
TYPE Review
PUBLISHED 22 January 2025
DOI 10.3389/fmicb.2024.1516667

OPEN ACCESS

EDITED BY

Feng Gao,
Tianjin University, China

REVIEWED BY

Ahmed Moustafa,
American University in Cairo, Egypt
Jan Zrimec,
National Institute of Biology (NIB), Slovenia
Yong-Xin Liu,
Chinese Academy of Agricultural
Sciences, China

*CORRESPONDENCE

Adrián Martín-Segura
adrian.martin@alimentacion.imdea.org

†These authors have contributed equally to
this work

RECEIVED 24 October 2024
ACCEPTED 16 December 2024
PUBLISHED 22 January 2025

CITATION

Przymus P, Rykaczewski K, Martín-Segura A,
Truu J, Carrillo De Santa Pau E, Kolev M,
Naskinova I, Gruca A, Sampri A, Frohme M and
Nechyporenko A (2025) Deep learning in
microbiome analysis: a comprehensive review
of neural network models.
Front. Microbiol. 15:1516667.
doi: 10.3389/fmicb.2024.1516667

COPYRIGHT

© 2025 Przymus, Rykaczewski,
Martín-Segura, Truu, Carrillo De Santa Pau,
Kolev, Naskinova, Gruca, Sampri, Frohme and
Nechyporenko. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Deep learning in microbiome
analysis: a comprehensive review
of neural network models

Piotr Przymus1†, Krzysztof Rykaczewski1†,
Adrián Martín-Segura2*†, Jaak Truu3†,
Enrique Carrillo De Santa Pau2, Mikhail Kolev4,5, Irina Naskinova4,
Aleksandra Gruca6, Alexia Sampri7,8, Marcus Frohme9 and
Alina Nechyporenko9,10

1Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń, Toruń,
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Microbiome research, the study of microbial communities in diverse
environments, has seen significant advances due to the integration of deep
learning (DL) methods. These computational techniques have become essential
for addressing the inherent complexity and high-dimensionality of microbiome
data, which consist of di�erent types of omics datasets. Deep learning algorithms
have shown remarkable capabilities in pattern recognition, feature extraction,
and predictive modeling, enabling researchers to uncover hidden relationships
within microbial ecosystems. By automating the detection of functional genes,
microbial interactions, and host-microbiome dynamics, DL methods o�er
unprecedented precision in understanding microbiome composition and its
impact on health, disease, and the environment. However, despite their potential,
deep learning approaches face significant challenges in microbiome research.
Additionally, the biological variability in microbiome datasets requires tailored
approaches to ensure robust and generalizable outcomes. As microbiome
research continues to generate vast and complex datasets, addressing these
challenges will be crucial for advancing microbiological insights and translating
them into practical applications with DL. This review provides an overview
of di�erent deep learning models in microbiome research, discussing their
strengths, practical uses, and implications for future studies. We examine how
these models are being applied to solve key problems and highlight potential
pathways to overcome current limitations, emphasizing the transformative
impact DL could have on the field moving forward.
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Introduction

The diverse microbial communities inhabiting different environments play pivotal

roles in shaping ecosystem dynamics, influencing nutrient cycling, and impacting the

health and wellbeing of host organisms (Sessitsch et al., 2023; Liao et al., 2024).

Understanding the intricate relationships within microbiomes is crucial for various fields
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such as agriculture, medicine, and environmental science.

Microbiome engineering, aimed at manipulating microbial

communities to achieve desired outcomes, requires comprehensive

knowledge of microbial community composition, function, and

interdependencies (Berruto and Demirer, 2024; Cullen et al., 2020;

Lee, 2023).

Conventional analytical methods often struggle to fully capture

the intricate complexity and dynamics present in microbiome data.

This limitation has motivated researchers to explore advanced

computational approaches such as machine learning and deep

learning. Microbiome data is inherently high-dimensional, sparse,

and context-dependent, posing difficulties for traditional machine

learning methods. Deep learning (DL) models, with their capacity

to process complex, non-linear relationships, have shown promise

in overcoming these limitations. Deep learning architectures, in

particular, provide robust tools for extracting meaningful patterns

from complex, high-dimensional data, making themwell-suited for

microbiome analysis. Unfortunately, significant challenges remain.

Issues such as the limited number of observations, sparse data,

interpreting model outcomes, and ensuring model robustness

across different types of microbiome data pose ongoing hurdles.

This paper is a complementary work and a continuation of the

previous efforts carried out by the COST (European Cooperation

in Science and Technology) Action CA18131 on Statistical and

Machine Learning Techniques in Human Microbiome Studies

(ML4Microbiome). It aims to assist microbiologists and biomedical

scientists who are beginning their journey or wish to delve

deeper into specialized resources that integrate machine learning

techniques for the analysis of microbiome data. Previously,

we described the applications of machine learning in human

microbiome studies (Marcos-Zambrano et al., 2021; Moreno-

Indias et al., 2021), cataloged the most commonML-based software

and framework resources (Marcos-Zambrano et al., 2023) and

discussed the challenges and best practices in the use of ML

methods in microbiome data (Marcos-Zambrano et al., 2021;

Papoutsoglou et al., 2023).

In this paper, we focus on and explore in depth the use of

deep learning architectures and their applications in analyzing

microbiome data, building on ML4Microbiome work where

these methods were only briefly described. The rapid increase

in microbiome data, driven by advances in high-throughput

sequencing technologies and large-scale collaborative projects,

provides a rich resource for deep learning applications.

Furthermore, continuous developments in deep learning

algorithms and frameworks (such as TensorFlow, PyTorch,

and Keras) have made these techniques more accessible and

user-friendly. New architectures and optimization techniques

Abbreviations: DL, Deep Learning; FFNN, Feedforward Neural Network; ML,

Machine Learning; NLP, Natural Language Processing; NN, Neural Network;

MLP/MLPNN, Multilayer Perceptron Neural Network; GAN, Generative

Adversarial Network; CGAN, Conditional GAN; SVM, Support Vector

Machines; BM, Boltzmann Machine; GNN, Graph Neural Network; RBM,

Restricted Boltzmann Machine; SOM, Self-Organizing Map; DRBM, Deep

Restricted Boltzmann Machine; RF, Random Forest; CNN, Convolutional

Neural Network; HN, Hopfield Network; LSTM, Long Short-Term Memory;

DRN, Deep Residual Network; BiLSTM, Bidirectional Long Short-Term

Memory; RNN, Recurrent Neural Network; VAE, Variational Autoencoder.

are being designed to address the challenges posed by high-

dimensional, sparse microbiome data more effectively. These

advancements collectively lower the barriers to adopting deep

learning, highlighting its potential to enhance microbiome research

significantly. Consequently, we anticipate a rapid increase in the

use of deep learning methods in microbiome studies in the coming

years. Therefore, the aim of this manuscript is to develop a more

comprehensive understanding of how various deep learning

architectures can improve our insights into microbiome dynamics,

functions, and interactions within microbial communities and

with hosts. The paper surpasses previous reviews focused on ML

techniques that merely describe deep learning approaches for the

analysis of microbiome datasets (Hernández Medina et al., 2022;

Geman et al., 2018; Mathieu et al., 2022; LaPierre et al., 2019;

Deng et al., 2021; Roy et al., 2024). It introduces non-specialized

readers without background technical knowledge to a clear

understanding of various deep learning architectures, along with

their specific applications in microbiome analysis, illustrated by

diverse examples and schemes. Additionally, the paper engages in

discussions regarding their strengths, weaknesses, and challenges

in the microbiome analysis.

The manuscript is structured first to highlight key applications

of deep learning in microbiome research, which include data

preprocessing, feature extraction and engineering techniques.

This is followed by microbiome analysis tasks benefiting from

deep learning approaches, such as Classification/Prediction tasks,

studying microbiome interactions, clustering analysis, and using

deep learning for creating metagenome-assembled genomes. Next,

we describe multiple deep learning architectures following the

structure of the Neural Network zoo, a comprehensive visual

guide of different types of neural network architectures (Leijnen

and Veen, 2020). For each architecture, we discuss its potential

usefulness in the context of microbiome analysis, highlighting

specific reasons. We provide a general overview of each

architecture’s concept and then discuss how they can be applied

to microbiome-specific tasks, drawing from existing literature

or proposing potential applications. In addition, for the more

enthusiast readers, we provide additional bibliography that may

serve as a practical guidance and to build theoretical foundations

(see Literature recommendation in the Supplementary material 1).

