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Background: The intestinal microbiota contributes to the colonization resistance 
of the gut towards bacterial pathogens. Antibiotic treatment often negatively 
affects the microbiome composition, rendering the host more susceptible for 
infections. However, a correct interpretation of such a perturbation requires 
quantitative microbiome profiling to reflect accurately the direction and 
magnitude of compositional changes within a microbiota. Standard 16S rRNA 
gene amplicon sequencing of microbiota samples offers compositional data 
in relative, but not absolute abundancies, and the presence of multiple copies 
of 16S rRNA genes in bacterial genomes introduces bias into compositional 
data. We  explored whether improved sequencing data analysis influences the 
significance of the effect exerted by antibiotics on the faecal microbiota of 
young pigs using two veterinary antibiotics. Calculation of absolute abundances, 
either by flow cytometry-based bacterial cell counts or by spike-in of synthetic 
16S rRNA genes, was employed and 16S rRNA gene copy numbers (GCN) were 
corrected.

Results: Cell number determination exhibited large interindividual variability 
in two pig studies, using either tylosin or tulathromycin. Following tylosin 
application, flow cytometry-based cell counting revealed decreased 
absolute abundances of five families and ten genera. These results were not 
detectable by standard 16S analysis based on relative abundances. Here, GCN 
correction additionally uncovered significant decreases of Lactobacillus and 
Faecalibacterium. In another experimental setting with tulathromycin treatment, 
bacterial abundance quantification by flow cytometry and by a spike-in method 
yielded similar results only on the phylum level. Even though the spike-in method 
identified the decrease of four genera, analysis by fluorescence-activated cell 
sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella 
and Paraprevotella upon antibiotic treatment. In contrast, analysis of relative 
abundances only showed a decrease of Faecalibacterium and Rikenellaceae 
RC9 gut group and, thus, a much less detailed antibiotic effect.

Conclusion: Flow cytometry is a laborious method, but identified a higher 
number of significant microbiome changes in comparison to common 
compositional data analysis and even revealed to be  superior to a spike-in 
method. Calculation of absolute abundances and GCN correction are valuable 
methods that should be standards in microbiome analyses in veterinary as well 
as human medicine.
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Introduction

Antibiotic treatment often has a detrimental impact on the gut 
microbiome integrity, resulting in an increased risk for infection 
(Stecher et al., 2013; Prax et al., 2021), and an improved functional 
understanding of this dysbiosis requires a proper analysis of the 
intestinal microbiota composition. However, 16S sequencing data is 
generally not fully representative of community composition, due to 
sampling, DNA isolation, primer choice, 16S rRNA gene copies, and 
data analysis (Abellan-Schneyder et  al., 2021). Concerning data 
analysis, filtering of spurious taxa and primer trimming seems to have 
a major impact (Reitmeier et al., 2021; Haider et al., 2024). Another 
major limitation is that high-throughput 16S rRNA gene sequencing 
of microbiota samples provides compositional data that appear as 
relative instead of absolute abundancies. Relative abundancies 
quantify the different microbial taxa as fractions within a sample 
irrespective of its total cell numbers. Such relative microbiome 
profiling (RMP) often results in artefacts with respect to comparative 
taxon counts. In particular, a comparative analysis does not yield data 
about extent or directionality of compositional changes of a microbiota 
upon perturbation. For example, antibiotic treatment that decreases 
cells belonging to a specific microbial family necessarily results in an 
apparent increase of the relative abundance of a resistant family when 
RMP is applied. This hampers the identification of microbial taxa that 
are significantly affected upon intervention (Jian et al., 2020). Further 
drawbacks of describing relative abundances were stated in numerous 
publications (Vandeputte et al., 2021; Vandeputte et al., 2017; Galazzo 
et al., 2020; Lambrecht et al., 2017; Rao et al., 2021), but they have 
rarely been assessed in next generation sequencing (NGS) studies on 
microbiomes (Boshuizen and Te Beest, 2023).

To address this issue, microbial cell numbers of a sample need to 
be quantified by internal standards. For example, known amounts of 
DNA can be spiked into microbial samples before DNA extraction 
(Tkacz et al., 2018; Lin et al., 2019), an approach termed internal 
standard normalization (ISN) that has been established for 
quantitative and metagenome analysis (Satinsky et al., 2013). Using a 
set of environmental samples, Lin et al. demonstrated that community 
profiles and taxon co-occurrence patterns obtained by ISN 
substantially differed from RMP (Lin and Peddada, 2020). Another 
option is to spike a sample with a known number of exogeneous 
bacteria to adjust the microbiome composition (Stämmler et  al., 
2016). As an alternative, quantitative microbiome profiling (QMP) by 
qPCR, which targets 16S rRNA genes, is cost-effective, feasible and 
directly comparable to NGS (Jian et al., 2020). Challenges encountered 
here are the choice of a reference organism required to construct a 
standard curve, DNA extraction efficiencies, and the variance of 

