Interestingly, krakenuniq
reported the same number of detected species regardless of mode.

The total number of reported species, regardless of detection
dynamics based on mode, is remarkably high–exceeding 1000 in
most profiler/mode combinations–despite the fact that only 60 non-
human species should be present. This suggests that a substantial
portion of these species should be flagged as absent or negative
after processing. The S parameter plays a key role in this filtering
process, with higher values leading to more species being classified
as present in the sample.
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FIGURE 2

(A) Di�erence in assignment to human and non-human species across di�erent profilers between pass2 and pass0. The figure illustrates the
variability in the number of reads assigned, highlighting the reduction in false positives when using pass2. Values near 0 indicate that the profiler read
detection was the same as the expected number. (B) Percentage of observed counts assigned to human and non-human species, with pass0 and
pass2 settings.

To better understand how the pass may affect the filtering
of species, we computed the truth table (TP, FN, FP, and TN),
Cohen’s κ , and the χ

2 statistic for the contingency table across
540 profiler, mode, and S parameter combinations (6 profilers–5
profilers + the weighted mean values across profilers–× 9 modes

× 10 S values). Of these 540 combinations, only 38 (7.03%) showed
statistically significant differences between pass0 and pass2 (α =

0.1). When looking at what properties made these combinations to
be different, we observed a clear bias toward specific S values: of the
37 combinations, 12 where for S = 0 and 10 for S = 3. There was
also a profiler bias: ganon was present in 13 cases, and the weighted
mean in 15 cases. Lastly, mode values were equally distributed, and
thus there was no apparent mode dependency.

As a side note, regarding the relationship between the F1-
score and κ value, we observed a nearly identical correlation
between both measures (Supplementary Figure S2). Given the way
both formulas are constructed, they reward correct classifications
(high TP and TN rates) while penalizing errors (FP and
FN). Consequently, a strong correlation between these measures
indicates a high proportion of TP and TN and a low proportion
of FP and FN. Considering this redundancy, we have chosen to use
the F1-score as the primary performance metric.

Interestingly, in cases where the χ
2 difference was statistically

significant, slight improvements were observed in precision, recall,
and F1-scores (Figure 3). The median differences showed 0.06
increase in precision, 0.08 in recall, and 0.13 in F1-score (Mann-
Whitney U test, p ≤ 0.001 for all comparisons). Notably, for

specific profilers and S values, median recall and F1-score increased
drastically (e.g., by 0.57 and 0.54 for S = 3 and by 0.55 and
0.52 for ganon). Overall, pass2 outperformed pass0, particularly in
increasing TP values and decreasing FN values.

Focusing on the selected 60 species that constitute the in

silico dataset, we found a near-perfect correlation between
pass0 and pass2 observed counts (Supplementary Figure S3A).
The correlation between expected and observed counts
was similarly high, with slight improvements for pass2

(Supplementary Figures S3B, C). For instance, the linear regression
slope for pass2 vs. expected counts was 0.72, compared to 0.70
for pass0.

Thus, while prior host mapping may yield negligible
differences for detecting non-human reads, pass2 still offers
slight improvements, particularly in reducing false negatives, and
is recommended for better performance.

3.2.2 Intermediate S values show best
performance for species detection

During the flagging step, species with low counts are flagged as
not selected. This process depends on the distribution of counts for
a given profiler and mode and is automatically determined using a
knee point detection method. To select more or fewer species, the S
parameter can be adjusted. To understand how species detection is
affected by this parameter, Figure 4 illustrates the recall, precision,
and F1-scores across a range of S values and profilers.
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FIGURE 3

Di�erences between pass0 and pass2 profiling. Boxplots indicating the di�erence in F1-score, precision and recall for mode, S and profiler
combinations that were/were not statistically significant at the χ

2 test (group True/False). Values higher than 0 indicate an improvement in the
respective metric of pass2 against pass0. Median values of the boxplot distributions are indicated, as well as the Mann-Whitney U test p-value
between the cases of the two conditions.