Finally, we discuss the risks and considerations associated with

using deep learning on microbiome data. This section covers

various risks, potential problems, and important considerations

that researchers and practitioners should be aware of when

employing deep learning techniques in microbiome research.

Common microbiome data types

Various technologies are employed to explore the microbiome,

with targeted sequencing (such as marker gene amplicon

sequencing) and metagenomic shotgun sequencing standing out as

two primary methods.

1. Targeted sequencing is a technique that focuses on specific

regions of the genome to identify microbial communities

accurately. This technique involves sequencing the amplified 16S

ribosomal RNA (rRNA) gene to identify bacteria and archaea

and the Internal Transcribed Spacer (ITS) region or 18S rDNA
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gene to identify eukaryotes. Sequencing the 16S rRNA gene is

particularly important in identifying and quantifying the various

bacterial and archaeal species within a sample. The analysis of

the obtained sequencing data can be performed using either the

Operational Taxonomic Units (OTUs) or Amplicon Sequence

Variants (ASVs) approach, each providing different levels of

taxonomic resolution and computational demands based on the

goals of the study (Chiarello et al., 2022).

2. Metagenomic shotgun sequencing provides a more exhaustive

analysis by sequencing all DNA in a sample, covering

bacteria, archaea, eukaryotes, and viruses. Although this method

delivers a broader overview of the microbiome, it demands

more resources and computational effort. The data analysis

process of shotgun sequencing data is intricate, involving

the reconstruction of longer DNA sequences, taxonomic

classification, and functional annotation.

3. Metatranscriptomic sequencing is an emerging technique

that is used to study microbiomes. This technique involves

the study of RNA transcripts to understand the active

genes and the responses of the microbiome under different

conditions. This approach provides valuable insights into

the functional dynamics and gene expression profiles of

microbial communities.

4. Metaproteomic analysis examines the proteins present in

a microbiome, offering insights into the active metabolic

processes within microbial communities. By identifying the

proteins being produced, researchers can infer the functional

capabilities of the microbiome.

5. Metabolomic analysis identifies small molecules, revealing

metabolic activities within microbial communities and between

the microbiome and host.

Integrating various types of microbiome data into multi-

omics analysis is becoming increasingly common, which

provides a comprehensive understanding of the microbiome’s

structure, function, and dynamics. Each data type offers unique

insights, collectively enhancing our knowledge about microbial

communities. In this regard, data transformation prior to applying

DL is crucial for effectively handling microbiome sequencing data.

They help to rectify compositional issues, reduce noise, adhere

to statistical assumptions, and enable meaningful analysis and

interpretation. In human microbiome studies, the most commonly

used data transformation methods for both targeted sequencing

and shotgun data are relative and normalization-based methods.

These are followed by compositional transformations such as the

centered log-ratio (CLR) and Isometric log-ratio (ILR) methods

(Ibrahimi et al., 2023). Microbiome data is most often represented

as a matrix or table, with each row representing a sample or

subject and each column representing microbial features. However,

the data can also be organized as a time series, where each time

step corresponds to a different point in time (e.g., longitudinal

microbiome data). In Supplementary Table 1 you can find the most

common manner to feed data to the different NN architectures.

Applications of DL techniques in
microbiome research

In this section, we will explore key applications of deep

learning in microbiome research, categorized into three main

groups. First, we will begin by exploring DL uses for microbiome

taxonomic and functional profiling (microbial taxons, derived

proteins, and metabolites). Then examining data preprocessing

tasks, such as data augmentation and imputation, batch correction,

feature extraction, and multi-view analysis techniques relevant

to microbiome data analysis. Finally, we will discuss various

microbiome analysis tasks that benefit from deep learning

approaches, including Classification/Prediction tasks, studying

microbiome interactions and clustering analysis. In the text and

Table 1, you will find a general overview of suitable architectures

for each task. Architectures are selected based on known

applications of the architecture for analysis of microbiome data

or similar contexts. Architectures highlighted in bold indicate

instances where we have found examples of their usage in

microbiome data analysis in the literature. The most relevant

publications were selected that showcased the versatility and

effectiveness of each neural network model across different

microbiome-related applications.

Microbiome taxonomic and functional
profiling

The identification of microbiome features (i.e., taxa, genes)

is essential for posterior functional studies and profiling of

ecosystems that could be done in a metagenomic project.

Numerous tools had previously been developed for these tasks

(reviewed in Marcos-Zambrano et al., 2023). The spread of the

shotgun sequencing method has led to the study of the functional

microbiome, allowing for the characterization of microbiome small

molecules (toxins, antibiotics, etc.) and their functionality (Zhang

Y. et al., 2022; Ma et al., 2022). The initial step involves identifying

these molecules which typically are encoded in biosynthetic gene

clusters (BGCs). To facilitate this, different models were developed,

including pHMM, BLAST, and ClusterFinder (reviewed in Ak

and Sy, 2018). DL has enhanced the accuracy of these algorithms

while also delivering good computational performance for some

of them. The emergence of deep learning models has led to the

development of new models for this purpose, such as e-DeepBGC

(Liu M. et al., 2022) or DeepRFI (Gligorijević et al., 2021). Another

emerging aspect of microbiome taxonomic and functional profiling

is the creation of metagenome-assembled genomes (MAG). The

approach is based on the reduction of reads to smaller contiguous

sequences (contigs) with significant overlap and binning them,

i.e., grouping them by their genome of origin. The process of

binning is a complicated process that typically relies on the

analysis of the detected sequences’ co-abundance (contigs from the

same organism should have abundance’s high covariance across

samples) or the k-mer frequency found in the DNA. There are

three main groups of binning approaches based on the features

utilized. These groups include sequence composition (k-mer

frequency) based, abundance (contig coverage) based, and hybrid

methods (combining both k-mer frequency and coverage features).

However, using these feature sets independently can generate

problems like sequence redundancy, and co-abundance trends to

cause chimeric MAGs. The emergence of deep learning-based

binning methods has improved the handling of heterogeneous

information in the process of MAG recovery.
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TABLE 1 Applications of DL techniques in microbiome research.

Task category Specific task Architecture

Microbiome taxonomic and functional profiling Functional annotation and metagenome-assembled

genomes (MAGs)

FFNN, RNN, LSTM, Autoencoder, VAE, CNN, GNN,

NLP

Data preprocessing Augmentation HN, BM, CNN, GAN, DRN, SOM, GNN, NLP

Imputation RNN, HN, BM, GAN

Batch correction Autoencoder, GAN

Feature extraction and engineering Autoencoder, VAE, CNN, Attention N, GNN, NLP

General applications Classification/Prediction FFNN, RNN, LSTM,Autoencoder,VAE, BM, CNN,GNN

Microbiome interactions LSTM, Autoencoder, VAE,HN, BM, CNN,DRN,

Attention N

Clustering Autoencoder, VAE, SOM

Multi-view analysis LSTM, Autoencoder, VAE, CNN, NLP

Specific tasks and models described in the literature (bold) or suitable (regular text) for that task are shown.

Data preprocessing

Augmentation
Microbiome data poses a significant challenge due to their high

dispersion and sparsity, requiring a substantial amount of data to

build statistical models effectively. However, not all microbiome

studies have the resources to collect large datasets. Consequently,

creating augmented datasets to train more sophisticated statistical

models has become a viable approach in the microbiome field.

These generated datasets exhibit similar characteristics to real

microbiome data, preserving the sparsity and diversity of the

microbiome, while retaining important taxa-taxa correlations (Liu

M. et al., 2022; Gligorijević et al., 2021).

Imputation
Data imputation is an additional method used to generate

microbiome data. The microbiome is a dynamic component of

organisms that evolves over time and in response to various

external conditions. Therefore, longitudinal studies conducted over

time or under different health conditions/treatments are precious

by providing insights into the microbiome’s adaptation and its

impact on host health. However, these studies complicate the

collection of comprehensive and complete datasets due to the

need for data from different time points, adding to the intrinsic

complexity of microbiome data mentioned earlier. Missing data

at specific intervals is a common challenge, potentially hindering

the development of robust statistical models. To address this, DL

techniques have also been employed to impute these missing points

(Choi et al., 2023), aiding in completing the datasets necessary for

the successful development of ML models.