strain-specific16S rRNA operon copy numbers per genome (Bonk 
et al., 2018). Flow cytometry of cells stained with a fluorescent dye is 
another feasible method to enumerate bacterial cells. Vandeputte and 
colleagues (Vandeputte et al., 2017) established a workflow for QMP 
of 40 faecal samples of a study cohort by flow cytometry and thus 
demonstrated that the association between Crohn’s disease and a 
low-cell-count Bacteroides enterotype is an artefact due to 
RMP. However, when DNA-binding stains are used, the fluorescence 
intensity is directly related to the nucleic acid content of the sample, 
possibly resulting in a bias due to distinct genome lengths, 
physiological states of a cell, or a lack of reproducibility in staining 
and storage conditions that cause DNA to deteriorate (Prest et al., 
2013; Kamiya et al., 2007). Following a comparison of qPCR and flow 
cytometry, Galazzo et al. (2020) concluded that qPCR-based QMP is 
too imprecise to be an alternative to flow cytometry. In contrast, Jian 
and colleagues pointed out that microbiota sequenced by 16S rRNA 
amplicon sequencing differs from microbiota quantified by flow 
cytometry, because the DNA extracted from a faecal sample does not 
necessarily correlate with intact bacterial cells (Jian et al., 2020).

A further bias in microbiome analysis is introduced by up to 15 
copies of 16S rRNA genes in a single genome (Angly et al., 2014; 
Vetrovsky and Baldrian, 2013). Bacteria with more than one copy of 
the 16S rRNA gene appear overrepresented as multiple sequences are 
attributed to single cells. Variations in 16S rRNA gene copy numbers 
(GCN) are particularly common in the phylum Bacillota and the class 
Gammaproteobacteria, which belongs to the phylum Pseudomonadota 
(Vetrovsky and Baldrian, 2013; Göker and Oren, 2024; Williams and 
Kelly, 2013). Although the exact number of the 16S rRNA gene is 
usually taxon-specific, variations among strains of the same species 
were also observed (Acinas et al., 2004).

In this study, we examined whether an optimized microbiota analysis 
of faeces samples from animals treated with antibiotics reveals significant 
effects that were not detected by RMP. The veterinary antibiotics tylosin 
and tulathromycin were administered to piglets in two independent 
animal trials. A correction of relative frequencies of bacterial taxa 
determined via NGS was performed by considering the 16S rRNA 
GCN. Absolute taxon abundancies were calculated for each taxon by 
measuring total bacterial cell numbers via by flow cytometry. For method 
comparison, cell numbers of samples from animals treated with 
tulathromycin were additionally determined using a spike-in method 
according to Tourlousse et al. (2017, 2018).

Methods

Piglet feeding trial A with tylosin 
application

Four weeks old female pigs obtained from the Mörsdorfer Agrar 
GmbH (Mörsdorf, Thuringia, Germany) were maintained in the 
animal facility of the Friedrich-Loeffler-Institute (Jena, Germany) in 
separate pens. After 2 weeks of acclimatization, piglets (n = 2 per 
group in pre-trial, n = 4 per group in main trial, 12 animals in total, 

Abbreviations: ASV, amplicon sequence variant; OTU, operational taxonomic unit; 

FC, fold change; GCN, gene copy number; IMNGS2, Integrated Microbial Next 

Generation Sequencing version 2; SINA, SILVA Incremental Aligner; RDP, ribosomal 

database project; RMP, relative microbiome profiling; QMP, quantitative microbiome 

profiling.
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10.77 ± 1.39 kg live weight) were fed about 5 g of either pure peanut 
butter (Netto American Style, Netto Marken-Discount Stiftung & Co. 
KG, Maxhütte-Haidhof, Germany) or peanut butter supplemented 
with tylosin tartrate (Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany) at a concentration of 10 mg/kg bodyweight per piglet. Each 
feeding was done twice in an interval of 24 h. Individual faecal samples 
were collected before (d0) and 30 h (d1), 48 h (d2), 72 h (d3), and 96 h 
(d4) after antibiotic treatment. Samples were homogenized, and 
aliquots were stored either at room temperature (RT) in 600 μL DNA 
stabilization solution (INVITEK Molecular, Berlin, Germany) for 
sequencing, or at −20°C without additives.

Piglet feeding trial B with tulathromycin 
application

Eighty weaned barrows (6.39 ± 1.1 kg live weight) were group-
housed (four piglets/pen) and equally assigned to one of four diets 
with graded copper levels (five pens/diet) during 5 weeks of rearing. 
At the end of the fourth experimental week, piglets of each dietary 
group were subdivided into half and were subjected to intramuscular 
injection of the antibiotic (DRAXXIN® Zoetis, 2.5 mg tulathromycin/
kg BW) or a placebo (0.9% NaCl). Individual faecal samples obtained 
via manual rectal stimulation were collected directly before and 24 h 
after the respective injection. Faecal material was snap-frozen in liquid 
nitrogen immediately after collection and stored at −80°C until 
further processing. Six piglets (antibiotic-treated individuals) of the 
dietary groups with 150 mg Cu/kg feed were chosen for further 
analysis in this study for total bacterial counts and sequencing.