Each profiler exhibits a specific pattern, influenced by the
profiling mode, but two major trends are consistently observed.
First, recall increases with higher S values, typically within a range
of 1 to 7, depending on the profiler. Conversely, precision decreases
as S increases. This trade-off is expected: a higher S value includes
more species, capturing most true positives (higher recall) at the
cost of introducing more false positives (lower precision). The
combined effect is reflected in the F1-score, which peaks at S values
between 2 and 5. Interestingly, most profilers show a plateau in
the F1-score after a certain S value, indicating that the knee point
detection algorithm effectively avoids including additional species
that would excessively increase the false positive ratio.

Using the weighted average across profilers rather than
individual profiler outputs offers an advantage, providing better
stability in precision across S values and modes. Each profiler has a
unique dynamic, but the averaged value smooths these differences.
Based on these findings, we recommend avoiding extremely low (S
= 0) or extremely high (S = 10 or 15) values, as they can skew the
detection FN or FP species.

3.2.3 Higher modes result in a slightly improved
detection of species

During profiling, each profiler has specific parameters to
control their sensitivity. The mode parameter is a set of
combinatory values applied to the profilers. Higher mode leads
to less stringent read assignment. To understand how mode

impacts species detection, Supplementary Figure S4 presents recall,
precision, and F1-scores for differentmode values.

Based on the truth table, precision, recall, and F1-scores are
more S-dependent and profiler-dependent than mode-dependent.
As previously mentioned, higher S values increase recall but
reduce precision, and vice-versa. However, higher mode values
only decrease the precision slightly—reflecting the inclusion of new
species and an increased number of false positives—and do not
affect the recall. This effect is even the oposite for extreme S values
(0, 15) for specific profilers; highlighting the effect of filtering of
species over the choice ofmode.

When analyzing the number of counts detected for existing
species from the in silico dataset, increasing the mode results

in a modest improvement in the number of detected reads, as
shown in Supplementary Figure S5. The correlation of counts,
reported as the R2 Pearson correlation coefficient and the slope
of the linear regression between expected and observed counts,
increases slightly. Similar trends are observed in reductions ofmean
absolute error (MAE). Interestingly, mean absolute error deviation
(MAED) shows profiler-specific behavior, that is, an increase or
decrease depending on the profiler (Supplementary Figure S5B).
For weighted average counts, MAED consistently decreases at
higher mode values. This trend may be expected, as additional
reads either remain unassigned to expected species or are properly
assigned, thereby improving these metrics.

In summary, despite the increase in species introduced by
higher mode values, as shown in Supplementary Figure S1, the
precision remains largely stable across modes, demonstrating that
the flagging of non-accepted species using the knee method is
highly effective. Therefore,mode values are not as critical as initially
thought. However, considering the slight accuracy increase in the
number of reads detected, we recommend using mode values
between 5 and 7.

3.2.4 Weighted average counts reduce variability
in read detection across profilers

Having analyzed the effects of mode, S, and pass on detecting
true and false species and read counts, we explored biases in read
detection across profilers. Figure 5 presents the percent relative
error (PRE) for each species in the in silico dataset.

Each profiler exhibited distinct PRE distributions. For instance,
kaiju and kraken2 showed the lowest PRE values, while centrifuge
and krakenuniq displayed better distributions, with many species
near zero (identical expected and observed counts). Conversely,
ganon exhibited slightly elevated PRE values for most species,
along with some negative values. The weighted average combines
these results into a single PRE set that reduces the biases of
individual profilers, resulting in values slightly below zero for most
species. While the weighted average counts do not yield the lowest
MRE values, it is comparable to top-performing profilers such as
centrifuge, ganon, and krakenuniq.
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FIGURE 4

E�ect of the S parameter on recall, precision, and F1-score. Each plot represents the evaluation metric at a specific S value, with di�erent mode

values in di�erent colors.

Interestingly, as shown in Supplementary Figures S5B, C, MAE
and MRE values approach zero modestly with higher mode

values for all profilers as well as with the weighted average
counts. However, the most significant difference occurs in MRED
values, for which the values associated to weighted average counts
remain the smallest across profilers (Wilcoxon rank-sum test,
FDR correction, W = 45, p = 0.002 for all MRED value
comparisons between the weighted average counts and other
profiler) (Supplementary Figure S6).

