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Background: Batch e�ects refer to data variations that arise from non-biological

factors such as experimental conditions, equipment, and external factors. These

e�ects are considered significant issues in the analysis of biological data since

they can compromise data consistency and distort actual biological di�erences,

which can severely skew the results of downstream analyses.

Method: In this study, we introduce a new approach that comprehensively

addresses two types of batch e�ects: “systematic batch e�ects” which are

consistent across all samples in a batch, and “nonsystematic batch e�ects” which

vary depending on the variability of operational taxonomic units (OTUs) within

each sample in the same batch. To address systematic batch e�ects, we apply a

negative binomial regression model and correct for consistent batch influences

by excluding fixed batch e�ects. Additionally, to handle nonsystematic batch

e�ects, we employ composite quantile regression. By adjusting the distribution

ofOTUs to be similar based on a reference batch selected using the Kruskal-Walis

test method, we consider the variability at the OTU level.

Results: The performance of the model is evaluated and compared with

existing methods using PERMANOVA R-squared values, Principal Coordinates

Analysis (PCoA) plots and Average Silhouette Coe�cient calculated with diverse

distance-based metrics. The model is applied to three real microbiome datasets:

Metagenomic urine control data, Human Immunodeficiency Virus Re-analysis

Consortium data, and Men and Women O�ering Understanding of Throat HPV

study data. The results demonstrate that the model e�ectively corrects for batch

e�ects across all datasets.
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1 Introduction

The humanmicrobiome, comprising diversemicroorganisms across various body sites,

is crucial for understanding health and disease dynamics (Ursell et al., 2012; Wang and

LêCao, 2020). Advances in sequencing technologies have deepened our understanding

by enabling researchers to not only identify microbial species but also to understand

their functional roles within the ecosystem. However, these advancements have also

highlighted challenges like batch effects—discrepancies across sample batches that can

distort biological insights (Leek and Storey, 2007). That is, batch effects refer to systematic

and non-systematic discrepancies or variations that arise during the processing of samples

in a study (Lazar et al., 2013; Wang and LêCao, 2020). Systematic batch effects represent

the consistent differences across all samples within a batch, and nonsystematic batch effects

demonstrate variability that is dependent on the diversity of OTUs present within each

individual sample of the same batch (Soneson et al., 2014). Key factors contributing to
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these effects include variations in sample collection, DNA

extraction methods, sequencing protocols, and data analysis

techniques. Microbiome data’s inherent properties—high zero-

inflation, over-dispersion—exacerbate the impact of batch effects.

Zero-inflation indicates the presence of many zeros in the data,

which highlights the scarcity or absence of certain microbial species

in many samples. Over-dispersion arises from individual variability

and technical differences in sequencing depth, complicating

data analysis.

While numerous methods exist for correcting batch effects in

high-throughput data, many assume continuous data and are not

directly applicable to microbiome data, which typically consist of

count data. Traditional methods, such as the ComBat algorithm

(Johnson et al., 2007), typically assume a Gaussian distribution.

Based on this, extensions for count data such as RNA-seq have

been developed that utilize a negative binomial distribution. This

approach is more aligned with the inherent properties of the data

and effectively adjusts for consistent batch patterns. However, while

this method is applicable for addressing systematic batch effects, it

struggles to fully correct for non-systematic batch influences caused

by irregular experimental errors or the unique characteristics of

individual samples.

Another approach, Meta-analysis Methods with a Uniform

Pipeline for Heterogeneity in microbiome studies (MMUPHin)

provides a comprehensive solution for managing heterogeneity in

microbiome studies (Ma et al., 2022). This method includes joint

normalization and meta-analysis techniques specifically designed

for the unique characteristics of microbiome data. Its adaptability

is especially effective for handling the diverse and often non-

parametric nature of microbiome count data. However, MMUPHin

assumes the data to be Zero-inflated Gaussian, which is primarily

suitable only for certain transformations of relative abundance data,

such as taxon counts normalized by each sample’s library size.