Sequencing and raw read processing

Isolation of total DNA and sequencing of 16S rRNA gene 
amplicons was carried out at the Core Facility Microbiome of the 
Technical University of Munich (Freising, Germany) as described 
previously (Reitmeier et al., 2020) with slight modifications. Briefly, 
DNA was isolated using a MaxWell (Promega, Walldorf, Germany) 
after bead-beating and used in a 2-step PCR to generate sequencing 
libraries. The first PCR used primers specific for the V3 and V4 
regions (i.e., 341F, CCT ACG GGN GGC WGC AG; 785R, GAC TAC 
HVG GGT ATC TAA TCC) that contain an overhang for the 
subsequent PCR for sample barcoding. Cleaned libraries were 
sequenced PE300 on a MiSeq (Illumina). Spike-in of synthetic full-
length 16S rRNA genes was done as described by Tourlousse et al. 
(2018, 2017). Here, 6 ng of spike DNA, consisting of an equimolar 
mixture of 13 linearized plasmids, each of which contains an artificial 
16S rRNA gene, was added to 600 μL of the faeces-stabilizer mix. In 
each artificial “gene”, the invariant regions of the 16S rRNA were left 
untouched, while the variable regions were swapped with artificial 
sequences. Thus, spike reads are clearly distinguishable from true 
bacterial reads in analysis. Sample weight (i.e., gram of faecal material) 
was recorded in order to obtain 16S rRNA GCN per gram sample.

Raw reads were processed with pipeline DADA2 (Callahan et al., 
2016). Sequences were demultiplexed and filtered, and amplicons with an 
expected error > 2 were excluded. To limit the analysis of regions with 
higher error values, reads were trimmed to sequence lengths of 250 bp 
and 200 bp, respectively, for forward and reverse reads. Remaining reads 

were merged to paired end reads. Amplicon sequence variants (ASVs) 
were clustered at 97% sequence identity, and their sample-wise 
abundances were calculated after removing substitution and chimera 
errors. Taxonomies were assigned at 80% confidence level by considering 
results from both the Ribosomal Database Project (RDP) classifier (Wang 
et al., 2007) and the SILVA Incremental Aligner (SINA; v1.2.11) (Pruesse 
et al., 2012). Taxon names were verified manually in accordance to the 
nomenclature defined by the List of Prokaryotic names with Standing in 
Nomenclature (LPSN) (Parte, 2013; Parte, 2018; Parte et  al., 2020; 
Euzéby, 1997).

16S rRNA GCN correction and synthetic 
spike-in

ASVs were analysed using parts of the PICRUSt2 pipeline (Douglas 
et al., 2020) as follows. HMMER version v3.3.21 places ASVs, EPA-ng 
(Barbera et al., 2018) determined the optimal position of these ASVs 
in a reference phylogeny, and GAPPA (Czech and Stamatakis, 2019) 
outputs a new tree incorporating ASV placements. This adjusted 
reference phylogeny allowed for the prediction of 16S rRNA GCN. The 
IMNGS output ASVs tables were corrected within the PICRUSt2 
pipeline by dividing the original read counts by the predicted GCN.

To obtain a more intuitive comparability of both methods, 
we  harmonized absolute abundances obtained by a flow cytometry 
method, FACS, and the spike-in approach as follows. Since the spike-in 
method gives only relative numbers of 16S rRNA gene copies between 
samples, cell counts of piglet 7 determined by FACS on day 0 were used 
as a reference. Subsequently, read counts for the spikes of this sample were 
scaled to the cell numbers within this sample using an arbitrary factor. The 
factor was chosen such that the relative amount of spike in this sample 
could be  converted into the cell number found by FACS. The other 
samples gave relative numbers of gene copies that were multiplied by this 
factor in order to calculate cell number equivalents.

Flow cytometry measurements

Frozen faecal samples were split into 0.1-g aliquots in triplicate 
and slowly thawed on ice. Aliquots were diluted in 10 mL 0.85% (w/v) 
NaCl and homogenized for 3 min with a Vortex-Genie 2 mixer 
(Scientific Industries, New York, United States). To remove faecal 
debris, the solutions were filtered using a sterile syringe filter with 
5 μm pore size (Macherey-Nagel, Düren, Germany). Next, 500 μL of 
the filtered cell suspension were mixed with three volumes of fixation 
buffer (4% paraformaldehyde, 200 nM Na2HPO, pH 7.2) for at least 
3 hours at RT. Subsequently, the samples were centrifuged at 
12,000 × g for 10 min, and the supernatant was discarded. The 
remaining pellets were dissolved in 500 μL sterile filtered PBS (Sigma-
Aldrich, Steinheim, Germany) and stained using the LIVE/DEAD™ 
BacLight™ kit (Invitrogen, Karlsruhe, Germany).

