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dna2bit is an ultra-fast software specifically engineered for microbial genome

analysis, particularly adept at calculating genome distances within metagenome

and single amplified genome datasets. Distinguished from existing software

such as Mash and Dashing, dna2bit employs feature hashing technique and

Hamming distance to achieve enhanced speed and memory utilization, without

sacrifice in the accuracy of average nucleotide identity calculations. dna2bit has

promising applications in various domains such as average nucleotide identity

approximation, metagenomic sequence clustering, and homology querying.

dna2bit significantly boosts computational efficiency in handling large datasets

including single amplified genomes, thereby facilitating a better understanding

of the population heterogeneity and comparative genomics of microorganisms.

dna2bit is available at https://github.com/lijuzeng/dna2bit.

KEYWORDS
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clustering, single amplified genomes

Background

Metagenome analysis has emerged as a standard approach for the examination of
microbial genomes. Initiatives such as Global Oceanographic Survey (GOS), Animal
Metagenome Database, and MetaHIT Project have established comprehensive databases
that reach terabyte scale. These databases recorded 16S rRNA and whole genome sequences
from various environments including oceans across different latitude, animal tissues,
and human intestines (Blanco-Miguez et al., 2017; Biller et al., 2018; Hu et al., 2022).
The fundamental problem of downstream analysis is to determine the species, relative
abundance and functional genes associated with each microorganism.

Despite metagenome analysis at macro level, whole genome amplification (WGA)
techniques have been widely applied for the detection of picogram-level DNA in
the environment. Uncultivable environmental DNA, also known as “microbial dark
matter” cannot be detected by traditional cultivation methods, while WGA method
including multi-displacement amplification (MDA) has facilitated the sequencing of
single amplified genomes (SAGs) at the single-cell level (Maruyama et al., 2017).
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SAG data enables detailed research on population heterogeneity
and gene expression of individual uncultured microorganisms
(Wiegand et al., 2021). Due to partitioning of single cells and
extensive parallel sequencing, number of SAG genomes present
in a sample significantly exceeds that of traditional microbial
genomes. Subsequent data analysis including clustering and
co-assembly demands much higher throughput and efficiency
(Hosokawa et al., 2017).

The computation of microbial genomic distances across
varying assembly qualities has been emphasized in comparative
genomics, metagenomic analysis and the co-assembly of SAGs
(Wang et al., 2021). Existing methods for distance calculation
categorized into two approaches: alignment-dependent and
alignment-free methods. The alignment-dependent strategy
focuses on determining the average nucleotide identity (ANI)
through the simulation of DNA–DNA hybridization. ANI serves
as a robust measure of overall similarity within homologous
regions of two microbial genomes. On the other hand, alignment-
free methods are regarded as a more efficient approach for
handling large-scale genomic data. Drawing inspiration from
text clustering algorithms in computer science, these methods
effectively compress large genomes into more manageable sketches,
thereby facilitating the estimation of Jaccard similarity in reduced
representations (Zielezinski et al., 2017). The Jaccard similarity
index can be obtained in fewer calculation steps and provides a
practical approximation of ANI (Arahal, 2014).

The introduction of Mash by Ondov et al. (2016) marked
a significant milestone in alignment-free genomic analysis. By
employing MinHash to generate genomic sketches, Mash has
become the most preeminent software for rapid and efficient
genome comparison (Ondov et al., 2016). Spurred by Mash,
FastANI has further established a more refined approximation of
ANI, facilitating a more streamlined and accurate assessment across
diverse prokaryotic genomes (Jain et al., 2018).

The remarkable success of Mash has sparked the development
of analogous software. For instance, Dashing has introduced
HyperLogLog sketches as a viable alternative to MinHash,
effectively overcoming the challenges associated with disparate
genome sizes (Baker and Langmead, 2019). BinDash leverages
advancements in MinHash such as binary rolling hash technique
to accelerate distance computation in large genomes (Zhao, 2019).
Both Mash and its subsequent enhancements employ probabilistic
data structures to achieve dimensionality reduction, which is
accomplished through the creation of sketch representations for
the original genomes. Similar algorithms have found widespread
application in bioinformatics. SpaceSeed has been deployed
for the classification of metagenomic data (Luo et al., 2019),
while bloom filters have been utilized in assembly of genomes
(Jackman et al., 2017).