This assumption limits its applicability, indicating a need for more

flexible approaches in certain scenarios. Percentile normalization

is a method by which data can be converted to a uniform

distribution based on percentiles (Gibbons et al., 2018). This

transformation helps mitigate the effects of over-dispersion and

the high zero count. However, a key limitation of percentile-

normalization lies in its potential to oversimplify complex data

structures, possibly leading to the loss of meaningful biological

variance. This issue can be particularly critical when dealing with

highly diverse microbiome samples. Recently, new methods for

batch effect correction have been introduced, tailored specifically

to design unique characteristics of microbiome data. Among those

approaches, Conditional Quantile Regression (ConQuR) (Ling

et al., 2021a,b) utilizes a conditional quantile regression approach

for batch effect correction, enabling the generation of corrected

OTUs. ConQuR independently processes each OTU without

assuming a specific distribution, offering flexible handling of data.

However, when OTUs across batches exhibit significantly different

distributions, each quantile may represent different characteristics,

potentially compromising the consistency of the analysis results.

While using a reference batch to standardize OTU distributions can

address fundamental inter-batch differences, the effectiveness of

this approach heavily depends on the extent of these differences and

the appropriateness of the chosen reference batch. If the reference

batch does not adequately represent the characteristics of other

batches, this method may introduce additional distortions.

2 Materials and methods

2.1 Microbiome datasets

2.1.1 Human immunodeficiency virus re-analysis
consortium datasets (HIVRC)

We used the first dataset from multiple individual studies

derived through the Human Immunodeficiency Virus Re-analysis

Consortium (HIVRC) (Deeks et al., 2015; Tuddenham et al., 2020;

Ling et al., 2021a,b). This integrated dataset, based on fecal samples,

provides microbial profiles indicative of the gut microbiome.

It comprises 17 individual datasets, including 16S rRNA gene

sequences from both HIV-uninfected (HIV-) and HIV-infected

(HIV+) patients. Out of the 17 studies within the HIVRC, we

selected 4 specific datasets for our analysis, namely those from

Noguera-Julian, Pinto-Cardoso, Serrano-Villar, and Vesterbacka

(Table 1). The selection criteria were based on the study design

(either case-control or cross-sectional) and the sample type. These

criteria ensured that the selected studies were compatible and

relevant for our model validation purposes. Publicly available

dataset was used in this study.

2.1.2 Men and women o�ering understanding of
throat HPV study dataset

Weused the second dataset from theMen andWomenOffering

Understanding of Throat Human Papillomavirus (MOUTH) study

(Zhang et al., 2022). This cross-sectional study includes 16S

rRNA gene sequences from participants with oncogenic oral

HPV infection or HPV seropositive antibodies. The dataset is

composed of samples distributed across seven distinct sequencing

batches, each identified by a unique Batch ID. The HPV dataset

includes various covariates, summarized as follows: sample size,

age [mean (SD)], smoking status, sexual orientation, and HPV

status. Smoking status is categorized as Never smoker (0), Former

smoker (1), and Current smoker (2), with the reported percentages

indicating the proportion of participants who have ever smoked

(including both former and current smokers). Sexual orientation

is categorized as Heterosexual (0), Homosexual (1), and Others

(2). HPV status represents the percentage of participants with a

positive HPV status. This dataset is divided into 7 batches based on

the experimental plates used during sequencing, allowing for the

consideration of potential batch effects arising from differences in

sample processing. These variables, including smoking status and

sexual orientation, are incorporated into the analysis to control for

TABLE 1 Summary of the sample size and covariates in HIVRC datasets.

Batch ID
(study)

Sample
size

HIV
status =
1( %)

Age
[mean(SD)]

Gender
= 1 (%)

Noguera-Julian 232 199 (85.8) 42.3 (10.7) 171 (73.7)

Pinto-Cardoso 43 33 (76.7) 39.9 (10.2) 35 (81.4)

Serrano-Villar

2017

23 21 (91.3) 42.4 (8.63) 23 (100)

Vesterbacka 62 47 (75.8) 46.9 (9.61) 31 (50)

The provided HIV status includes the number and proportion of patients diagnosed with

HIV. The Age variable presents the mean and standard deviation, while the Gender variable

reports the number and percentage of male participants.

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1484183
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Park and Park 10.3389/fmicb.2025.1484183

potential confounding factors (Table 2). Publicly available dataset

was used in this study.

2.2 Proposed model

2.2.1 Negative binomial model
Here, we suppose that the entry Yijg denotes a count value

for the jth OTU of the ith sample from the gth batch, with i =

1, . . . , n, j = 1, . . . , m, g = 1, . . . , k. Covariates such as important

biomedical, demographic, genomic, and other information based

on prior knowledge are represented as Xi, which is the vector of

fixed effects and β is the vector of the fixed effects coefficients

(Zhang et al., 2017).