Batch correction
Combining various microbiome studies is a common approach

to tackle the lack of large datasets and data sparsity, effectively

enlarging the pool of samples. However, integrating databases

coming from different sources can be a challenging task. The batch

effect, alterations in data caused by external non-biological factors

in the experiment, can affect the generation of ML models. Li et al.

(2023) designed a DL-based algorithm based on GAN networks

for this purpose. Their algorithm, coupled with a mathematical

index to predict health status (GMHI), was able to remove the

batch effect while keeping the particularities of the different disease

status in several studies, improving the disease discrimination in

those datasets. Additionally, autoencoder-based methods can also

be used for batch correction (Bank et al., 2023). They can effectively

remove batch effects by compressing data and applying guided

training to keep the biological variations, similar to the adversarial

approach employed by GAN networks. For instance, Autoencoder-

based Batch Correction (ABC) is a semi-supervised deep learning

architecture designed for integrating single-cell sequencing data

from multiple sources. This method removes batch effects while

maintaining the biological variations in the data (Danino et al.,

2024). Although designed for other purposes, this tool has a great

potential use in the microbiome context.

Feature extraction and engineering
Feature extraction involves identifying, selecting, or creating

meaningful data attributes from raw datasets to enhance model

accuracy by capturing relevant information and patterns. Deep

learning may be used as it is able to manage complex datasets

and interpret non-linear patterns effectively. For example, this

could involve quantifying specific bacterial groups or extracting

pathways related to host-microbe interactions, simplifying data

complexity, and improving predictive capabilities for disease states

or ecosystem dynamics (Oh and Zhang, 2020; Shen Y. et al., 2023;

Tataru et al., 2022).

General applications

In previous sections, we have primarily concentrated on

preprocessing data (imputation, data generation) and identifying

unique features that reveal patterns. However, the main use of deep

learning with microbiome data is classifying original samples into

groups or populations using various types of neural networks.
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Classification/prediction
Classification and prediction are two fundamental aspects of

machine learning, each serving a unique purpose in data analysis

and decision-making processes. Classification involves categorizing

data into predefined groups or classes based on their features; it’s

primarily used when the outputs are categorical, such as diagnosing

diseases (healthy vs. diseased) or identifying customer sentiment

(positive, negative, or neutral). On the other hand, prediction

refers to forecasting continuous outcomes based on input variables,

such as blood glucose levels for Type 2 diabetes (T2D). This

process, often called regression in statistical contexts, uses different

methodologies like linear regression or deep learning models to

estimate numerical values.

Microbiome interactions
The primary use of deep learning is to predict health or

disease states based on microbiome data. Determining whether

a particular microbiome is linked to disease development is

crucial. However, some approaches focus solely on factors

influencing the microbiome’s health or disease state without

considering microbial interactions or environmental influences

that could drive the final outcome. Models like the generalized

Lotka-Volterra (gLV) have been used to understand microbial

community interactions and how small changes can impact the

entire community (van den Berg et al., 2022). The gLV model

estimates bacteria growth rates and interactions among community

members. However, it struggles with large, complex interactions,

often requiring longer computational time compared to newer

DL-based models.

Clustering
Clustering is a type of unsupervised learning technique used in

data analysis where data points are grouped into groups (clusters)

based on their similarities, with the aim that items in the same

cluster aremore similar to each other than to those in other clusters.

This method is widely used across various fields, e.g., to identify

inherent structures or patterns in data without prior labeling of

the points. For example, clustering can be applied to patient data

to identify subgroups that share similar microbiome profiles (de

Kok et al., 2024), which can help tailor specific treatments or

better understand the progression of diseases. Another typical

example is when researchers use clustering to analyze grouping

organisms or genes based on genetic similarity, which can reveal

evolutionary relationships or functional similarities (Nissen et al.,

2021).

Multi-view analysis
Recently, studying microbiomes using a combination of

different omic approaches has become increasingly common.

These multi-omics datasets, alone or together with host-specific

data or environmental data, can be processed with multi-view

analysis methods (also referred as data integration), allowing for

a comprehensive understanding of the microbiome’s structure,

function, and dynamics. Multi-omics multi-view analysis methods

have been categorized into five distinct strategies: early, mixed,

intermediate, late, and hierarchical (Picard et al., 2021) and

general aspects of deep learning-basedmulti-omics data integration

methods have been reviewed by Kang et al. (2022). Early fusion

involves transforming all datasets into a unified representation,

which is then used as input for a chosen deep learning model.

In the case of late fusion, first-level models are developed from

individual data types, and then the predictions from these models

are combined by training a second-level model, which serves as the

final predictor. Multi-view analysis using deep learning has been

explored in several microbiome studies to harness the strengths of

different data types and enhance our understanding of microbial

communities and their interactions.

Deep learning architectures

In this section, we explore various deep learning architectures

within the realm of microbiome analysis. We begin with a

general overview of each architecture’s concept before delving into

its specific applications in microbiome analysis. By synthesizing

insights from existing literature (see exact examples of architectures

in Supplementary material 2) and proposing potential applications,

our goal is to offer valuable perspectives on leveraging these

architectures to overcome challenges and foster advancements in

microbiome research.

Artificial neural networks are computer models inspired by

the workings of the human brain. They consist of multiple layers,

each containing units called neurons that process information.

These neurons are connected by activation functions, enabling the

network to learn and make decisions (Figure 1) (McCulloch and

Pitts, 1943).

There are usually three types of layers: input, hidden,

and output. The input layer receives data, with each neuron

representing an element like a pixel in an image or a word

in a sentence. Hidden layers, positioned between the input and

output layers, process and transform this data to learn complex

relationships. The output layer generates the final prediction or

result, for example, identifying healthy individuals and those with

specific diseases based on their gut microbiome profiles. Between

layers are activation functions, which are mathematical functions

used in neurons that decide whether a given neuron should be

“activated,” meaning it passes the signal further. They introduce

non-linearity, which allows the neural network to learn complex

patterns. Examples of activation functions include ReLU (Rectified

Linear Unit), which passes positive input values and returns zero

for negative ones, and the sigmoid function, which transforms

the input value into a range from 0 to 1, useful when predicting

probabilities. You can find a summary of the most commonly used

activation functions in Supplementary Table 2.

There are different mathematical metrics to measure the

performance of a neural network model. The use of one or

the other depends on the classification performed by the model,

although some of them can be used for the same task. For

example, precision and recall are metrics more commonly used

for Classification/predictions of categorical classes while Mean

squared error (MSE) or Root mean squared error (RMSE) are more

commonly used in regression problems. See Supplementary Table 3

for a summary of the most typical evaluation metrics in DL.
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FIGURE 1

The model of neuron as proposed in 1943 by McCulloch and Pitts (1943).

Feed forward neural networks in
multi-layer perceptron type

Feedforward neural networks (FFNNs) are a type of neural

network that passes information from input to output without

looping back at any point (Figure 2). A notable subclass of

FFNNs is the multilayer neural network, also known as Multilayer

Perceptrons (MLPs or MLPNNs) (Rumelhart et al., 1986),

which are made up of layers. Each layer connects only to the

next layer in line, without any connections within the same

layer. The training of MLPs employs the backpropagation

algorithm within a supervised learning framework, where they

learn from sets of known input-output pairs and measure

their accuracy using metrics like mean squared error (MSE).

Although they theoretically can model any relationship

between inputs and outputs with enough neurons in the

hidden layers (see Cybenko Theorem), their effectiveness in

practical applications can vary. To improve their performance,

FFNNs are often used together with other types of neural

networks. The input to the FFNN is a finite-dimensional vector

of a fixed length, which is derived from raw data through

appropriate processing.

Functional annotation and
metagenome-assembled genomes

FFNNs have been used for gene identification, using reference

databases as a guide [e.g., NCBI Refseq, CARD (Jia et al., 2017),

ARDB (Liu and Pop, 2009), or UNIPROT (Apweiler et al.,

2004)], to improve gene identification and find new sequences

(e.g., identifying new antibiotic resistance genes). That is the

case of tools like Meta-MFDL (Zhang et al., 2017), Deep-ARG

(Arango-Argoty et al., 2018), or ONN4MST (Zha et al., 2022).