Probabilistic data structures are suitable for intersection and
union operations, which are essential in computing a range
of similarity indices, including Jaccard index, simple matching
coefficient, Sorensen–Dice coefficient, Salton’s cosine index, and
overlap coefficient (Verma and Aggarwal, 2020). In scenarios
that necessitate frequent computation of distances, reliance
on intersection and union for similarity assessments presents
significant computational challenges. Given the explosive growth of
single-cell sequencing files, such situation is becoming increasingly
common.

Beyond utilizing intersection and union for similarity
measurement, researchers have explored alternative metrics such
as cosine distance, Euclidean distance and Hamming distance
(Singh et al., 2020). Dong et al. (2019) have developed an
Euclidean-distance approach to characterize the distribution and
covariance of nucleotides across genomes, enabling the efficient
construction of phylogenetic trees. Zamora et al. (2016) have
implemented a low-dimensional Hamming embedding technique
to approximate pairwise similarity matrices in clustering tasks,
which eliminates the need for extensive data storage and achieves
better runtime and lower memory usage.

Our strategy incorporates Hamming distance to avoid
frequent intersections and unions in distance calculation. This
approach draws inspiration from Google’s SimHash, a robust
and well-established technique originally implemented for text
deduplication (Sadowski and Levin, 2007). In comparison to
MinHash, SimHash has shown superior performance in processing
voluminous text data while maintaining a comparable level
of accuracy (Uddin et al., 2011). The application of SimHash
in bioinformatics has shown promising outcomes as well. For
instance, Firtina et al. (2023) have developed BLEND to manage
read coverage in genome assembly task, demonstrating notable
advantages in both speed and memory efficiency.

Similar to existing software like Mash, dna2bit employs a
two-stage approach including sketch and distance calculation.
During sketch stage, the input nucleotide sequences undergo
dimensionality reduction through the feature hashing technique
(Weinberger et al., 2009), converting genomic k-mers into a
compact bit array representation. Subsequently, the Hamming
metric will be applied to calculate pairwise distances between these
bit arrays. As an open-source software with MIT license, dna2bit
is readily available for download at https://github.com/lijuzeng/
dna2bit, facilitating its integration into various bioinformatics
pipelines.

Results

Hyperparameter screening for optimal
prediction of ANI

Our initial investigation focuses on clarifying the correlation
between distances computed by dna2bit and ANI derived from
alignment-based software MUMmer4 (Marcais et al., 2018). This
relationship is quantified by the Pearson correlation coefficient
between dna2bit distance and 1-ANI. We further examine the
impact of different hyperparameters on the performance of
dna2bit. Specifically, we consider the length of the bit array referred
to as sketch size (denoted as l), and the length of the k-mer (denoted
as k).

To empirically assess this correlation, we randomly extracted
a subset of 500 Escherichia coli genomes from the NCBI RefSeq
database for distance calculation. For dna2bit, we set a range of
k-mer lengths and sketch sizes. The Pearson correlation coefficients
under various settings are illustrated in Figure 1A.

The heatmap indicates that as the values of k and l increase,
there is a notable enhancement in the Pearson coefficient,
suggesting a better correlation between dna2bit distance
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FIGURE 1

Hyperparameter optimization for dna2bit using Escherichia coli genomes: (A) Scatter plots show the relationship between 1-ANI and the distances
computed by dna2bit, with the red line indicating the linear regression model’s prediction. The x-axis varies the bit array length (l), while the y-axis
alters the k-mer size (k). (B) The heatmap presents the root mean square error (RMSE) between the dna2bit distances and 1-ANI, indicating the
impact of different hyperparameter configurations.

and 1-ANI. However, larger k and l results in an escalation
in computational requirements for distance computation.
Consequently, we screened the optimal combination of sketch
size and k-mer length for subsequent analysis. Optimality was
determined by minimizing the root mean square error (RMSE)

while balancing computational expense. We explored an extended
range of values for both k and l. The heatmap in Figure 1B
illustrates RMSE results calculated by dna2bit.

Observation reveals that the RMSE values are relatively low
for k-mer lengths between 15 and 21. Detailed outcomes for
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each k-mer length and sketch size are thoroughly documented
in Supplementary Figure 1. Considering the collective findings
from Figures 1A, B and Supplementary Figure 1, we have
ascertained the default hyperparameters for dna2bit to be
bit_array_length = 8, 192 and k_mer = 17. These choices
achieve an optimal balance between computational speed and
commendable precision in genomic distance estimations.