We describe the negative binomial regression model used for

batch effect adjustment. In our approach, it is employed to estimate

the count of OTUs, considering the influence of covariates and

batch ID as a fixed effect. By treating the batch ID as a fixed

effect, this model can directly account for the consistent differences

observed across batches. This model specifically targets the non-

zero counts of OTUs, denoted as Yijg |Yijg > 0. The counts are

assumed to follow a negative binomial distribution (Tran et al.,

2020), represented by Yijg |Yijg > 0 ∼ NB
(

µijg , θ jg
)

, where µijg

is expected count and θ jg is the dispersion parameter of the negative

binomial distribution. The equation for this model is expressed

as follows (Chen and Li, 2016; Dong et al., 2020; Li et al., 2023; Yirga

et al., 2020):

log
(

µijg

)

= σj + Xiβj + γjg + logNi (1)

In this equation, σj represents the baseline expression level for

the jth OTU, reflecting the unique characteristics of each OTU. Xi

is the vector of the covariates for the ith sample, βj is the vector of

coefficients for the jth OTU, γjg is the mean batch effect for the jth

OTU in the gth batch, and logNi represents the library size, i.e., the

total counts across all OTUs in the ith sample (Johnson et al., 2007;

Zhang et al., 2020; Ramakodi, 2021).

The variance of the negative binomial distribution is defined as:

Var
(

Yijg |Yijg > 0
)

= µijg + θjgµ
2
ijg (2)

This setup allows us to account for the baseline expression

levels, import ant biological covariates, and batch effects in the

analysis, providing an adequate structure formodeling OTU counts

inmicrobiome data. To adjust for batch effects, the log-transformed

mean parameter log
(

µijg

)

is adjusted by subtracting the batch

effect term (Van den Berg et al., 2006):

log(µ∗
ij) = log

(

µijg

)

− γjg (3)

where µ∗
ij is the adjusted mean parameter. The variance parameter

for the jth OTU in the gth batch, θjg , is averaged across all batches to

obtain a consistent variance parameter:

θ∗j =
1

NG

∑

g
θjg (4)

where θ∗j is the average variance parameter for the jth OTU and

NG is the total number of batches. By averaging these parameters,

we can apply a consistent variance across all batches, reducing

variability caused by individual batch effects that can be caused by

non-interest variables (Johnson et al., 2007; Zhang et al., 2020).

The adjusted counts calculated using the refined parameters µ∗
ij

and θ∗j are modeled to follow negative binomial distribution Y∗
ij ∼

NB(µ∗
ij, θ

∗
j ). Adjusted values Y∗

ij are then derived by mapping the

data from the empirical distribution of the original counts to the

batch-free distribution, according to quantile levels. This mapping

process ensures that the batch-specific effects are removed, and the

adjusted counts are comparable across different batches.

2.2.2 Logistic regression
We proceed with an additional process to address variability

at the OTU level using the adjusted OTU count. It initiates with

utilizing logistic regression to estimate the probability of nonzero

occurrences within the adjusted OTU table (Zhang and Yi, 2020).

This probabilistic model serves to identify samples where the

presence of OTU is confirmed. Subsequently, quantile regression

is applied to these identified samples (Pendegraft et al., 2019).

logit(Pr (Y∗
ij > 0)) = X

T
i ζ + B

T
i ψ (5)

Pr (Y∗
ij > 0) =

exp(XT
i ζ + B

T
i ψ)

1+ exp(XT
i ζ + B

T
i ψ)

= qij (6)

TABLE 2 Summary of the sample size and covariates in HPV datasets.