Regarding MAG generation, SemiBin (Pan et al., 2022) and

SemiBin2 (Pan et al., 2023) are advanced binning algorithms that

use DL. They work by dividing long contigs into two equal-

length segments to create pairwise must-link constraints, and

use taxonomic annotation information to create pairwise cannot-

link constraints. SemiBin employs a semi-supervised autoencoder

to extract this constraint information and generate embeddings

for clustering. SemiBin2 is an upgraded version of SemiBin,

which generates must-link constraints similarly, but introduces

cannot-link constraints by randomly sampling pairs of contigs.

COMEBin (COntrastive Multi-viEw representation learning for

effective Binning of metagenomic contigs) is a binning method

based on contrastive multi-view representation learning (Wang

et al., 2024). COMEBin utilizes data augmentation to generate

multiple fragments (views) of each contig and obtains high-quality

embeddings of heterogeneous features (sequence coverage and

k-mer distribution) through contrastive learning. The network

structure used consists of two primary modules. The first module

uses a FFNN to process contig coverage features. The second

module also uses a FFNN to integrate the output of the

first module and the k-mer features, generating an embedded

representation of both. These embeddings are further used in the

clustering process.

Classification/prediction
FFNNs can be applied to analyze microbiome data and make

predictions or classifications based on the input features, data

representation, feature engineering, network architecture, training

and validation, evaluation, and prediction. Some of the designs used

taxa abundances as input for the networks (Galkin et al., 2020; Wu

et al., 2024). Others used different approaches like feeding directly

k-mer distributions (Asgari et al., 2018), or combining different

sources of data like taxa, metabolic and genomic abundances (Lee

and Rho, 2022).

FFNNs have also been used to predict microbial community

composition based on microbiome-environment interactions.,

MetaMLAnn algorithm tries to infer microbial communities in

unsampled city areas based on the composition of sampled

locations (Zhou et al., 2019).

Multi-view analysis
MDL4Microbiome integrates three distinct features of the

microbiome: conventional taxonomic profiles, genome-level

Frontiers inMicrobiology 06 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1516667
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Przymus et al. 10.3389/fmicb.2024.1516667

FIGURE 2

Scheme of a typical feedforward neural network architecture. Input
layer receives the input data, hidden layer consists of neurons that
apply a weighted sum of inputs followed by an activation function
to learn complex patterns, output layer provides the final output of
the network. Information flows in one direction, from the input
layer, through the hidden layers, to the output layer.

relative abundance, and metabolic functional characteristics, to

improve classification accuracy (Lee and Rho, 2022). Each feature

is processed through a separate supervised MLPNN. The final

hidden layer of each model generates embedded representations

of the respective feature. By combining these representations,

a new shared representation is created that retains the essential

characteristics of each of the different modalities.

Recurrent neural networks

Recurrent neural networks (RNNs) are a type of neural network

that adds a time dimension to data processing (Figure 3). They

can remember information from previous inputs because they

connect across different time steps. This ability makes them

effective for tasks that rely on past information, such as predicting

the next word in a sentence. However, RNNs are particularly

susceptible to the common neural network issues of vanishing

and exploding gradients, wherein the gradient either diminishes or

increases exponentially across time steps due to the characteristics

of activation functions. This phenomenon can lead to substantial

information loss during training. In the field of microbiology,

RNNs and LSTMs are useful for studying the dynamics of microbial

communities over time. They have been used to predict changes

in the composition of microbiomes, forecast how populations of

microbes change, and understand how microbes interact with their

hosts over time.

Imputation
According to Choi et al. (2023) the specific attributes of RNN

architecture render it suitable for adaptation in tasks such as

missing data imputation in longitudinal studies, where occasional

data points are absent.

Classification/prediction
RNNs handle sequences incrementally, retaining a memory

of past inputs via hidden states, which is advantageous for

classification tasks requiring analysis of variable-length sequential

data and capturing temporal dependencies (Ditzler et al., 2015).

Long short-term memory

Long Short-Term Memory (LSTM) networks are specialized

Recurrent Neural Networks designed to solve problems with

vanishing and exploding gradients using a system of gates and

a memory cell (Figure 4). This system, more reminiscent of an

electrical circuit than biological structures, includes three gates:

input, output, and forget. The input gate decides how much of

the previous information to keep, the output gate controls what

the next layer should know about the current state, and the

forget gate lets the network ignore unnecessary information, like

irrelevant details, when learning something new. LSTMs are trained

with sequences of labeled data and are widely used in tasks that

require an understanding of how things change over time. They

are particularly good at handling data where the timing of events

matters, such as analyzing temporal changes in microbiome data.

Similarly, as in RNN, the input to LSTM is a sequence of finite-

dimensional vectors, each of fixed length, which are derived from

raw data through appropriate processing.

Classification/prediction
This type of network can be applied to predict disease

progression or treatment outcomes based on longitudinal

microbiome data. They have also been utilized in time-series

classification tasks, such as identifying disease onset or detecting

changes in microbial composition associated with environmental

factors. The work of Metwally et al. (2019), where they used a

LSTM to predict child allergies in a longitudinal study, illustrates

well the potential of this architecture in this regard.

Microbiome interactions
Baranwal et al. (2022) proposed the use of neural networks as an

alternative method to gLV. They designed an architecture based on

LSTM, and trained it on microbe-microbe and microbe-metabolite

interactions. The model proved to be powerful to understand those

interactions, identifying important species that could be affecting

the microbial community dynamics and their metabolites profile.

For example, they found that certain phyla are more involved

in shaping metabolite production (e.g., Firmicutes) while others

influence community interactions more (e.g., Bacteroides). This

research opens the possibility to shape those community relations

to obtain or affect a patient’s metabolic profile and thus his/her

health status.

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1516667
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Przymus et al. 10.3389/fmicb.2024.1516667

FIGURE 3

(A) Scheme showing a recurrent neural network (RNN) architecture. The input is a sequence of finite-dimensional vectors, each of fixed length,
which are derived from raw data through appropriate processing. This type of architecture uses recurrent units in hidden layer. (B) Depicts the
structure of the hidden layer: a single recurrent neuron (cell).

FIGURE 4

Image illustrating the unfolding of Long Short-Term Memory (LSTM) recurrent neural layer over time. The LSTM cell, highlighted in the middle,
contains three gates: input, forget, and output. These gates regulate the flow of information, enabling the cell to maintain and update its state over
time. The unfolding shows how the LSTM cell is reused at each time step, e�ectively capturing long-term dependencies in sequential data.
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Autoencoders and variational autoencoders

Autoencoders (AEs) are a type of neural network used

mainly for compressing information (Figure 5). They have a

distinctive hourglass shape, with the narrowest section in the

middle acting as the point of maximum compression. This middle

point divides the network into two sections: an encoder that

compresses the data, and a decoder that reconstructs it. They’re

designed to minimize the difference between the input and the

output through backpropagation. Autoencoders can often have

symmetrical designs, which means the way they compress data

mirrors the way they decompress it. In microbiome research,

autoencoders help in simplifying complex data by reducing its

dimensionality and highlighting important features. This makes

them great for tasks like spotting outliers or transferring knowledge

between different studies.

Variational Autoencoders (VAEs) take autoencoders further

by using a probabilistic approach. Unlike regular autoencoders

that compress data to a fixed point, VAEs compress data into

a range of possible values, making them good at generating

new, realistic data samples. They adjust not only for the

accuracy of data reconstruction but also for the realism of

the compression, which is compared to a standard model,

usually Gaussian. This makes VAEs powerful tools for generating

varied and realistic data in complex areas like microbiome

research, helping scientists understand and simulate microbial

ecosystems better.