Quantification of microbial cells in the faecal suspensions was 
performed using a FACS Canto II flow cytometer (BD Biosciences, NJ, 
United States). Fluorescence events were monitored using 530 nm and 

1 http://www.hmmer.org
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660 nm optical detectors. Forward-and sideward-scattered light was 
also collected. The BD FACSDiva™ Software and FlowJo (both BD 
Biosciences) were used to gate and separate the microbial fluorescence 
events on the FITC-PE density plot from the faecal sample background. 
The gated fluorescence events were evaluated on the forward-sideways 
density plot to exclude remaining background events and to obtain an 
accurate microbial cell count. Instrument and gating settings were 
identical for all samples. Measurements were conducted in triplicates.

Integration of cell counts into relative 
abundances

To calculate absolute frequencies of individual taxa, flow 
cytometry-measured bacterial cell counts were integrated into the 
ASV table created with DADA2 (Callahan et  al., 2016). For this 
purpose, the read counts of each taxon in a sample were divided by 
the total read count of that sample. Subsequently, these numbers were 
multiplied by the bacterial cell count of the sample. The sum of all taxa 
in a sample yielded the total bacterial cell counts.

Statistical analysis

All further analyses were performed in the R programming 
environment using Rhea (Lagkouvardos et al., 2017), following scripts 
and instructions available online.2 A PERMANOVA test (vegan::adonis) 
was performed in each case to determine if the separation of sample 
groups was significant, as a whole and in pairs. For the analysis of relative 
abundances, counts were standard normalized using total sum scaling. 
To analyse absolute abundances, no normalization was applied after 
integration of bacterial cell counts. The filtered and, in case of relative 
abundances, normalized ASVs table used as basis for all analyses is 
provided in Supplementary Tables 1, 2. α-diversity was computed based 
on generalized UniFrac distances (Chen et al., 2012). β-diversity was 
assessed on the basis of species richness and Shannon effective diversity 
(Jost, 2007) as explained in detail in Rhea. p values were corrected for 
multiple comparisons according to the Benjamini-Hochberg method. 
Only taxa with a prevalence ≥30% (proportion of samples positive for 
the given taxa) in one given group and relative abundance ≥0.25% 
(Reitmeier et  al., 2021) in at least one sample were considered for 
statistical testing. Statistical analyses were performed as described for 
each experiment and p values ≤0.05 were considered as significant.

Results and discussion

Relative and absolute bacterial abundances 
upon tylosin treatment of piglets

In the first experimental setting, 10 mg of tylosin per kg 
bodyweight was applied twice in a 24 h-interval orally to six animals. 
Faecal samples were collected immediately before (sample d0) and at 
day 1 to 4 (samples d1–d4) after application. To investigate effects of 

2 https://lagkouvardos.github.io/Rhea/

tylosin on the composition of the piglet microbiota, we performed 16S 
rRNA gene amplicon sequencing of faecal samples. Statistical analysis 
revealed no significant changes in the faecal microbiota compositions 
of control group piglets, whereas tylosin treatment caused various 
effects. In more detail, the α-diversity of faecal microbiota compositions 
on day 1 to 4 of each tylosin treated animal in comparison with day 0 
was calculated for each animal (Supplementary Figure 1). Throughout 
the whole group, the number of species and the Shannon effective 
number significantly decreased after tylosin application, as previously 
described for other macrolide antibiotics such as azithromycin 
(McDonnell et  al., 2021). Despite an overall reduction in species 
richness following tylosin treatment, a significant increase in the 
relative abundance of Pseudomonadota was observed post-application 
(Figure 1A; Supplementary Table 3; Supplementary Figure 2). The 
abundance of this phylum increased in the microbiota of all animals 
tested here, but only in one piglet to a considerable extent. In sample 
d3, we observed a marked increase in the abundance of Bacillota, 
indicating a microbiota rebalancing post-tylosin disturbance, while the 
abundance of Pseudomonadota decreased. Four days after application, 
the microbiota composition closely resembled that of sample d0, with 
a minor increase in the abundance of Bacillota.

The values gained by RMP, however, do not necessarily mirror 
absolute cell numbers of a taxon present in a sample. For example, the 
true reduction of a taxon can result in an apparent decrease of the total 
cell count without affecting absolute frequencies of the other taxa. To 
overcome this limitation of RMP, we applied flow cytometry to all 
samples analysed above. Total cell numbers determined at day 0 ranged 
from 7.20 × 107 cells per gram faeces (c/gf) to 2.49 × 108 c/gf, with the 
group median of 9.15 × 107 c/gf (Figure 1B; Supplementary Table 4). 
Along the experimental course, the median number remained nearly 
constant. Total cell counts not only varied among the animals but also 
within an individual over time due to cell densities in faeces depending 
on water content and other physiological factors (Vandeputte et al., 
2021; Wang et al., 2007). Nevertheless, results from individual samples 
of the present study are comparable to each other upon careful sample 
processing, even if they deviate from the results of other studies 
(Vandeputte et al., 2021; Vandeputte et al., 2017; Wang et al., 2007). The 
method used in this study differs from other protocols by an additional 
fixation and washing step, possibly resulting in a reduced number 
of bacteria.

