The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Virology
Volume 15 - 2024 |
doi: 10.3389/fmicb.2024.1540358
Highly pathogenic bovine viral diarrhea virus BJ-11 unveils genetic evolution related to virulence in calves
Provisionally accepted- 1 Northwest A&F University, Xianyang, China
- 2 Beijing Academy of Agricultural and Forestry Sciences, Beijing, Beijing Municipality, China
- 3 Hebei Agricultural University, Baoding, Hebei, China
- 4 Beijing Centrebio Biological Co., Ltd, Beijing, China
- 5 Jiangxi Agricultural University, Nanchang, Jiangxi, China
- 6 Beijing University of Agriculture, Beijing, Beijing Municipality, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea, which causes significant economic loss to the global livestock industry. Despite the widespread use of inactivated BVDV vaccines, highly pathogenic strains continue to emerge. In China, regional variations in BVDV subtypes, morbidities, and symptoms, however, only the BVDV 1a subtype vaccine is currently approved. Therefore, this study is to gain insight into the biological characteristics and genetic variation of BVDV strains prevalent in Beijing. Meanwhile, this will provide a theoretical foundation and technical support for the prevention and control of BVDV, as well as raise awareness of the potential for virulence enhancement caused by the unregulated use of BVDV vaccines. In this study, A BVDV strain, BJ-11, was isolated from calves that died of diarrhea and vaccinated of BVDV. To evaluate its virulence, newborn calves were experimentally infected with the BJ-11. Clinical signs included fever, diarrhea, bloody stools, anorexia, and death in some cases. A marked reduction in leukocyte and lymphocyte counts were observed, accompanied by an increase in neutrophil counts. Histopathological changes manifested as severe lung lesions. Phylogenetic analysis indicated that BJ-11 belongs to the BVDV 1b subtype, genetically closest to the JL-1 strain. Analysis of the E2 glycosylation site disappeared (298SYT) in one of the four common glycosylation sites in the BVDV-1, which has been reported to affect the ability of the virus to infect and an additional glycosylation site (122NGS). These results indicate that BJ-11 is a highly pathogenic strain evolved from a low-virulence ancestor and should be served as a challenge strain. Simultaneously, these results contribute to a broader understanding of BVDV and whether imperfect vaccination strategies lead to reversal of immunosuppressive virulence.
Keywords: bovine viral diarrhea virus, lethal strain, BVDV 1b, glycoprotein mutations, Evolve, vaccination strategies
Received: 05 Dec 2024; Accepted: 23 Dec 2024.
Copyright: © 2024 Zhang, CHENG, Guo, Hu, Zhao, Liu, Zhou, Wu, Cheng, Yang, Yang, Du and Yongqing. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Enqi Du, Northwest A&F University, Xianyang, China
Li Yongqing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, Beijing Municipality, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.