Functional annotation and
metagenome-assembled genomes

For MAGs generation, normally contigs are generated using

non-DL software designed for this purpose (reviewed in Marcos-

Zambrano et al., 2023), then these contigs are passed through a

DL architecture for binning and classification. Nissen et al. (2021)

developed a DL-based tool, VAMB (variational autoencoder for

metagenomic binning), that using autoencoders (VAE), combined

both parameters (co-abundance and k-mer pattern) to implement

the identification of contigs belonging to particular microbial

population. Tetranucleotide frequencies (TNF) and abundances

were encoded in the VAE to generate a latent layer that was

later decoded into output TNF and abundance vectors. The NN

integrated well the two data sources, clustering better than the

two independent datasets and having a greater percentage of

reconstruction increase with respect to other models like Canopy,

MetaBAT2 orMaxBin2 (reviewed inMarcos-Zambrano et al., 2023;

Roy et al., 2024).

CLMB (Deep Contrastive Learning for Robust Metagenomic

Binning) (Zhang P. et al., 2022) is an extension of VAMB,

which employs contrastive learning. Contrastive learning is a self-

supervised technique that helps learn valuable representations

of input data by bringing similar instances close while pushing

dissimilar ones away. CLMB adds a pair of augmented data to

each contig by introducing noise to the feature vector. This way,

it obtains integrated representations that combine heterogeneous

features. AAMB (Líndez et al., 2023), another VAMB extension, is

based on adversarial autoencoders. It encodes contigs into 2 latent

spaces (categorical and continuous) and then discriminates them

keeping similar distance to the original distribution. Other VAMB

extensions include CCVAE (Lamurias et al., 2023), introducing

graphs as representations of contigs (nodes) and k/mers (edges) to

constrain the autoencoding.

Other approaches combined autoencoders with non-deep

learning clustering algorithms like DBSCAN for further taxa

classification (Wijegunarathna et al., 2021), or with other

deep learning architectures (e.g., Adversarial Deep Embedded

Clustering, also based on autoencoders) to perform the binning

(Bao et al., 2022).

FIGURE 5

Autoencoder network architecture consists of two main components: the encoder, which processes the input sequence and compresses it into a
fixed-size context vector, and the decoder, which generates the output sequence from this context vector. The input to the autoencoder is the raw
data that you want to encode and compress, and the output is the reconstructed version of that data, emerging from the decoder. The e�ectiveness
of an autoencoder is generally evaluated based on how accurately this output matches the original input.
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Feature extraction and engineering
Autoencoders are often used to reduce dimensionality from the

microbiome profile, generating a low-dimensional representation.

Thus, noise and unnecessary information are filtered, and data can

be easily processed to build classification models. Different groups

tested alternative approaches in metagenomics, coupling feature

extraction using autoencoders with machine learning algorithms as

final classifiers like RF (Oh and Zhang, 2020; ShenW. X. et al., 2023;

Wang et al., 2023), SVM (Oh and Zhang, 2020), gradient boosting

(Shen W. X. et al., 2023), or other DL architectures like FFNN (Oh

and Zhang, 2020).

Classification/prediction
Grazioli et al. (2022) designed a multimodal deep learning

approach where data that comes from the same metagenome

but with entirely different information (phylogenetic abundance,

gene markers, and metabolomics) is integrated using multimodal

variational information bottlenecks (MVIB). This deep network

can encode the information coming from different sources, keeping

the maximum information possible. This model could beat or at

least match any of the previously mentioned models in various

datasets, requiring less hyperparameter tuning and facilitating the

interpretability of the results by revealing potential disease markers

in the input data.

Microbiome interactions
García-Jiménez et al. (2020) used autoencoders to extract latent

spaces from OTU relative abundance and environmental data, and

trained this network to infer microbial community composition

directly from the environmental data. The advantage of this

strategy resides in its capability to make predictions of microbial

composition without having to sequence samples and avoiding all

the processing of this complex data.

Clustering
The combination of autoencoders with clustering techniques

leads to methods like Deep Embedded Clustering (DEC) (de

Kok et al., 2024). DEC starts by compressing the data using an

autoencoder, then improves the grouping of the data by refining

how it’s clustered. This approach is especially good at revealing

hidden patterns in microbiome data.

Hopfield networks and boltzmann
machines

Hopfield networks (HNs) (Hopfield, 1982) are unique neural

networks where each neuron can act as an input, hidden, or output

node at different times. Training of these networks involves setting

neuron states to represent specific patterns. Then, the connections,

or weights, between neurons are calculated and fixed. The network

adjusts its neurons to reduce the global energy function. This

process results in the formation of associative memory, as the

network stabilizes into states similar to the input patterns. Each

neuron in a Hopfield network can be in one of two states (spins),

either −1 or 1, and the neurons can update their states all

at once or one at a time using a method known as Glauber

dynamics. The network stabilizes when no neuron changes its

state anymore, which helps it remember patterns similar to those

it learned.

Boltzmann machines (BMs) (Hinton and Sejnowski, 1983) are

similar to Hopfield networks but make a clear distinction between

input and hidden neurons. They start with random weights and

learn by either traditional methods like back-propagation or by

a special method called contrastive divergence, which adjusts

weights based on a learning process. Neurons in Boltzmann

machines switch between two states, influenced by a setting

called “temperature.” Lowering this temperature gradually helps

the network stabilize its neuron states, allowing it to settle into

a balance.

Augmentation and imputation
HNs are associative memory tools, enabling pattern recognition

and the imputation of missing data by converging to learned

patterns. Similarly, BMs, as stochastic neural networks, capture

complex microbial feature interactions through unsupervised

learning, uncovering hidden associations and statistical properties.

Despite their theoretical utility for augmentation and imputation,

no specific examples of their application in microbiome contexts

were found.

Microbiome interactions
Sokolovska et al. (2019) proposed the use of DRBM

in combination with causal inference models to address the

interactions between very different data sources like microbiome

and health/nutritional data (glucose homeostasis marker, physical

activity, etc.), to assess how the environment, like nutrients in our

diet, influences microbiota dynamics. The authors combined the

causal inference algorithms with Principal Component Analysis

and the DRBM to generate an efficient interaction model between

those parameters that is relatively simple and does not require

intensive hyperparameter tuning. In other papers, they applied this

model to a different problem, detecting the effect of a common

drug like metformin in the human gut microbiome and improving

the accuracy obtained by other methods with their algorithm’s

architecture (Sokolovska et al., 2020).

Convolutional neural networks

Convolutional Neural Networks (CNNs) work by using special

layers called convolutional layers that help them extract important

features from input data (Figure 6). These layers have trainable

filters or kernels that move across the input, identifying patterns

like edges in early stages, and more complex features deeper in the

network. CNNs also use pooling layers to simplify the information

by making it smaller and more manageable, while still keeping the

important parts. This helps reduce the amount of work needed

and speeds up processing. CNNs include non-linear activation

functions, like ReLU (Rectified Linear Unit), to help them handle

complex patterns, not just straight lines. Typically, CNNs end with
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FIGURE 6

Image showing a Convolutional Neural Network architecture. They consist of multiple layers, including convolutional layers that apply filters to
extract features, pooling layers that reduce dimensionality, and fully connected layers that perform classification based on the extracted features.

fully connected layers, which learn to make final decisions for tasks

like recognizing images or identifying objects.

The input to a CNN is generally an image or an array of

images (tensor), and the output depends on the specific task: it

could be categorical class probabilities for classification, pixel-wise

annotations for segmentation etc. In the case of microbiome data

a special transformation is required to convert the data into a

CNN-friendly format.

In microbiome analysis, CNNs prove highly effective for

analyzing and categorizing microbial communities. They excel

in tasks such as microbial community classification, microbial

localization, predicting disease risks, analyzingmicrobiome images,

facilitating drug discovery, and conducting metagenomics studies.

Researchers have started using CNNs to sort through metagenomic

data, which includes all the genetic material in an environmental

sample, because of their ability to handle data that has a spatial

layout, much like images. CNNs are helpful especially when

bacterial community composition or other microbial data types

are arranged in ways resembling pictures, using presence-absence

matrices or phylogenetic trees. CNNs are good at finding patterns

and relationships in this kind of data, making them useful for

grouping similar microbial communities together.