Integration of bacterial cell counts into 
faecal microbiome composition analysis 
improves the explanatory power of a 
porcine faecal microbiome analysis

Total cell counts obtained by flow cytometry were integrated into the 
relative abundances of bacterial taxa as determined by 16S rRNA gene 
amplicon sequencing. The resulting absolute abundances revealed that 
the increase of Pseudomonadota, detected by RMP, was not an artefact 
due to limitations of this method (Figure 1C; Supplementary Table 3; 
Supplementary Figure 2), but indicated an actual bloom of this phylum. 
This observation can be explained by the inhibition of other phyla by 
tylosin, thus creating ecological niches that favour the spread of 
Pseudomonadota (Morton et al., 2019), in turn contributing to dysbiosis, 
intestinal diseases, and increased susceptibility towards infections (Shin 
et al., 2015; Sun et al., 2019; Bonardi, 2017; Bin et al., 2018).
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Correction of 16S rRNA GCN increases the 
accurateness of family-and genus-level 
analysis

To reduce bias due to 16S rRNA gene copies present in a bacterial 
genome, we determined the GCN for each molecular species using 
PICRUSt2 (Douglas et al., 2020) and corrected relative frequencies 
accordingly. This pipeline has the advantage that it predicts GCN of 
unknown genera based on similarities to already known sequences.

Of a total of 234 genera, 63 genera (26.9%) were identified in our 
samples to harbour more than one copy of the 16S rRNA gene in the 
genome, and most of them carried up to five copies 
(Supplementary Table 5). Genus Pseudescherichia exhibited six copies, 
genus Clostridium sensu stricto 6 eight copies, and genus Paenibacillus 
even nine copies, indicating that the significance of these individual taxa 
for the overall microbiota composition is overestimated. Following 
GCN correction of relative abundances, the decrease observed for the 
families Rikenellaceae and Oscillospirales UCG-10 was confirmed 
(Figures  2A,B top; Supplementary Table  6). On genera level, GCN 
correction decreased the proportion of taxa with more than one copy of 
the 16S rRNA gene and thus influenced results of the statistical analysis 
(Figures 2A,B, bottom). The decrease in unknown Bacteroidales RF16 
group was not confirmed by GCN correction, which is consistent with 
the observations already made at the family level. The relative abundance 
of some genera (i.e., Lachnospiraceae ND3007 group, Lactobacillus, the 
Rikenellaceae RC9 gut group, and an unknown Bacteroidales RF16 
group) showed a decrease on day 1 compared to day 0 only after GCN 

correction. The Lachnospiraceae ND3007 group is known to 
be positively correlated with a health supporting diet, which is rich in 
fibre and plant-based foods (Ericson et al., 2020; Ma et al., 2021). A 
restriction of fibre-degrading bacteria by antibiotics may have a negative 
effect on the energy production and thus on the growth performance of 
animals. Lactobacillus has been identified as one of the core genera in 
the gastrointestinal tract of pigs (Valeriano et al., 2017), contributing to 
overall health and growth performance and increasing the productivity 
of swine husbandry (Kenny et  al., 2011; Yang et  al., 2015). The 
Rikenellaceae RC9 gut group typically experiences an increase after 
weaning, coinciding with the transition of swine to solid food digestion 
(Saladrigas-García et al., 2022). In addition, significant decreases in the 
abundances of Faecalibacterium, Neglectibacter, and Solobacterium were 
overlooked due to missing GCN correction (Figures 2A,B, bottom). 
Faecalibacterium is a short chain fatty acids (SCFAs) producing genus 
with potential benefits for human health (Martin et al., 2023), thus 
underlining the relevance of GCN correction in microbiome analysis.

Combination of absolute cell numbers and 
GCN reveals further hidden significant 
changes of bacterial abundances in 
tylosin-treated piglets

Integration of total cell counts into GCN-corrected relative 
abundances revealed several significant changes in different taxa, 
which were insignificant before. The decrease noted for Rikenellaceae 

FIGURE 1

Integration of bacterial cells counts into faecal microbiome composition. (A) Relative abundances of bacterial phyla deduced from standard 
microbiome 16S rRNA gene amplicon sequencing. (B) Bacterial cell counts per gram faeces measured by flow cytometry. (C) Absolute abundances of 
bacterial phyla following integration of bacterial cell counts into 16S rRNA gene sequencing data. Per phylum, cumulative abundances were calculated 
from all single ASV classified within one phylum using both RDP and SILVA. The numbers above the bars indicate individual piglets. Samples d0–d4 
were taken immediately before and at the 4 days following tylosin treatment. Bar plots for individual piglets are shown (n = 6).
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FIGURE 2