Batch ID (plate ID) Sample size Age [mean (SD)] Smoking = True (%) Sexual orientation;
Heterosexual = 0,
Homosexual = 1,

Others = 2

HPV status =
pos (%)

p68_s01_JH1_16SV4 43 54.6 (10.6) 19 (44.1) 36 (84.7)/3 (7.1)/ 3 (7.1) 3 (6.9)

p68_s02_JH2_16SV4 49 52.8 (9.1) 18 (36.7) 41 (89.1)/1 (2.1)/ 4 (8.6) 3 (6.2)

p68_s03_JH3_16SV4 56 54.3 (9.6) 25 (44.6) 49 (87.5)/3 (5.3)/ 4 (7.1) 2 (3.5)

p68_s04_JH4_16SV4 79 54.1 (9.1) 32 (40.5) 71 (92.2)/4 (5.1)/2 (2.5) 3 (3.7)

p68_s05_JH5_16SV4 89 54 (10.1) 34 (38.2) 83 (93.2)/3 (3.3)/3 (3.3) 2 (2.2)

p68_s06_JH6_16SV4 88 53.3 (10.3) 38 (43.1) 67 (77)/7 (7)/13 (14.9) 20 (23.2)

p68_s07_JH7_16SV4 91 56.7 (11.6) 43 (47.2) 74 (85)/8 (9.1)/5 (5.7) 17 (18.6)

The provided smoking indicator represents the percentage of HIV-positive participants (Pinto-Cardoso et al., 2017). The sexual orientation variable reports the number and proportion of

participants based on their sexual orientation (0= heterosexual, 1= homosexual, 2= other). The HPV status indicator includes the percentage of HPV-positive participants.
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Here, Y∗
ij denotes the count of the jth adjusted OTU in the

ith sample, Xi represents the covariates for this observation, Bi is

random effect term for the ith sample, capturing the batch effect. ζ

is the coefficient vector linked to covariates, and ψ is the coefficient

vector associated with batch effects. qij denotes the probability

of nonzero occurrences within the adjusted OTU table, and it

is crucial for understanding the likelihood of observing nonzero

counts for a given OTU in the adjusted OTU table.

2.2.3 Composite quantile regression
We employ Composite Quantile Regression (CQR) to robustly

model microbiome data, which exhibits zero-inflation and a high

frequency of outliers. This method allows for the estimation of

conditional values of microbial OTUs across various quantiles. For

non-zero microbial counts, the conditional quantile function of the

response variable is defined as Ling et al. (2021a,b); Koenker and

Hallock (2001):

QY∗
ij |Xi , Y∗

ij>0
(τ ) = X

T
i α (τ)+ B

T
i δ (τ ) (7)

In this equation, α (τ) , δ (τ ) is the vector of regression

coefficients specific to quantile level τ = ( 1
k+1 , . . . ,

k
k+1 ) with a

large k (e.g., 5th, 10th, . . . , 95th percentiles with k = 19). This allows

us to capture the distributional characteristics of the data across

various quantiles. This model diverges from traditional quantile

regression by adopting a unified set of regression coefficients

across all quantiles. This approach facilitates a more streamlined

estimation process that leverages the robustness of quantile

regression while simplifying the model complexity typically

associated with estimating separate coefficients for each quantile.

∑

τ∈T

∑n

i=1

∑m

j=1
ρτ (Y

∗
ij − X

T
i α (τ)− B

T
i δ(τ )) (8)

In this formula, ρτ (u) is the check loss function calculated

as ρτ (u) = u[τ − I (u < 0)], T is the set of target quantiles, n

is the number of samples, and m is the number of OTUs. This

formulation reduces the influence of outliers compared to mean

regression and provides a deeper understanding of the overall

distribution by analyzing data across various quantiles (He et al.,

2023).

Then, we incorporate the zero-inflation aspect by accounting

for the probability of the response variable being zero. This

approach allows us to effectively handle datasets with many zero

values by considering the original distribution of the data. We

combine the zero probability with the previously estimated quantile

function to create a unified model that explains the entire data

distribution, including both zero and positive values (Ling, 2019).

Q̂c (τs) =

{

0 , τ < 1− qij

Q̂
(

τ−(1−qij)
qij

)

, τ ≥ 1− qij
(9)

2.2.4 Reference batch selection
The selection of the reference batch is pivotal in the quantile

regression framework as it serves as the baseline to which the

distribution of counts (given the OTU is present) are aligned.