Clustering analysis on metagenomes and
single-cell amplified genomes

Leveraging the robust correlation between bit distance
and 1-ANI, we have conceptualized a distance-based genome
clustering task. The most typical scenario for clustering involves
metagenomes, and the clustering of single-cell amplified genomes
(SAGs) has emerged as a hot topic in recent years in microbiomes.
We downloaded the GOS dataset for our analysis (Biller et al.,
2018). GOS study was designed to examine different microbial
populations which are sampled across marine with various latitudes
and temperatures. Our metagenome dataset encompasses 37
unique samples from the GOS study. Following the computation of
pairwise distances using dna2bit, we employed the hclust package
in R to perform hierarchical clustering. In alignment with the
clustering labels from Mash’s work, we illustrated clustering results
that correspond to six types of marine sampling sites as a heatmap
in Figure 2A.

Adjacent to the coordinate axis, the hierarchical tree diagram
indicates clear distinctions among samples collected from six sites.
Essentially, the “Others” category (represented in white) segregates
the remaining groups. Within the colored groups, only sample 9
from the “Temperate South” group is incorrectly categorized with
the “Tropical Galapagos” group.

Furthermore, we obtained the SAG dataset from the Linnaeus
Microbial Observatory (LMO). In the LMO study, Alneberg et al.
(2018) collected 81 metagenomes (MAGs) and 17 SAGs to perform
a seasonal analysis of microbial populations in the Baltic Sea.
We conducted a re-clustering analysis of seven clusters which
included SAG genomes. Our dataset included a total of 31 genomes,
comprising 24 MAGs and 7 SAGs. The clusters were labeled
following the BACL numbering system proposed by Hugerth et al.
(2015). The results of the hierarchical clustering based on dna2bit
distance are illustrated in Figure 2B.

dna2bit successfully separated BACL clusters that included
MAGs, while there was a misclassification for the SAG samples
BS0038H10 and BS0038D5. The actual BACL groupings for these
samples are BACL 1 for BS0038H10 and BACL 10 for BS0038D5,
corresponding to the γ-Proteobacteria and Rhodobacter,
respectively. Incorrect samples may contain analogous genes
responsible for the breakdown of organic carbon. Because
both γ-Proteobacteria and Rhodobacter are the predominant
marine microorganisms known to suppress the proliferation of
dinoflagellates.

Beyond the challenge of overlapping gene sequences, the
limitations inherent in the distance representation with a single
parameter setting may also lead to misclassification. To enhance the
performance in these edge cases, various configurations of the k and
l parameters can be integrated to generate a regularized distance

estimation for clustering process, thereby improving the accuracy
and reliability of the classification outcomes.

Computational efficiency and accuracy
among different software

We compare the computational efficiency of dna2bit and
existing software. Commonly used software such as Mash, BinDash,
and Dashing (Ondov et al., 2016; Baker and Langmead, 2019;
Zhao, 2019) were selected as the baseline. Each software was
equipped with 10 threads and tested across a variety of k-mer
length settings. However, the concept of sketch size varies between
dna2bit and other software, resulting in differences in the actual
sketch sizes used. We downloaded 37,004 genomes from the NCBI
RefSeq database for evaluation, adhering to specific inclusion
criteria: prokaryotic, latest, complete genome without any “contigs”
notation. Detailed information about the dataset is provided in
Supplementary material. Figure 3B presents the running records
for each software. Metric of runtime and memory usage utilized in
the experiment are the execution time and the peak memory usage,
quantified as the elapsed (wall clock) time in seconds and maximum
resident set size (RSS) in megabytes (MB).

The histogram analysis indicates that dna2bit achieves the
shortest overall runtime, which is 6.4–59.9 times faster than Mash,
2.5–3.5 times faster than BinDash, and 2.4–6.0 times faster than
Dashing. During the sketch stage, dna2bit outperforms both Mash
and BinDash in runtime as well, while being slightly slower
than Dashing. In terms of memory utilization, dna2bit shows
the lowest RAM usage at the distance stage. As the sketch size
increased, memory efficiency for dna2bit becomes increasingly
evident. At the sketch stage, the RAM usage of dna2bit (294 MB)
remains relatively stable regardless of sketch size, with a modest
increase compared to Dashing (162 MB). Conversely, Mash and
BinDash demonstrate increased RAM requirements across all
configured sketch sizes (Mash: 1,191–22,748 MB, BinDash: 149–
2,001 MB). Detailed runtime and RAM usage data are provided in
Supplementary Tables 1–6.

To evaluate the accuracy of ANI estimations, we conducted
a comparative analysis across different software. Similar to the
hyperparameter screening under varying k-mer lengths and sketch
sizes, we computed the RMSE between distances predicted by
each software and MUMmer4-based 1-ANI. We randomly selected
100 genomes from above prokaryotic dataset and performed the
calculations three times to ensure reliability. Figure 3A displays
the results from one of these trials, while the remaining two are
provided in Supplementary Figures 2, 3.