Correction of 16S rRNA GCN and integration of bacterial cell counts in family-and genus-level analyses. (A) Relative abundances were obtained by 
standard analysis of 16S rRNA gene sequencing data. (B) Same data set as (A), but corrected for GCN of the 16S rRNA genes. (C) Same data as in (B), 
but absolute abundances were obtained by integration of bacterial cells counts via flow cytometry. Heat maps for the occurrence of families over time 
points are shown as mean values over all six animals. Below each heat map, significantly changed relative and absolute abundances of single genera 
are shown in boxplots. Cumulative abundances were calculated from all single ASVs classified within one family or genus as per the best possible 
taxonomy using both RDP and SILVA. * p < 0.05 pairwise Fisher’s Exact Test, n = 6.
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by RMP was not confirmed by QMP upon data integration (Figure 2C 
top; Supplementary Table  6), in contrast to the decrease of the 
Oscillosporales UCG-10 family on day 4. Significant reductions were 
noted in the Clostridia UCG-014 family, in the Clostridia vadin BB60 
group, and in Pseudobdellovibrionaceae from day 1 to day 4 post-
treatment. Additionally, a significant decrease was recorded for the 
abundance of Eggerthellaceae on day 2 and of Campylobacteraceae on 
day 4. To summarize, relative abundances corrected with GCN only 
revealed significant decrease of two different families, while absolute 
abundance analysis of such data showed a significant change of six 
different bacterial families over time.

On the genus level, eleven different genera were found to have a 
significant decrease when absolute abundances together with GCN 
were considered (Figure 2C, bottom). The decrease of Solobacterium, 
an opportunistic pathogen, and the genus Oscillospirales UCG-010, as 
already observed upon RMP, was confirmed. In contrast, six different 
genera showed statistically significant changes in relative abundances, 
but did not exhibit significant changes in absolute analysis 
(Figures  2B,C, bottom). Additionally, Campylobacter displayed a 
decreased abundance on day 4 and an unknown genus from 
Oscillospiraceae on day 1 and day 2. Acetitomaculum and Clostridium 
sensu stricto 1 showed decreased abundance on days 1 to 3, and 
Clostridia UCG-014, Clostridia vadin BB60 group, Oscillospiraceae 
UCG-002, and Vampirovibrio exhibited decreasing abundances 
consistently over 4 days. Oscillospiraceae UCG-002 support breakdown 
of aspartate and glycine, and the unknown Clostridia UCG-014 
facilitates degradation of tryptophan in the intestine (Atzeni et al., 2022; 
Yang et al., 2021). Both genera are important for the normal intestinal 
function of animals. The inhibition of SCFA-producing genera such as 
Clostridiales vadin BB60, the genus Oscillospirales UCG-010, and 
Acetitomaculum, may reverse the positive effects described above 
(Sawicka-Smiarowska et al., 2021; Sebastià et al., 2024; Greening and 
Leedle, 1989). The opportunistic pathogen Clostridium sensu stricto 1 
was shown to be associated with inflammatory bowel disease and a 
reduced concentration of SCFA in the intestine (Yang et al., 2019; Hu 
et al., 2021). Inhibition of these bacteria can have positive effects on the 
health of animals by preventing relapsing infection (Bublitz et al., 2023).

To summarize the tylosin treatment data, correcting for 16S rRNA 
gene copies and the integration of bacterial cell counts increased the 
explanatory power of the data regarding such a perturbation (Kim 
et  al., 2016; Candon et  al., 2015; De La Cochetiere et  al., 2005; 
Dethlefsen and Relman, 2011). Until now, any such correction has 
hardly been applied in microbiome studies. GCN combined with 
QMP not only revealed tylosin activity against opportunistic 
pathogens, but also stronger effects of the antibiotic on beneficial 
commensal bacteria otherwise not detectable by RMP. This result may 
explain a stronger impairment of functions of the gut microbiota such 
as the maintenance of colonization resistance and, thus, an increased 
probability of subsequent infections as compared to previous data 
(Collington et al., 1972; Kim et al., 2012).

FACS and spike-in counting for QMP are 
equivalent methods on the phylum level

To compare two methods for calculating abundances, namely flow 
cytometry-based cell counting and spike-in of synthetic full-length 
16S rRNA genes, we  analysed the microbiota of samples from 

tulathromycin-treated piglets of a second experimental setting (see 
Supplementary Table  7 for an overview of the workflow). For 
comparability of both methods, we applied an arbitrary factor based 
on the sample from piglet 7 on day 0 as the reference (see method for 
details) that revealed cell number equivalents. Since FACS analyses 
yielded about 6.0 × 107 c/gf, cell number equivalents for swine 7 using 
spike-in DNA were set to the same level.