Analysis of PRE values (Figure 5) reveals that some species
consistently show close-to-zero PRE values, while others exhibit
extreme deviations, between -40 and -80. Initially, this was thought
to stem from species sharing the same genus, but PRE values of
species belonging to the same genus are similar to those from
deferent genera (two-sided Mann-Whitney U test, U = 440,
p = 0.33) (Figure 6). However, difference in PRE values across
kingdoms (Bacteria, Fungi, and Virus) were evident: Bacteria-
related species consistently showed lower (worse) PRE values
compared to Fungi and Virus (two-sided Mann-Whitney U tests,
fungi: U = 12, p = 1.18 · 10−7; bacteria: U = 31, p = 2.54 · 10−5).

Comparison of PRE values between bacterial species that
share genus against species that do not share them still show
no significant differences (two-sided Mann-Whitney U test,
U = 78, p = 0.36). This tendency is shared across profilers
(Supplementary Figure S7) and modes (Supplementary Figure S8).
Therefore, a worse PRE values does not stem from two
similar species being profiled incorrectly; rather, other factor are
influencing this effect.

The differences in PRE values may stem from the significant
variation in the number of species recorded for each kingdom

in the database. Bacteria, with 51,772 species, have a much
larger representation compared to fungi (441) and viruses
(14,997). This disparity increases the likelihood of reads being
assigned to similar taxa within bacteria, which could explain
the greater variability in PRE values observed for this kingdom.
However, the amount of viruses is in the same order of
magnitude than that of bacteria, and their PRE values are
near to zero. Therefore, this effect cannot neither entirely
account for the differences in low PRE values assigned to
bacterial species.

To summarize, each profiler shows highly specific
detection patterns that are not much influenced by mode.
Additionally, although the use of weighted averages may only
slightly improve the amount of detected number of reads, it
reduces the variation of reads across species, providing more
consistent results.

These findings suggest that other factors, such as genome
structure, sequence similarity, or taxonomic diversity, may
contribute to the observed patterns. Understanding these
additional influences could provide a clearer explanation for the
differences in PRE values across kingdoms.

3.3 Analysis of profiler performance in
biological samples and controls

After analyzing the effects of parameters on the detection
of species in the in silico dataset, we proceed to analyze
biological samples and controls to identify genera of
potential interest.
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FIGURE 5

Percent relative error (PRE) for each species in the in silico dataset across profilers. (A) PRE distribution at mode 3; (B) PRE distribution at mode 7. The
expected zero value is marked with a gray dashed line, and for each profiler the MRE (vertical red line) and MRED (horizonal red line) are indicated.

FIGURE 6

Di�erences in PRE across species and genera under mode 5, using weighted average counts. Left boxplot indicates PRE values for species that
belong to a shared genus (True) vs. those who do not (False). Right plot shows the same information, but restricted to bacterial species. Mid box plot
represents PRE values for Bacteria, Fungi, and Virus.

3.3.1 E�ect of S and mode is consistent across
biological samples and controls

The first aspect examined is the impact of mode and S on the
detection of genera and how many of the detected genera are later
retained after filtering steps.

The total number of detected genera remains relatively stable
across different mode values, with an increase of 4%–11% in
detected genera between mode 3 and mode 7 across different
samples (Supplementary Table S6). This effect is more pronounced
in the biological controls, showing an 18% increase for ACIDOLA
and 55% for BLACTIS, despite these controls detecting fewer
genera overall compared to other samples. This discrepancy may be
due to a higher baseline diversity of genera in the controls, many of
which are likely contaminants or false positives, as more than 99%
of genera detected in mode 3 are also present in mode 7, indicating
that highermode values generally introduce additional genera.

Focusing on the numbers of retained genera, (Figure 7,
Supplementary Figure S9) illustrate the number of retained genera

and the corresponding retention percentages, respectively. The
number of retained genera remains stable, ranging between 80 and
100, which corresponds to approximately 4–6% of the total detected
genera. Analyzing the control samples, ACIDOLA consistently
retains three genera (out of 563 and 668 with modes 3 and 7):
Lactobacillum, Leifsonia, and Salmonella, with 56M, 245k, and
94k reads, respectively. Similarly, BLACTIS detects two genera,
Bifidobacterium and Staphylococcus, with 60M and 11k reads,
respectively. These results suggest that the detection is robust and
largely unaffected by variations in S, while introducing only a
minimal number of false positives. This robustness implies that
the detection process in other samples may also exhibit a similar
tendency toward a limited introduction of false positives.