The line chart analysis reveals that dna2bit exhibits a lower
RMSE value across a range of hyperparameter settings, which
corroborates the robust correlation observed between bit distance
and ANI again. dna2bit maintains a stable RMSE level despite
changes in sketch size, whereas Mash and BinDash show significant
variation. This can be attributed to the fact that Mash and BinDash
incorrectly report distance value as k increased, which adversely
affects the precision of the ANI calculations.

When estimating Jaccard similarity with a large k value, the
likelihood of k-mer overlap may diminish due to uniqueness
increases. MinHash-based Mash and BinDash methods tend to
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FIGURE 2

Hierarchical clustering of metagenomes and single-cell amplified genomes (SAGs) facilitated by dna2bit. (A) Metagenomes from the Global
Oceanographic Survey (GOS) dataset. (B) SAGs from the Linnaeus Microbial Observatory (LMO) dataset. Pairwise distances for samples are
computed using dna2bit and subsequently utilized for hierarchical clustering analysis.

incorrectly estimate the cardinality of overlapping k-mers as zero,
thereby misjudging distance as one and resulting in RMSE errors
regardless of genetic relationship. Dashing does not exhibit this
issue, but it also encounters estimation errors at lower k values due
to high probability of short k-mer coincidences.

In contrast to these methods, dna2bit employs Hamming
distance instead of Jaccard index for estimating ANI. Given that
this methodology is independent of the k-mer coincidence
probability, a factor known to be sensitive to parameter
k, we hypothesize that employing Hamming distance can
substantially avoid the impact of k value selection on the
ANI estimation error. Consequently, dna2bit demonstrates
commendable consistency and robustness across a broad range of
k values.

Methods

dna2bit sketch

In order to convert sequencing files into bit arrays,
both the primary nucleotide sequences and their reverse
complements are processed by a sliding window of length k
to extract k-mers. Subsequently, each k-mer undergoes hashing
by a specific hash function to generate a 64-bit hash value
(Figure 4A).

Motivated by the principle of feature hashing, the hash values
associated with k-mers are then allocated to bins of a fixed
number (denoted by l) through the modulo operation. The term
“node” is employed to describe the identifier suffixed to each bin.
Consequently, every k-mer is mapped to a specific node via the
hash value modulo the total count of bins. This modulo operation
enables a consistent and uniform classification of k-mers, effectively
reducing the dimensionality of the feature space (Attenberg et al.,
2009).

To effectively represent the extensive collection of k-mers
within a specific bin, we implemented a binary-projection approach
inspired by the Simhash algorithm (Henzinger, 2006). Within the

scope of dna2bit, the hash values for each bin are aggregated based
on a sign function:

sign
(
hash

)
=

{
1, if sign bit = 1
−1, if sign bit = 0

(1)

Accumulated count of sign function will subsequently be mapped
onto a single bit:

bit_array[node] =

{
1, if

∑
2 × sign

(
hash

)
− 1 ≥ 0

0, if
∑

2 × sign
(
hash

)
− 1 < 0

(2)

Through the processing of each node, a sequence is sketched
into a binary array of a specified length l (Figure 4B). Following
the concept of “approximate fingerprint” of a file in Simhash,
dna2bit creates an “approximate genetic fingerprint” for nucleotide
sequences. In subsequent analysis, dna2bit focuses on performing
various operations solely on these fingerprints, which occupy
minimal memory space and facilitate swift computations.

dna2bit distance

Hamming distance was introduced as a measure to quantify the
difference between two bit arrays. This metric is widely recognized
for its ability to assess arrays of identical length by counting their
different positions (Jarrous and Pinkas, 2009). Computation of the
Hamming distance between bit arrays is conducted through the
following procedure:

δ
(
ai, bi

)
=

{
1, if ai 6= bi
0, if ai = bi

(3)

w (A, B) =

l∑
i = 1

δ
(
ai, bi

)
(4)

Here, “A” and “B” are used to represent two different bit arrays,
with “a” and “b” representing the bit values at each position.
Computation of Equations 3, 4 can be efficiently executed using
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FIGURE 3

Assessment of dna2bit’s performance in accuracy and computational efficiency compared to Mash, BinDash, and Dashing across diverse
hyperparameter configurations. (A) Line plots show the root mean square error (RMSE) for the four methods. (B) Histograms show the efficiency in
terms of runtime and memory usage during the sketch and distance stages, as well as the overall process (combining both sketch and distance
stages) for the four methods.

bitwise eXclusive OR (XOR) operations and the population
count (popcount) function in C++ (Figure 4C). Many processor
architectures including x86 and ARM provide instructions for
executing XOR and popcount operations, enhancing the efficiency
at the hardware level by parallel processing of multiple bits.