RMP of the samples from piglets treated with tulathromycin 
identified 15 different phyla (Figure 3A; Supplementary Table 8) and a 
decrease of Bacteroidota across most piglets that correlated with a relative 
increase of Bacillota. Piglets 9, 10, and 11 exhibited only minor changes at 
the phylum level, indicating a stable composition of their microbiomes. 
Incorporating total cell counts obtained by flow cytometry into RMP 
revealed a consistent decrease in total bacterial cell numbers across all 
piglets, ranging from 27% for piglet 9 to 68% for piglet 12 (Figure 3B; 
Supplementary Table 8). These differences, as well as the variation of 
initial total bacterial cell numbers, which range from 2.3 × 107 to 9.2 × 107 
c/gf, underline the high variability of individual faecal microbiomes. In 
contrast to RMP, Bacillota exhibited a decrease from 4.8 × 107 c/gf on day 
0 to 1.9 × 107 c/gf on day 1, which is a fold change [FC] of 0.40 after 
integration of bacterial cell counts. Similarly, a decrease in Bacteroidota 
was observed in all piglets, which contrasted with relative increases noted 
in the microbiome of piglet 11 due to RMP (FC = 1.15).

Next, we compared the results of FACS with those of the spike-in 
results. The changes of absolute abundancies on the phylum level as 
revealed by the spike-in method were mostly similar compared to 
results calculated with total cell counts (Figure  3C; 
Supplementary Table  8). An exception was observed in piglet 10, 
where an increase in total absolute abundances of Actinomycetota 
(1.5-fold), Bacillota (1.8-fold), and Spirochaetota (1.7-fold) was noted. 
Integration of spike-in sequencing data into GCN-corrected RMP 
revealed a decreased total cell count for most of the samples in line 
with flow cytometry-based analysis.

Taken together, the phyla reductions upon tulathromycin 
treatment observed in absolute abundances were more prominent 
than those observed for relative abundances.

QMP by FACS is superior to spike-in on the 
family and genus level

The application of tulathromycin caused dynamic shifts of the 
abundance of families and genera. Among the 59 families detected by 
RMP, a relative decrease was observed in 33 families (Figure  4A; 
Supplementary Table  9; Supplementary Figure  3). For instance, 
Rikenellaceae experienced a significant relative decrease from 2.0 to 
1.3%. This decline was associated with a relative increase in 26 other 
families, including Tannerellaceae and Acidaminococcaceae.

Integration of flow cytometry data revealed a decrease in mean cell 
counts from 6.32 × 107 c/gf to 3.3 × 107 c/gf after treatment (Figure 4B; 
Supplementary Table 9). In contrast to RMP, significant reductions in 
Lachnospiraceae, Lactobacillaceae, Oscillospiraceae, and Prevotellaceae 
across all piglets during the same time were observed. In contrast, when 
applying a data analysis using the spike-in method, we also found a 
decrease for 42 families, but none became significant (Figure  4C; 
Supplementary Table 9; Supplementary Figure 4). Sample analysis at the 
genus level revealed distinct trends in relative and absolute abundances. 
Upon RMP, Faecalibacterium decreased relatively from 2.10 to 0.84%, and 
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the Rikenellaceae RC9 gut group from 1.81 to 1.25% (Figure  4A; 
Supplementary Figure 3). Integration of FACS data revealed eight genera 
significantly decreased with respect to absolute abundances, namely 
Catenibacterium, Duncaniella, Lactobacillus, Paraprevotella, Prevotella, 
Prevotella 9, Roseburia, and an unknown genus of Oscillospiraceae 
(Figure 4B; Supplementary Figure 3). For instance, there was a decrease 

in the key gut genera and SCFA-producer Lactobacillus and Prevotella, 
which contribute to the maintenance of the intestinal barrier, from 
3.6 × 106 to 1.1 × 106 and from 2.2 × 106 c/gf to 9.6 × 105 c/gf, respectively 
(Supplementary Figure 4). While Faecalibacterium and Rikenellaceae RC9 
gut group still decreased from day 0 to day 1, this decrease was no longer 
significant in pairwise tests.

FIGURE 3

Absolute abundances of bacterial phyla after integrating total cells or spike-in counts. (A) Stacked bar plots show phyla abundances after correction for 
GCN of 16S rRNA genes. (B) Absolute abundancies as measured by flow cytometry and (C) as calculated after using spike-in DNA. Bacterial cell counts 
per gram faeces are shown. Cumulative abundances were calculated from all single ASVs classified within one phylum as per the best possible 
taxonomy using both RDP and SILVA. Numbers above the bars indicate individual piglets. Samples were taken before (d0) and 1 day after (d1) 
tulathromycin treatment (n = 6).
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Following analysis of spiked-in samples, Faecalibacterium and 
Rikenellaceae RC9 gut group were again found to be  statistically 
significantly reduced, with Faecalibacterium decreasing by a FC of 0.29 
and Rikenellaceae RC9 gut group by a FC of 0.05 (Figure  4C; 
Supplementary Figure 4). Additionally, the number of Prevotella 7 was 

reduced by a FC of 0.6, and an unknown genus from Erysipelotrichaceae 
by a FC of 0.2. To summarize, the spike-in method yielded a higher 
number of significant changes of the microbiota on the family and 
genus level compared to RMP, but fewer effects than total cell counting 
by FACS.