Regarding the detection of genera in biological samples, an
expected trend emerges with increasing S values, where the number
of detected genera rises. However, this increase stabilizes when S

reaches values of approximately 5–7, consistent with findings from
the in silico sample analysis. This stabilization indicates that higher
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FIGURE 7

E�ect of S values on the number of retained genera. Each subplot corresponds to a specific sample, and each line represents a di�erent mode value.

S values do not necessarily contribute to the detection of additional
genera once a plateau is reached, and therefore all the additionally
detected genera are likely to have extremely low read counts and
thus be contaminants or artifacts.

The influence ofmode on genus detection is generally minimal,
also consistent with findings in silico, with the exception of samples
SP4 and HC1, where the detection is similar for mode 3 and 7,
while it decreases formode 5. However, counterintuitively, in some
cases, slightly more genera are detected with mode 3 than with less
stringent modes. This phenomenon might be explained by a less
steep ranking curve of genera based on their counts when fewer
genera are detected. In such cases, the detection algorithm may
become “more permissive", setting the cutoff at a higher threshold.
Despite these anomalies, the results confirm that the algorithm
is robust and capable of producing consistent outcomes across a
reasonable range of S values andmode settings.

Therefore, based on the conclusion arrived at this section, the
following analyses will be performed usingmode 3 and S 7.

3.3.2 Similarities between profilers reveal
profiler-specific patterns

The resulting set of genera based on the selected S and mode

parameters consists of 151 genera, as shown in Figure 8.
The distribution of counts assigned to each genus

(Supplementary Figure S10A) reveals a consistent pattern
across all samples, with two distinct groups of profilers: centrifuge,
ganon, and krakenuniq, along with the weighted average, report
higher read counts, while kaiju and kraken2 show lower counts.
This distribution is comparable to the PRE distribution observed
in the in silico dataset (Figure 5), where kaiju and kraken2

displayed the lowest PRE values, while the remaining profilers
showed PREs closer to zero. However, the count distribution in
Supplementary Figure S10A spans several orders of magnitude,
indicating substantial variability.

To better understand genus-level differences,
Supplementary Figure S10B presents the ratio of counts between
the weighted average and each profiler. This further highlights
the two profiler groups: kaiju and kraken2 show count ratios
around 10% compared to the weighted average, while centrifuge,

ganon, and krakenuniq display similar count distributions to the
weighted average.

To explore similarities between profilers, we performed a
Spearman correlation analysis (Supplementary Figure S11A). The
previously mentioned grouping is again evident, although it is
noteworthy that despite having similar count levels, kaiju and
kraken2 exhibit lower correlation compared to the other profilers.
While ganon, krakenuniq, and centrifuge show strong correlations
(≥0.8), the weighted average demonstrates the highest correlation
with all profilers. Although this is somewhat expected by
definition, it underscores an important point: when in doubt about
which profiler to use, the weighted average provides a balanced
representation without compromising performance metrics.

The count distribution shows that genera with higher counts
tend to have lower dispersion, whereas genera with fewer counts
exhibit greater variability. This result, while somewhat expected,
highlights that genera with higher counts are more likely to be
accurately detected, resulting in greater concordance in reported
counts across profilers.

3.3.3 Normalization including biological controls
removes putative contaminant genera

One of the main reasons for including biological controls is to
identify genera present at abundance levels similar to those found
in the samples. Assuming that conditions between the samples
and controls have remained stable, we can infer that genera with
comparable abundance levels in biological controls and samples
are likely the result of contamination during sample processing or,
potentially, the presence of microorganisms naturally found on the
surfaces of the equipment used.