The reference batch is not chosen based on size or abundance

alone, as these factors do not necessarily indicate the quality or

representativeness of the batch. To identify potential reference

batches that demonstrate homogeneity across multiple microbial

datasets, we apply the Kruskal-Wallis test (Kruskal and Wallis,

1952). This non-parametric method assesses whether the median

values across different batches are statistically similar, indicating

stable baseline conditions across these groups. Batches that do

not show significant differences in their medians indicate the

possibility of consistent performance across various batches and

are shortlisted for further evaluation (Kruskal and Wallis, 1952;

Chakraborty et al., 2011). Given the high prevalence of outliers and

zero counts in microbiome data, traditional measures of variability

such as the standard coefficient of variation (CV) may not provide

reliable insights. Instead, we utilize a Robust CV, defined as the ratio

of theMedianAbsolute Deviation (MAD) to themedian of the data,

multiplied by 100% (Pham-Gia and Hung, 2001):

Robust CV =

(

MAD

Median

)

∗100% (10)

This formula offers a more resilient measure against the

skewness and anomalies inherent in microbiome data. Among the

batches identified as homogeneous by the Kruskal-Wallis test, the

batch exhibiting the lowest Robust CV is selected as the optimal

reference. This batch is expected to have the least variability,

TABLE 3 PERMANOVA R
2 of HIVRC dataset.

Method Distance metric

Bray-curtis Aitchison Canberra Manhattan

Original 0.1199∗ 0.0642∗ 0.0808∗ 0.0879∗

MMUPHin 0.0822∗ 0.0602∗ 0.0779
∗ 0.0295∗

Percentile normalization 0.1191∗ 0.0899∗ 0.1142∗ 0.1136∗

ConQuR 0.0149∗ 0.0901∗ 0.1628∗ 0.0087∗

ComBat 0.0637∗ 0.0564
∗ 0.0825∗ 0.0137∗

Proposed model 0.0128
∗ 0.0854∗ 0.1493∗ 0.0065

∗

PERMANOVA R2 represents the proportion of total variance explained by differences between groups (Anderson, 2014; Kelly et al., 2015). In this study, it was utilized to assess whether

differences between groups were reduced by comparing the data before and after batch effect correction. A lower R2 value indicates that the batch effect correction was successfully performed.

The values in bold represent the cases where batch correction was most effectively performed for each distance metric. Significant values (P ≤ 0.05) are denoted by an asterisk (∗).
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making it the best candidate for minimizing batch effects in the

subsequent analyses. Supplementary material including the code

and data used in this study, is available at https://github.com/

JIWONNP/Composite-Quantile-Regerssion.

3 Results

In our study, we conducted an empirical evaluation of

batch effect correction methods, including MMUPHin, Percentile

Normalization, ConQuR, ComBat and our proposed model. To

demonstrate the effectiveness of our proposed model, we used

PERMANOVA R2 (Tables 3, 4), Average Silhouette Coefficient

for quantification and Principal Coordinates Analysis (PCoA)

plots (Figures 1–5) for visualization. A range of dissimilarity

metrics commonly used in microbiome research were employed

for this evaluation. We compared the values for each method

across different dissimilarity metrics (Song et al., 2023): Bray-

Curtis, Aitchison, Canberra, and Manhattan. The outcomes

of the Kruskal-Wallis test indicate no significant differences

TABLE 4 PERMANOVA R
2 of HPV dataset.

Method Distance metrics

Bray-Curtis Aitchison Canberra Manhattan

Original 0.0379∗ 0.0473∗ 0.0596∗ 0.0291∗

MMUPHin 0.023∗ 0.0449∗ 0.0677∗ 0.0156∗

Percentile normalization 0.071∗ 0.039∗ 0.0676∗ 0.0766∗

ConQuR 0.0154∗ 0.0263∗ 0.0294∗ 0.0032∗

ComBat 0.0177∗ 0.0422∗ 0.0592∗ 0.0079∗

Proposed model 0.002
∗

0.0246
∗

0.0264
∗

0.0029
∗

The values in bold represent the cases where batch correction was most effectively performed for each distance metric. Significant values (P ≤ 0.05) are denoted by an asterisk (∗).

FIGURE 1

PCoA plots of HIVRC dataset. Each plot corresponds to a di�erent dissimilarity measure. These metrics capture di�erent aspects of the data’s

structure in pre-correction data. The colors represent batch ID indicating in which of the individual studies that each sample was included. If spatial

patterns among data points from various batches are consistent, this is indicative of e�ective batch e�ect correction. Distinct colors represent

di�erent batches, and the intermingling of these colors rather than clear segregation indicates a high degree of batch e�ect correction.
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FIGURE 2

Comparative PCoA plot across diverse methods of HIVRC dataset. Each row shows data points clustered by batch ID. The first column is the original

data without any batch e�ect correction. The following columns show the data after applying existing methods and proposed model. Each row

corresponds to a di�erent dissimilarity metric used in the PCoA algorithm. The batch IDs were coded as follows: “Noguera-Julian” = 1,

“Pinto-Cardoso” = 2, “Serrano-Villar 2017” = 3, and “Vesterbacka” = 4. The variation across rows demonstrates how the choice of dissimilarity metric

a�ects the visualization of batch e�ects and their correction.

between the distributions of batch groups, suggesting that

the negative binomial regression model appropriately formed

similar distribution pattern by excluding consistent effects across

each batch.