Functional annotation and
metagenome-assembled genomes

The architecture most commonly used for this task and with

the better outcomes has been the CNN. Several tools have been

designed with this architecture to identify genes frommetagenomes

like CNN-MGP (Al-Ajlan and El Allali, 2019), or differentiate

viral sequences in the metagenome (Fang et al., 2019, 2020;

Arisdakessian et al., 2021; Ren et al., 2020; Chu et al., 2022). Other

architectures developed to identify viral sequences have been RNN

(Liu et al., 2022), although CNNs outperform it for this task. CNNs

have also been used to determine a metagenome profile, identifying

the taxa present in a certain subject. These techniques are usually

based on the emergent DL-based binningmethods that are trying to

improve the handling of heterogeneous information in the process

of genome classification using reads directly or MAG recovery.

Some of the approaches developed aim first to encode through

different models the genome information and then proceed to

genome classification. For example, using CNNs (i.e., CNN-RAI

or DeepMAsED) (Karagöz and Nalbantoglu, 2021; Mineeva et al.,

2020) to encode the information from sequence co-abundances,

using relative abundance index or one-hot encoding, and then

using other architectures (e.g., FFNNs) (Busia et al., 2019) for

classification. CNNs (Fiannaca et al., 2018) have also been applied

to k-mers for encoding. In addition, other models have combined

CNNs (Borgman et al., 2022) with traditional cluster algorithms

like Nearest-Neighbor instead of performing a classification with

other NN. Or CNN with LSTM (Liang and Sakakibara, 2021), to

resolve the partitioning of a de Brujin graph at contigs chimeric

nodes, generating longer contigs, reduced chimeric assembly and

improving MAG resolution.

Features extraction and engineering
Sharma and Xu (2021) implemented CNN for feature

extraction, using as input taxonomic information as an OTU vector

(further described in Multi architecture designs).
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Classification/prediction
Reiman et al. (2017) pioneered CNNs for constructing

phylogenetic trees of analyzed samples, using abundance data.

Although this method didn’t outperform FFNNs, it advanced

CNNs for clearer neural network decision-making. Reiman and

others further developed CNN applications in metagenomics by

adjusting data imputation, adding feature extraction for better

interpretability (Reiman et al., 2020). Li et al. (2021) kept exploring

this line of work, adding more information of the phylogenetic tree

like the number of child nodes, nodes’ distance or height of layers.

Fioravanti et al. (2018) coupled an OTU distance matrix based

on patristic distance (distance between two taxa) with k nearest

neighbors computation to generate the input for the CNN. Wang

et al. (2021) used patristic distance in their correlation model to

cluster taxa, which became the input for their CNN. Their model

outperformed other CNNs and machine learning methods like

RF in prediction tasks by optimizing for dense and large clusters,

even with decreasing cluster size and density. They claimed their

algorithm achieved higher performance with lower computational

requirements, especially effective with limited sample sizes. Chen

et al. (2022) applied CNNs to shotgun metagenomic data, utilizing

a pre-designed CNN for classification and subsequently extracting

information from the CNN’s outputs using a weighted RF. Pfeil

et al. (2023) generated a radial heatmap image to provide the CNN

with the OTU abundance data and retrained a publicly available

CNN architecture (ResNet50) to classify the microbiome data into

healthy samples and samples with T2D. Sharma et al. (2020)

used CNNs and explored two distance metrics for clustering the

OTUs. They clustered the OTUs by phylum and then ordered them

based on Euclidean distance to the cluster center or correlation

between bacteria. Although they achieved good results, improving

the outcome of other methods in the same datasets, different

limitations like the number of OTUs associated with disease

considered or the correlation made only inside a phylum but not

considering potential correlations of bacteria between different

phyla, could have been addressed. Nguyen et al. (2018) used

metagenomics relative abundance to generate 2D images that were

later fed to a CNN. Deepening into this strategy, Shen W. X. et al.

(2023) combined UMAP embedding and hierarchical clustering

methods, taxonomically truncated, on metagenomic data in the

form of a correlation matrix. This generates a multichannel image,

each channel representing a taxonomic level with a variable number

of clusters embedded in 2D maps and filled with abundance

values. The images are provided to a CNN network that will

leverage all the noise-cleaned and highly processed information

to classify patients. Finally, Rahman and Rangwala (2020) applied

CNN on metagenome sequences using a multiple instance learning

paradigm (MIL), where individual instances (e.g., sequences) are

grouped together in a bigger instance or “bag” used later on the

network. In their case, they clustered sequences by k-means and

created an instance (embedding) for each cluster. The embeddings

were then analyzed by a CNN that determines which embeddings

determine a disease state.

Microbiome interactions
CNNs can also be employed to predict microbial community

composition of one anatomical site based on the composition

of another site. In their work, Rampelli et al. (2021) designed

a CNN that leveraged oral microbial composition to predict the

fecal microbiome.

Generative adversarial networks

Generative Adversarial Networks (GANs) (Goodfellow et al.,

2014) are made up of two interconnected networks, typically a

combination of feedforward and convolutional neural networks

(Figure 7). The basic idea behind GANs is based on the min-max

two-player zero-sum game, where one player’s gain is equivalent

to the other player’s loss. In GANs, these players are two networks

called the generator (which input is most likely a random noise

vector) and the discriminator (which input is real data samples

from the training set and fake data samples generated by the

generator). The primary goal of the discriminator is to identify

whether a sample is derived from a fake or real distribution.

FIGURE 7

Image representing a typical Generative Adversarial Networks architecture. They consist of two components: the Generator, which creates synthetic
data, and the Discriminator, which evaluates the authenticity of the data.
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Conversely, the generator’s objective is to trick the discriminator

by creating fake samples.

In microbiome research, GANs are helpful for tasks like

increasing data variety, filling in missing data, and correcting

inconsistencies across data batches. They create synthetic

microbiome data used to test and improve statistical and machine

learning models, making these models more diverse and reliable.

Some advanced GANs, known as Conditional GANs (CGANs), can

also include additional information like disease conditions to make

the synthetic data more relevant and useful. Furthermore, GANs

are effective at reducing batch effects (variations that occur when

different groups of data are collected) while maintaining important

features that are specific to particular diseases, improving the

accuracy of disease detection and model performance.

Augmentation
Different publications used GAN architectures to design

synthetic microbiome datasets that could be further used by

other DL or ML algorithms. Rong et al. (2021) designed an

algorithm based on GAN to simulate microbiome data that

could be used to test statistical methods. Reiman and Dai

(2020) implemented a modification of traditional GANs, the

conditional GAN (CGAN) and added side information like

disease or healthy state to the subject, generating samples

with different distributions and increasing diversity. Oh

and Zhang (2022) developed a Wasserstein GAN (WGAN)

augmentation system, based on image data (the networks

include convolutional layers to handle them). They clustered

data before the augmentation of the metagenomic profiles in a

visual pattern that is then augmented by multiple GANs. The

visualization of the genomic data helps the network to catch more

information, which is enough to enhance the performance of the

prediction models, even on data not previously used for training,

improving reproducibility.

Imputation
Choi et al. (2023) designed a Bidirectional RNN-based (BiRNN)

GAN model to input missing data on a longitudinal study. Their

model, DeepMicroGen, first uses CNN to extract features from

microbiome data, imputing it to the BiRNN that acts as a generator.

Afterwards, a Long Short Term Memory Networks (LSTM) RNN

is used as a discriminator of the GAN model, identifying if a

sample is authentic or imputed and its position in the study’s

timeline. Its evaluation in a real-case study with missing values

demonstrated that the model could help fill in the gaps of this kind

of study.

Batch correction
As previously described, Li et al. (2023) designed a DL-based

algorithm based on GAN networks for this purpose (see Batch

effect section). Their algorithm reduced the batch effect and

improved the disease discrimination in 34 published studies. In

addition, its combination with other classification algorithms, like

RF, also improved the outcome of these models.

Deep residual networks

Deep Residual Networks (DRNs) (He et al., 2015) are complex

feedforward neural networks (FFNNs) that incorporate additional

connections to transfer input from one layer to a subsequent layer,

typically 2 to 5 layers ahead. These networks enforce an identity

mapping by learning the relationship between an input and its

corresponding output along with the original input. DRNs have

exhibited effectiveness in recognizing patterns in architectures up

to 150 layers deep (ResNet150). DRNs could potentially have the

same applications as CNNs.