Although Hamming distance efficiently highlights distinctions
between binary arrays, it does not exhibit a strong correlation with
the ANI of the original genomes. To establish a more biologically
relevant distance metric, we refer to the research conducted by Fan
et al. on the nucleotide substitution model. Under the assumption
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FIGURE 4

The principle of dna2bit. (A) Sequence files are processed using a sliding window to generate k-mers. Each k-mer is subsequently hashed into a
64-bit hash value through a hash function. (B) Hash values are allocated into bins associated with unique node by the modulo operation. A node’s
bit is determined by the cumulative summation and binary projection with non-negative sums indicating “1.” (C) The bit arrays from two sequences
undergo eXclusive OR (XOR) operation, followed by a population count (popcount) procedure. The dna2bit distance is subsequently computed
based on a predefined formula.

that the mutation frequency of k-mer follows a Poisson distribution
with parameter λ = kd, the probability of no mutations occurring
within a k-mer is given by e−kd (Fan et al., 2015). If we further
assume that the Hamming distance (denoted as w) is related to this
probability, we can expect that the ratio of w to the length of the bit
array (l) serves as an estimation, i.e., e−kd = 1− w

l . By solving the
equation, we derive the following formula:

d (A, B) = −
1
k

ln
(

1−
w
l

)
(5)

Through the pairwise computation of bit arrays, a distance matrix
can be derived. dna2bit offers two output formats for subsequent
analysis: an upper triangular matrix and a symmetric matrix.

Hash function

dna2bit provides users with the flexibility to select from three
different hash functions: wyhash, nthash, and Murmurhash3, each
with its unique characteristics and applications.

wyhash is a hash function developed by our team with
robust performance. It has successfully passed various stringent
tests, including SMHasher, BigCrush, and practrand. wyhash is
engineered to operate effectively on both 64-bit and 32-bit systems,
making it versatile for different computational environments. The
source code for wyhash is available at our GitHub repository: https:
//github.com/wangyi-fudan/wyhash.

nthash is a hash function introduced by Mohamadi et al.
(2016). It employs a rolling hashing algorithm specifically designed
for processing nucleotide sequences such as adjacent k-mers
(Mohamadi et al., 2016).

Murmurhash3 is a widely recognized hash function established
by Austin Appleby. Both Google and Mash have integrated it
into the MinHash algorithm. Murmurhash3 is known for its non-
cryptographic properties and its performance, especially in terms
of speed and collision resistance.

dna2bit benchmarking

dna2bit leverages a variety of well-established packages to
enhance its functionality and performance. kseq is utilized for
reading input files, providing compatibility with both FASTA and
FASTQ formats. zlib is employed for reading compressed (.gz) files.
OpenMP is a programming framework to execute multi-threading
operations across multiple processor cores, which significantly
improves computational efficiency. nthash and Murmurhash3 are
the candidate hash functions. dna2bit is written in C++11. Software
testing task was carried out on a PC equipped with an Intel Core
i7-11700 CPU, featuring 16 threads and 32 GB of memory.

Conclusion

dna2bit presents a computationally efficient approach for the
large-scale estimation of genomic distances, which is especially
important for the scenes that need to deal with a large amount
of data in metagenomics and single amplified genome analysis. In
contrast to existing tools such as Mash, BinDash, and Dashing, the
adoption of a binary fingerprint by dna2bit significantly accelerates
the computation of distances while concurrently reducing memory
consumption. The Hamming-based bit distance calculated by
dna2bit retains a robust correlation with established metrics,
including ANI as well as the Jaccard index. In clustering analysis
involving metagenomics and SAGs, dna2bit exhibits exemplary
performance, equipping researchers with a dependable and rapid
tool for the analysis of microbial populations.

In the future, dna2bit holds considerable promise for further
integration into bioinformatics workflows related to comparative
genomics. Through ongoing advancements in parallel processing
and computational algorithm optimization, dna2bit emerges
as a critical tool in DNA assembly and real-time genomic
diagnostics. The further development of dna2bit is anticipated to
significantly contribute to large-scale microbial genomes clustering
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and abundance estimation in environmental microbiology,
driving innovation and discovery in microbial
genomics
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