Results from the analysis of the Human Immunodeficiency

Virus Re-analysis Consortium dataset are presented below. These

were analyzed to evaluate the effectiveness of our proposed model

in correcting batch effects and maintaining the integrity of the

microbiome data. For Bray-Curtis dissimilarity, the proposed

model achieved the lowest R2 value of 0.0128∗, indicating superior

performance in batch effect correction compared to other methods.

ConQuR also performed well with a R2 value of 0.0149∗, while

MMUPHin and ComBat showed moderate performance with R2

values of 0.0822∗ and 0.0637∗, respectively (Table 4). Regarding

Aitchison dissimilarity, the proposed model had a higher R2 value

of 0.0854∗, indicating less effective correction in this specific metric

and ComBat demonstrated better performance with R² values

of 0.0564∗. ConQuR showed the highest R2 value of 0.0901∗,

suggesting the least effective correction in this metric. For Canberra

dissimilarity, MMUPHin achieved the lowest R2 value of 0.0779∗,

closely followed by ComBat with an R2 value of 0.0825∗. The

proposed model had R2 value of 0.1493∗, which was lower than

ConQuR’s R2 value of 0.1628∗, indicating moderate performance.

In the case of Manhattan dissimilarity, the proposed model excelled

with the lowest R2 value of 0.0065∗, demonstrating excellent

batch effect correction. ConQuR and ComBat showed moderate

performance with R2 values of 0.0087∗ and 0.0137∗, respectively.

This analysis confirms the effectiveness of various methods in

addressing batch effects, with significant values (P ≤ 0.05) marked

by an asterisk (∗). This calculation was conducted using the

“adonis” function of vegan package (2.6–6.1) in R.

Overall, our proposed method consistently achieved lower R2

values, indicating a significant reduction in batch effects across

various dissimilarity measures. This performance underscores

the robustness and superior effectiveness of our method in

correcting batch effects in microbiome data. MMUPHin and

Percentile Normalization exhibited intermediate performance

across most dissimilarity measures, while ConQuR and ComBat

showed varying effectiveness depending on the metric used. The

effectiveness of batch effect correction varies across different

distance metrics, as each metric considers different aspects of the

data. Bray-Curtis and Manhattan metrics reflect compositional

differences between samples. The Bray-Curtis metric focuses on the

relative abundance of shared OTUs between samples, highlighting

how similarly the samples are composed in terms of the OTUs

they have in common. Similarly, the Manhattan metric considers

the absolute differences in abundance, treating all changes equally.

Therefore, Bray-Curtis and Manhattan metrics effectively capture

overall abundance differences and compositional changes in data.

On the other hand, Aitchison and Canberra metrics emphasize

ratio-based differences and small values. The Aitchison metric,

used for compositional data, is sensitive to variations in the

relative abundance of OTUs, considering ratio fluctuations. The

Canberra metric assigns greater weight to changes in small values,

highlighting differences in proportions with smaller magnitudes.

Due to these characteristics, in composite quantile regression
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FIGURE 3

PCoA plots of HPV dataset. Each plot corresponds to a di�erent dissimilarity measure. These metrics capture di�erent aspects of the data’s structure.

The colors represent seven batch ID indicating individual PlateID that each sample was included.

models, the effectiveness of adjustments can be diminished when

using distance metrics like Aitchison and Canberra, depending

on the selected regression coefficients (Ricotta, 2017). This

comprehensive evaluation highlights the proposed model’s ability

to handle batch effects more effectively, ensuring reliable analysis

of microbiome data.

The proposed model consistently achieved the lowest R2 values

across all distance metrics in the HPV dataset, demonstrating

optimal batch effect correction performance with values of 0.002∗,

0.0246∗, 0.0264∗, and 0.0029∗ for the Bray-Curtis, Aitchison,

Canberra, and Manhattan distance metrics, respectively (Table 4).