To determine the extent to which detected genera may be
considered contaminants, we applied two types of normalization:
(A) combined normalization of plasma-derived EV samples and
biological controls, and (B) normalization of plasma-derived EV
samples and biological controls separately. The distinction between
these approaches is useful because the sequencing coverage of the
control samples is approximately 25 times lower than that of the
biological samples.
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FIGURE 8

Heatmap with log10 abundance of retained genera. The last column indicates the contaminant status: (1) genera discarded after separate and joint
normalization (contaminants with a high presence in control samples), (2) genera discarded after joint normalization, but kept with separate
normalization (contaminants with a lower abundance), and (3) genera retained after normalization (likely to not be contaminants).
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Based on these criteria, we identified three groups of
genera: (1) those with similar abundances in both controls and
samples without combined normalization, (2) those reclassified as
“contaminants” following combined normalization, and (3) those
retained after combined normalization, which are assumed to be
intrinsic to the biological samples. Out of the 151 initially retained
genera, six were eliminated based on criterion (1) (Figure 9), and 61
were discarded based on criterion (2) (Supplementary Figure S12),
leaving a total of 84 genera. The genera that are selected or
discarded based on these criteria are displayed in Figure 8.

Although some genera may have biological relevance and thus
could represent false negatives, our results demonstrate that the
combined normalization of samples and controls is both necessary
and effective in eliminating unwanted genera. This approach
significantly reduces the likelihood of contamination, enhancing
the reliability of downstream analyses.

3.3.4 Analysis of di�erentially abundant genera
Among the remaining 84 genera, we conducted an analysis

to identify genera with statistically differential abundance across
specific comparisons. Four comparisons were performed: (1) HC
vs. SP, (2) HC vs. RR, (3) SP vs. RR, and (4) sex. Given the limited
sample size and uncertainty regarding the underlying distribution,
we applied a non-parametric test.

Significant differences were observed only in the HC vs. SP and
RR vs. SP comparisons. Regarding HC vs. SP, Xanthomonas showed
a significantly higher abundance in SP samples (two-sided Mann-
Whitney U test, U = 0, p = 0.029), while Colletotrichum was
significantly more abundant in HC samples (U = 16, p = 0.029)
(Figure 10A). In the comparison between RR and SP samples, six
genera were more abundant in SP: Roseomonas, Flavobacterium,
Xanthomonas, Lysobacter, Brevundimonas, and Tepidimonas (U =

0, p = 0.029 for all comparisons). Conversely, Dictyostelium was
more abundant in RR samples (U = 16, p = 0.029) (Figure 10B).
Of note, none of these p-values remained significant after applying
the Benjamini-Hochberg correction for multiple testing.

Despite the lack of significance following correction, we also
explored genera with p-values below 0.15 with high log2 fold
changes, as these may still provide biologically meaningful insights.
These genera are summarized in Supplementary Figure S13. Using
this criterion, we identified six genera for HC vs. SP, four for HC vs.
RR, 18 for RR vs. SP, and two for sex-related comparisons.

4 Discussion

The microbiota has emerged as a critical factor influencing
human health, requiring us to expand our focus beyond traditional
human-to-human interactions to include the complex dynamics
of human-bacteria and bacteria-bacteria interactions (Sender
et al., 2016). Additionally, fungi also play an essential role in
this equation, as highlighted by their reported involvement in
multiple sclerosis (MS) (Mangalam, 2021). Understanding these
interactions is crucial to discovering their potential contributions
to disease mechanisms.

One powerful tool for exploring these relationships is next-
generation sequencing (NGS). However, NGS studies are often

plagued by high false-positive rates, particularly when robust
methodological controls are not implemented. For example, a
recent reanalysis of microbial DNA studies across 33 cancer types
demonstrated that lenient thresholds and inadequate host genome
mapping led to the detection of implausible bacteria, including
extremophiles (Gihawi et al., 2023).

Based on this situation, and with the need to provide a more
robust framework to perform taxa profiling, the currently presented
workflow aims to reduce some of these biases. The six key aspects
derived from this workflow, and which have improved the quality
of the analysis, are discussed below.