Microbiome interactions
DRNs have been employed in microbiome analysis to predict

microbiome community composition. For instance, Michel-Mata

et al. (2022) develop cNODE algorithm. This algorithm is able

to predict taxa abundances in a community from the relative

abundances of few training samples, instead of requiring complex

time series of absolute abundance data to develop population

dynamics as previous models. Although it presents some flaws, as

not being able to predict abundance of taxa never seen or the lack

of mechanistic interpretation, it could be a great instrument to infer

how changes in microbial populations, like introducing species in a

community with a fecal transplantation or changes due to antibiotic

treatments, may affect the community composition.

Attention networks and transformer

Attention Networks (AN) address information decay by storing

prior network states and allocating attention between these states.

Encoding layers preserve hidden states in memory cells for each

iteration. Decoding layers are linked to the encoding layers and

also receive context-filtered data from memory cells. This filter

enriches the decoding layers with the contextual importance

of certain features. The attention network that generates this

context is trained via the error signal from the decoding layer’s

output. Visualizing the attention context provides insights into

the relationship between input and output features. Transformer

networks, a type of AN introduced by Vaswani et al. (2023), rely

exclusively on self-attention mechanisms instead of traditional

RNNs (Figure 8). This approach enables them to effectively

handle long-range dependencies. The architecture features an

encoder-decoder structure, where both encoder and decoder

consist of multiple layers of self-attention and feedforward neural

networks. Each encoder layer comprises a multi-head self-attention

mechanism followed by a position-wise feedforward network, with

residual connections and layer normalization applied at each sub-

layer. Decoder layers include an additional attention mechanism

that attends to the encoder’s output, facilitating tasks like sequence-

to-sequence translation.

Functional annotation and
metagenome-assembled genomes

Transformer models have been adapted for gene

prediction and functional annotation in metagenomic
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FIGURE 8

Image depicting a typical Transformer network architecture. The
encoder consists of multiple layers, each with a multi-head
self-attention mechanism and a feedforward neural network. The
decoder also has multiple layers, each incorporating an additional
attention mechanism that attends to the encoder’s output.
Positional encoding is added to the input embeddings to retain the
order of the sequence.

datasets. Their self-attention mechanism captures complex

dependencies between nucleotide sequences, enhancing gene

identification accuracy compared to traditional methods.

For example, MetaTransformer (Wichmann et al., 2023)

employs these architectures to improve metagenomic

sequence annotation, facilitating the discovery of novel genes

and pathways.

Feature extraction and engineering
Transformers overcome other models in generating rich,

context-aware embeddings representing microbial abundances,

functional profiles, and environmental metadata. These

embeddings are valuable for downstream tasks like clustering,

visualization, and integration with other omics data. In this regard,

MetaTransformer (Wichmann et al., 2023) uses Transformer-

based embeddings to integrate metagenomic and metabolomic

data, enhancing the interpretability and predictive power of

microbiome studies.

Classification/prediction
Transformers excel in classification tasks by effectively

modeling relationships within high-dimensional microbiome data.

They are used to classify microbial communities based on

taxonomic profiles, predict disease associations, and forecast

environmental impacts on microbiomes. For instance, previously

mentioned model MetaTransformer (Wichmann et al., 2023)

leverages Transformers to predict microbial community shifts in

response to environmental stressors, achieving higher accuracy

than conventional machine learning models.

Microbiome interactions
The best example of AN in this application is found in Melnyk

et al. (2023) where they tried to understand microbial community

interactions using a combination of Attention mechanisms

and other architectures (see Multi-architecture designs section).

Moreover, Transformer-based models have been used to analyze

interactions between microbial species and their metabolites,

identifying key interactions that drive community structure and

function. Thus, providing insights into microbial ecosystem

stability and resilience. Whole Genome Transformer by Li Z. et

al. (2024) exemplifies this approach by modeling gene interaction

effects in microbiome habitat.

Bidirectional encoder representations from
transformers

BERT, introduced by Devlin et al. (2019) is a Transformer-

based model designed for natural language understanding tasks. It

employs bidirectional training of Transformer encoders, enabling

the model to consider both left and right context in all layers. BERT

is pre-trained on large text corpora using two unsupervised tasks:

Masked Language Modeling (MLM), which predicts masked words

within a sentence, and Next Sentence Prediction (NSP), which

assesses relationships between sentence pairs. This pre-training

allows BERT to generate rich contextual embeddings that can

be fine-tuned for various downstream tasks with relatively small

labeled datasets (Figure 9).

Functional annotation and
metagenome-assembled genomes

BERT-based models have been adapted for functional

annotation by treating gene sequences similarly to natural

language. Leveraging bidirectional context, these models can

more accurately predict gene functions and interactions. For

instance, DNABERT (Ji et al., 2021) applies BERT to nucleotide

sequences to improve the identification and annotation of

functional genes within metagenomic assemblies, outperforming

traditional annotation tools in accuracy and speed. In addition

to this, hierarchical or small BERT models (Zhang Y. et al., 2022;

Abdelkareem et al., 2018; Gwak and Rho, 2022) have been utilized

not only for this purpose but also for identifying antimicrobial

peptides (Ma et al., 2022), as well as predicting gene or protein

domains (Zhang Y. et al., 2022).
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FIGURE 9

Image showing a classical BERT network architecture. BERT consists
of multiple Transformer encoder layers with bidirectional
self-attention mechanisms. Input tokens are embedded with
positional encodings and passed through the encoder layers to
produce contextualized embeddings.

Feature extraction and engineering
BERT excels generating contextual embeddings. For example,

DNABERT (Ji et al., 2021) uses BERT-derived embeddings

to integrate metagenomic, metabolomic, and environmental

data, facilitating comprehensive feature engineering for

microbiome studies.

Classification/prediction
BERT’s ability to generate context-aware embeddings makes it

highly suitable for classification tasks in microbiome research. It

has been used to classify microbiome samples based on disease

states, environmental conditions, or treatment responses. BioBERT

(Lee et al., 2020) has been fine-tuned for microbiome samples,

achieving superior performance in classifying conditions such

as inflammatory bowel disease (IBD) and obesity compared to

standard machine learning classifiers.

Microbiome interactions
BERT-based models use bidirectional attention to model

interactions between different microbial species and their

metabolites. This approach identifies key interaction networks that

influence community structure and function, providing deeper

insights into microbiome ecology. Whole Genome Transformer

(Li Z. et al., 2024) exemplifies this by modeling gene interactions

within microbial habitats.

Kohonen networks or self organizing maps

Kohonen Networks (KN), also known as Self Organising

Maps (SOM) (Kohonen, 2013), leverage competitive learning for

unsupervised data classification. The network determines which

neurons closely correlate with the input upon receiving input.

These neurons are subsequently adjusted to better match the

input, influencing neighboring neurons. The degree to which

neighboring neurons are adjusted depends on their proximity

to the best matching units, integrating the spatial information

in the learning process. In microbiome analysis, SOM methods

enable clustering and visualization of genes from individual

species with much higher resolution than traditional methods

like principal component analysis, providing insights into the

molecular mechanisms underlying genome signatures (Iwasaki

et al., 2013).

Graph neural networks

Graph Neural Networks (GNNs) (Scarselli et al., 2009) are

designed to process data structured as graphs, effectively capturing

complex relationships among data points (Figure 10). Unlike

conventional networks that require data inputs to be organized

in a grid-like manner (such as images or sequences), GNNs

exploit the intrinsic properties of graphs, making them suitable

for irregular and complex data structures. By using node and

edge representations, GNNs propagate information across nodes,

allowing each node to aggregate and process information from its

neighboring nodes (Lamurias et al., 2022). Over iterations, nodes

gradually develop high-level representations embodying local and

global structural information, enhancing their capability to perform

tasks like node classification, link prediction, or graph classification.

The input to a GNN typically consists of graph structure (e.g.,

adjacency matrix), node (and sometimes edge) features.

Functional annotation and
metagenome-assembled genomes

Lamurias et al. (2022) implemented GraphMB, a NN

that leverages the GNNs properties to use them in the

metagenomic binning process. It uses the graph originated from

the assembly process to generate embeddings retaining node-

neighbors information.
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FIGURE 10

Graph Neural Networks architecture. Each node in the graph represents an entity, and edges represent relationships between entities. The
architecture includes layers that aggregate and transform information from neighboring nodes, enabling the network to learn representations that
capture the graph’s structural and feature information.