FIGURE 4

Influence of tulathromycin on the family and genus level of porcine faecal microbiota. (A) Relative abundances of bacterial families obtained by 
standard analysis of 16S rRNA gene sequencing data including GCN correction. (B) Same data as in (A) after integrating total cell counts obtained from 
flow cytometry and (C) after calculating absolute abundances of bacterial families from spike-in DNA after sequencing. In each panel, an overview is 
given by stacked bar plots for family abundances. Significantly changed relative and absolute abundances of single genera are shown in boxplots. 
Mean values over all six animals are indicated. Cumulative abundances were calculated from all single ASVs classified within one family as per the best 
possible taxonomy using both RDP and SILVA. All significant changes were indicated with the Paired Wilcoxon Signed Rank Sum Test with p ≤ 0.05 
(n = 6).
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Conclusion

Integrating absolute cell counts into relative sequence data is one step 
further for accurately assessing gut microbiota states (Lin and Peddada, 
2020), especially since changes in bacterial density may indicate various 
health conditions (Morjaria et al., 2019; Contijoch et al., 2019). Our study 
supports the significance of a precise determination of absolute cell 
numbers, either by flow cytometry analysis or spike-in of DNA, to avoid 
misinterpretation of microbiome data. The FACS approach, however, 
requires a greater effort in preparation than the spike-in method based 
only on adding appropriate amounts of synthetic DNA to the sample 
ahead of DNA isolation. We observed a high degree of comparability 
between the two methods to calculate absolute abundancies. Integration 
of total cell counts by FACS detected a larger number of significant 
changes in the compositional data of the microbiomes on the level of 
families and genera. Although there is potential for errors, for example 
due to high interindividual variance, the need of standards in cell 
quantitation, and the lack of comparability between samples to 
be sequenced on the one hand and the quantified microbiota on the other 
hand (Jian et al., 2020), the presented benefits of improved data analysis 
outweigh their drawbacks.
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SUPPLEMENTARY FIGURE 1

α-diversity of faecal microbiota upon tylosin treatment. (A) Normalized 
number of species and (B) Shannon effective numbers of faecal microbiota 
obtained by standard analysis of 16S rRNA gene sequencing data is shown a 
line plot. Individual piglets are indicated by the corresponding colours. 
Cumulative abundances were calculated from all single ASVs classified 
within one family as per the best possible taxonomy using both RDP and 
SILVA (# p < 0.05 after Paired Wilcoxon Signed Rank Sum Test, n = 6).

SUPPLEMENTARY FIGURE 2

Correction of 16S rRNA GCN and integration of bacterial cell counts into 
relative abundance analyses of the phylum Pseudomonadota. (A) Relative 
abundances of Pseudomonadota were obtained by standard analysis of 16S 
rRNA gene sequencing data. (B) Same data set as panel A, but corrected for 
GCN of the 16S rRNA genes. (C) Same data as in panel B, but absolute 
abundances of Pseudomonadota were obtained by integration of bacterial cells 
counts via flow cytometry. Relative and absolute abundances in the faecal 
microbiota of each animal are shown in boxplots. Cumulative abundances 
were calculated from all single ASVs classified within one phylum as per the 
best possible taxonomy using both RDP and SILVA (# p < 0.05 after Paired 
Wilcoxon Signed Rank Sum Test, n = 6).

SUPPLEMENTARY FIGURE 3

Influence of tulathromycin on the family level of porcine faecal 
microbiota after integrating total cells or spike-in counts. Relative 
abundances of bacterial families were obtained by standard analysis of 
16S rRNA gene sequencing data including GCN correction (A columns). 
The same data set as in A columns is shown after integrating total cell 
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counts obtained from flow cytometry (B columns) and after calculating 
absolute abundances of bacterial genera from spike-in DNA after 
sequencing (C columns). Heat maps for the abundance fold change of 
families following tulathromycin treatment are shown as mean values 
over all six animals. Cumulative abundances were calculated from all 
single ASVs classified within one family as per the best possible 
taxonomy using both RDP and SILVA.

SUPPLEMENTARY FIGURE 4

Relative and absolute abundances of commensal genera in porcine 
faecal microbiota. (A) Relative abundances of bacterial families obtained 

by standard analysis of 16S rRNA gene sequencing. (B) Same data as in 
panel A after GCN correction. (C) Same data as in panel B after 
integrating total cell counts obtained from flow cytometry and (D) after 
calculating absolute abundances of bacterial genera from spike-in DNA 
after sequencing. Significantly changed relative and absolute 
abundances of single genera are shown in boxplots. Mean values over 
all six animals are indicated. Cumulative abundances were calculated 
from all single ASVs classified within one genus as per the best possible 
taxonomy using both RDP and SILVA (# p < 0.05 after Paired Wilcoxon 
Signed Rank Sum Test, n = 6).
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