First, our findings partially align with the observations reported
by Gihawi et al. (2023), showing an improvement in detection
quality, although not as pronounced as expected or as reported in
their study. While false-positive rates were lower than anticipated,
many species and their associated counts were correctly assigned
without an excessive number of false positives, even in the absence
of prior host mapping. It is important to note that the host
genome is integrated into the database used by the profilers,
which we consider a minimum requirement to reduce the risk
of assigning human reads to other organisms. Nonetheless, host
mapping remains a valuable step in enhancing the overall accuracy
of species detection.

Interestingly, a notable percentage of reads remain unmapped
even after host genome mapping, ranging between 4–7% on
average and up to 12% in in silico datasets. This percentage
is also highly dependent on the profiler. This unexplained
phenomenon may be due to several reasons including (1) random
genome sampling or genomic regions less prone to detection—
e.g., mitochondrial genome, centromeric or telomerig regions—
which could complicate the identification of less abundant genera,
(2) cross-contamination during sample handling or computational
artifacts, such as reads aligning to orthologous regions of the
human genome, (3) mapping to other genomes not included in
the database such as other microorganisms or domestic animals.
Further investigation is required to understand this issue and its
implications for microbiome studies.

Second, a key aspect of our approach was the creation of a
unified database to facilitate a common species/genera detection
across different profilers. This step addresses a significant limitation
noted by Miceli et al. (2024), who observed that the variability in
sample pre-processing and database use impacts the comparability
of results in extracellular vesicle (EV) studies. By standardizing
the database, we aim to enhance reliability and reduce bias in
such detection.

Third, the analysis was designed to minimize the number of
parameters and, when included, ensure they are as data-driven as
possible adjusted based on the intrinsic properties of the data rather
thanmanual input. The analysis primarily relies on two parameters:
the profiling mode and the filtering parameter S. Notably, we
observed greater robustness than expected, particularly for mode.
Although extreme mode values—especially lower ones—can bias
read detection by reducing the number of assigned reads, the
additional species or genera detected at higher mode values appear
to be effectively countered by the filtering applied through the S

parameter. Furthermore, S values between 2 and 7 consistently
produced stable results in both in silico and biological samples.
Therefore although parameter tuning may be dataset-dependent,
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FIGURE 9

Genera discarded after applying criterion (1), which identified species with similar abundance in both controls and samples without combined
normalization. Each plot represents log10 transformed counts for each type of sample, with the log10 transformed median value depicted in a
horizontal bar.

FIGURE 10

Di�erentially abundant genera across conditions. The executed comparisons that reported significant genera are HC vs. SP (A) and RR vs. SP (B). Each
plot represents log10 transformed counts for each type of sample, with the log10 transformed median value depicted in a horizontal bar.

the choice of S values between 2 and 7, and mode values between 5
to 7, is likely to provide consistent and accurate results.

The key assumption of our current workflow is that genera
with fewer assigned counts are less likely to be truly present
in the sample and are therefore candidates for removal. This
assumption is tied to the compositional nature of microbiome
data, where the presence of a few highly abundant taxa alongside
many low-abundance taxa amplifies compositional bias (Yang and
Chen, 2022). Although there is no consensus on the optimal
methods for filtering low-abundance operational taxonomic units
(OTUs)—groups of closely related individuals multiple studies
have shown that such filtering improves the reliability of
OTU detection. Specifically, removing very low-abundance OTUs
significantly affects alpha-diversity metrics sensitive to rare genera
(e.g., observed OTUs, Chao1) but has minimal impact on the
relative abundances of dominant phyla and families or on alpha-
diversity metrics that consider both richness and evenness (e.g.,
Shannon, Inverse Simpson) (Nikodemova et al., 2023). Therefore,
incorporating a filtering step to exclude low-abundance genera
is recommended.

Fourth, our study also demonstrates that integrating multiple
taxa profilers improves detection outcomes. While both in
silico and biological datasets show that centrifuge, ganon,
and krakenuniq outperform kaiju and kraken2 in terms of
the number of detected reads, combining profilers reduces
noise in species counts and enhances detection robustness,

particularly in complex datasets. This approach takes advantage
of the strengths and variability of different profilers to mitigate
individual biases–an often overlooked strategy in routine practice,
where a single profiler or the one with the best metrics is
typically chosen.