The prominent results of the proposed model with the Bray-

Curtis and Manhattan distance metrics can be attributed to

the characteristics of the composite quantile regression model

described previously.

4 Discussion and conclusion

Ourmodel employs a Negative Binomial approach tomodel the

variability within batch effects, aiming to align batch distributions

and exclude generalized effects across batches. We select the

reference batch through a methodical process, employing the

Kruskal-Wallis test and median absolute deviation to identify

batches that consistently reflect the general characteristics of the

data. Furthermore, our approach incorporates composite quantile

regression which addresses the effects within each batch at the OTU

level. This procedure ensures that our model not only corrects

for obvious systematic differences but also subtly adjusts for less

predictable changes within the microbiome data, leading to a more

reliable results of biological data across different batches.

When applied to the HIVRC data, and the HPV study data, this

model demonstrated considerable success in reducing batch effects.

It showed improved correction results compared to the application

of conditional quantile regression independently, consistently

across these different datasets. By effectively addressing both

systematic and non-systematic batch effects, the proposed method

ensures a more reliable and accurate analysis of microbiome

data. We also verified that similar results were obtained using

an additional dataset (Ewha Women’s University Medical Center

metagenomic urine control data−16S rRNA sequencing data).

Given the similarity of observed patterns, we chose to present

results from two representative datasets.

Despite the effectiveness of our proposed method, several

limitations should be acknowledged. First, microbiome data often

contain a high proportion of zeros that can lead to instability in

quantile regression at extreme quantiles (e.g., lower 10% and upper

90%) due to the limited number of non-zero data points. This
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FIGURE 4

Comparative PCoA plots across diverse methods of HPV dataset. Each row shows data points clustered by 7 batch ID. The first column is the original

data without any batch e�ect correction. The following columns show the data after applying existing methods and proposed model. Each row

corresponds to a di�erent dissimilarity metric used in the PCoA algorithm. The batch IDs were coded as follows: “p68_s01_JH1_16SV4” = 1,

“p68_s07_JH7_16SV4” = 2, “p68_s02_JH2_16SV4” = 3, and “p68_s03_JH3_16SV4”= 4, “p68_s04_JH4_16SV4” = 5, “p68_s05_JH5_16SV4” = 6,

“p68_s06_JH6_16SV4” = 7.

FIGURE 5

Average Silhouette coe�cient of each dataset. The silhouette coe�cient measures the quality of clustering (Llet et al., 2004). When the silhouette

coe�cient is close to 1, it means the samples are well-separated within their own group and distinctly apart from other groups, implying that batch

e�ects are still present. A silhouette coe�cient close to 0 suggests that the boundaries between groups are ambiguous and there are no clear

distinctions, indicating that the samples are well-mixed and batch e�ect correction is most ideal. Conversely, a silhouette coe�cient close to −1

means that the samples have poor cohesion within their group and are closer to samples in other groups, indicating poor batch e�ect correction.

Four di�erent distance metrics were employed: Bray-curtis (red), Aitchison (green), Canberra (blue), and Manhattan (purple).

sparsity can affect the robustness and accuracy of the regression

estimates at these extreme quantiles. In practice, the dataset with

the lowest zero inflation (31%) showed the best results in correcting

batch effect based on quantile estimation and based on this, it was

determined that the rate of zero inflation could act as a factor that

decreases the stability of the model. Furthermore, the performance

of the model may vary depending on the metrics or categories of

data used. Different datasets or dissimilarity distance measures may

influence the effectiveness of the batch effect correction, indicating

that the model’s performance is not universally consistent across

all possible applications. Lastly, the efficacy of our model may

be compromised in research designs where the separation of

confounding variables from primary variables is challenging.

Addressing batch effects in confounded study designs presents

considerable difficulties, and careful experimental design can serve

as a critical factor in alleviating batch effects. These limitations

Frontiers inMicrobiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1484183
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Park and Park 10.3389/fmicb.2025.1484183

highlight the need for further refinement of the model to enhance

its robustness and applicability across diverse microbiome datasets.

Additionally, the model assumes that the count data follow a

negative binomial distribution, which may not always be the case in

real-world microbiome data. Also, when various trends or patterns

clearly emerge across different quantiles of the data, it may be

more appropriate to use regression coefficients specialized for

each quantile.
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