Fifth, and one of the most important aspects of this workflow, is
that our results emphasize the critical role of biological controls in
reducing false positives. This finding aligns with previous studies,
such as Olomu et al. (2020), which highlighted the importance of
including controls for reliable EV studies.

Among the most prominent discarded genera in the
analysis of joint normalization of biological controls an
samples are Staphylococcus, Cutibacterium, and Dermococcus,
some of which have been associated with human skin as
commensals (Dessinioti and Katsambas, 2024; Martinson et al.,
2019) and are therefore likely contaminants in the samples.
Similarly, Malassezia is frequently found on scalp skin and
is associated with dandruff (Saunte et al., 2020). Ubiquitous
genera such as Escherichia, Serratia, and Enterobacter, although
classically considered part of the intestinal microbiota, are also
widespread (Fusco et al., 2018) and can be found in saliva,
potentially contributing to contamination (Limeres Posse
et al., 2017). Finally, some genera are associated with the so-
called “kitome", referring to genera inherent to sequencing or
library preparation kits (Olomu et al., 2020). Among these,
genera such as Acinetobacter, Lactobacillus, and Clostridium
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were identified as discarded in this study based on the
previous criteria.

However, challenges remain when distinguishing between
genera that are both contaminants and naturally present
in the study environment. For instance, Malassezia, a skin-
associated fungus (Saunte et al., 2020), has also been implicated
in dysbiosis associated with MS (Mangalam, 2021). Such
cases complicate the interpretation of results, as it is difficult
to discern whether detected reads originate from the study
samples or external contamination. This limitation highlights
the need for cautious interpretation of results and the careful
selection of thresholds to avoid excessive filtering of potentially
relevant genera.

Lastly, despite these limitations, our analysis identified
promising candidates for further investigation within both MS
and control groups. This is particularly relevant given documented
shifts in the stool microbiome of MS patients (Thirion et al., 2023;
Zhou et al., 2022). Interestingly, only a small number of genera
exhibited differential abundance between groups specially between
RR and SP samples (7 genera). Despite not being significant,
Blautia showed a relatively increased abundance in MS samples
compared to healthy controls (log2FC of 6.2 and 4.1, p-values
of 0.057 and 0.11 for SP vs. HC and RR vs. HC), consistent
with findings by Ghezzi et al. (2021), while Cox et al. (2021)
reported a decrease in MS samples. Similarly, a non-significant
increase in Sutterella abundance was observed in SP samples,
contrasting with the decrease reported by Ghezzi et al. (2021).
These discrepancies highlight the challenges in comparing results
across studies due to differences in sample type (stool vs. EVs) and
analysis approach (16S rRNA vs. RNA-seq). Finally, considering
SP vs. HC comparison, we observed a significant abundance of
Colletotrichum in HC samples. Colletotrichamide C, a metabolite
from specific species of the Colletotrichum genera, exhibited strong
neuroprotective activity against glutamate neurotoxicity implicated
in chronic neurodegenerative diseases, such as MS (Bang et al.,
2019).

This study presents a powerful new workflow designed to
reorient the analysis of RNAseq data from plasma EVs, enabling
the efficient identification of relevant bacterial transcripts. Beyond
plasma EVs, this approach can be applied to other total RNA
samples, leading to more accurate microbial genus identification
and a reduction in false positive results. While bacterial transcripts
were successfully identified, further research will be crucial to
determine if they are delivered via putative bEVs in blood and to
explore the specific genes and functions they encode.

5 Study limitations

The study may suffer from the following limitations. Although
the idea of the project is a proof of concept for the analysis tools,
the results of the differentially abundant genera must be taken with
caution due to the size of the groups. Additionally, the variation
within the biological controls has to be considered. Therefore, more
biological samples and controls should be included. Secondly, and
as has been reported by Miceli et al. (2024), the amount of genetic
material in EVs is scarce, and thus discovery and profiling of non-

human species may be hindered by this fact. Additionally, these
results, but not the analysis flow proposed, are dependent on the
methodology used to isolate the EVs, a common issue for all EV
studies. Lastly, it should be considered that part of the retrieved
bacterial reads could not be directly associated with the presence
of bEVs, but rather from other forms of genetic material including
RNA derived from blood-circulating bacteria.
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