Features extraction and engineering
Zhu et al. (2019) explored the possibility of using GNNs

for feature selection. Using relative abundances, they generated

correlation networks that were fed into feedforward networks. This

strategy allowed them to identify the key taxa that are driving that

microbial community.

Classification/prediction
Some groups have tried to develop classification algorithms

taking advantage of GNNs power. That is the case of Jiang et al.

(2023) or Khan and Kelly (2019) who developed a Graphical

network for multiclass disease prediction, being able to distinguish

between 19 different diseases better than a classical FFNN.

Multi-view analysis
MOSDNET is a multi-omics classification framework that

effectively extracts shared and specific representations from

different omics data (Li et al., 2024). This framework leverages

Simplified Multi-view Deep Discriminant Representation

Learning (S-MDDR) and Dynamic Edge Graphical Convolutional

Network (DEGCN) to enhance the accuracy and efficiency of

disease classification.

Natural language processing models

Human languages are a set of symbols combined following

certain rules that allow us to encode information. Natural language

processing or NLP is an area of AI and DL that includes

all techniques and mechanisms to favor the understanding of

natural (not mathematics or other variants) human language, the

decoding of the information they contain, by computers. This

has been an exploding sector in recent years thanks in part to

the development of DL and its powerful inference capacity. Also,

to the applications in NLP of different models like Transformer

(Vaswani et al., 2023), based on attention mechanisms, that looks

for connections in the different elements of the data (words in

this case) and coherence inside those connections. Microbiome

sequences encode their information into the combination of 4

symbols, 4 nucleotides that favor that information storage. Thus,

NLP appeared here as a clear instrument to make sense of and

interpret those sequences, extracting the information that allows

the microbiome to generate enzymes, establish relationships and

survive in its environment.

Functional annotation and
metagenome-assembled genomes

The NLP models have been adapted to annotate metagenomes

recently. Word embedding techniques, which involve embedding

k-mers alone (Mock et al., 2022; Arango-Argoty et al., 2021) or in

combination with other deep learning architectures like CNN or

LSTM (Shang and Sun, 2021; Miao et al., 2023; Liu et al., 2023),

have also been used to detect viral genomes. Finally, DeepMicrobes

(Liang et al., 2020) using LSTM architecture and self-attention

models or models using the word2vec method to combine k-mer

embeddings with taxonomy, like NLP-Me taxa (Matougui et al.,

2021), FastDNA (Menegaux and Vert, 2019), or Metagenome2Vec

(Queyrel et al., 2020) are some approaches to metagenomic

profiling and taxa identification. However, they have not managed

to beat other models described earlier (based on VAE), mostly

due to the difference between small k-mers (3, 4 bases) and

words, and the high computational demands that increasing k-

mers longitude involves. These issues lead the way toward other

models tackling those weaknesses. In this sense, META2 (Georgiou

et al., 2019) and BRUME (Menegaux, 2020) have tried grouping
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in the same encoding (thus reducing computational requirements)

longer k-mers by proximity, while others are applying different

NLP methods like LDA (Latent Dirichlet Analysis) or LSA (Latent

Semantic Analysis) (Tran et al., 2022).

Features extraction and engineering
Some NLP models with word embedding, like GloVe (Roy

et al., 2024), have been also applied in the microbiome feature

extraction process. Tataru et al. (2022) generated an R package

(GMEmbeddings) where using this model and studies from the

American gut project, calculated a “translation” (embedded)matrix

that can be applied to any other 16S study to generate a new

embedded matrix in that study for further analysis. Thus, they

aimed to reduce the batch effect occurring in predictions when

using samples from different studies at the same time, and

generate a tool that takes and reduces information from several

studies and can then be applied to favor the reproducibility

(by “homogenizing” embeddings) in the analysis and prediction

of other datasets. Additionally, these methods are employed for

embedding, interpreting categorical variables, and representing

them as continuous vectors like in Shang et al. (2022) and Ma

et al. (2022), where natural language processing is used over

microbiome data to identify bacteriophages and antimicrobial

peptides respectively.

Multi architecture designs

Several groups have aimed to exploit the advantages and

strengths of different architectures, while diminishing their

weaknesses, by combining different models into the data analysis to

achieve better results in their microbiome projects. In this section

you can find multi architecture designs applied to some of the tasks

described previously. Although the combined models may involve

high computational demand, the results sometimes surpass the

mere use of simpler models especially under complex experimental

designs or heavy preprocessing of the datasets.

Functional annotation and
metagenome-assembled genomes

Zhao et al. developed Read2Pheno (Zhao et al., 2021) a multi-

architecture network tailored to provide features information and

disease prediction directly from reads. To do so, they combined

CNN, RNN and attention mechanisms. Thus, they were able to

leverage the information of thousands of reads for few samples,

predicting from the reads directly: (I) taxonomy levels present in

the sample, (II) microbiome phenotype (origin in the body for that

microbiome), and (III) host phenotype (disease diagnosis).

Microbiome interactions
Melnyk et al. (2023) combined graph algorithms, applied to

microbial communities, with Transformer (Vaswani et al., 2023),

a neural network based exclusively on attention mechanisms,

to obtain lower-dimensional representations of the bacterial

communities. They also used Layer-wise Relevance Propagation

(LRP) (Bach et al., 2015) to interpret the decisions made in a NN.

This helped to understand the evolution of changes over time by

retaining the metastable properties of those communities and to

find patterns in the generated graph neural networks that could

highlight dynamics in the community pointing toward a change in

the metastability from a healthy to a disease state.

Classification/prediction
The combination of different NN architectures has proved

as a valuable strategy to improve classification tasks regarding

metagenomic analysis. Ditzler et al. (2015) evaluated various neural

network architectures, including MLPNN, RNN, and a Boltzmann

machine, on two different datasets for classifying bacteria regarding

pH and body location comparing them with a RF classifier.

Their findings indicated that the MLPNN was competitive enough

against the RF, while the other deep methods could not match RF

performance. However, a possible advantage over larger datasets for

these deep learning approaches was suggested. Lo and Marculescu

(2019) designed two models using FFNN and CNN with previous

data augmentation by generating new samples with a known

distribution (negative binomial distribution) and adding Dropout

layers to the architecture to prevent overfitting. This approach

was designed to deal with the problem of limited availability of

large datasets.

Mulenga et al. (2021) proposed a combination of feature

extension (combining different normalization methods) and data

augmentation (using VAEs) previous to a FFNN architecture to

improve the classification outcome. Oh and Zhang (2020) used

autoencoders to distill data to a lower-dimensional state to reduce

potential noise in the data and retain the important features.

This processed data was then used as input for various machine

learning models, including SVM, RF, and deep learning models

like MLPNN. Although MLPNN did not always beat the other

DL methods, the use of autoencoders was revealed as a great

addition for improving healthy disease/classification.Moreover, the

same group of researchers made another attempt to increase NN

performance with augmentation by linking the classification layer

to a prior GAN system. This GAN augmentation system based on

the recognition of visual patterns in metagenomic data (Oh and

Zhang, 2022), significantly improved the classification of previously

unseen data. The synergy of this system with both NN and

SVM algorithms demonstrated superior performance compared to

similar classifiers.

Zeng et al. (2022) used shotgun metagenomic data to

provide taxonomic and functional information to a neural

network combining CNN and LSTM-RNNmodels. After reshaping

the functional information to 2D arrays and reducing the

dimensionality of taxonomic information by clustering, they

performed a joint prediction directed to unveil the “theater of

activity of the microbiome.” They also provided feature analysis

by providing both raw information sources to a LSTM network

combined with SHAP (Lundberg and Lee, 2017) algorithm for

explainability. In a similar way Sharma and Xu (2021) used CNN

to extract features from input data combined with LSTM, which

retains the important information that the input had. Notably,

they introduced a time series component where newmeasurements
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from the same patients were added to the CNN, integrating this

new input with the previous LSTM output. This combination of

NN achieved an efficient system by merging the feature extraction

of the CNN with the ability to retain sensitive information through

timepoints of the LSTM. Fung et al. (2023) also combined CNN

and LSTM architectures together with self-knowledge distillation,

where the network learns from itself by taking into shallow

sections information from the deeper parts, to perform disease

prediction. This design proved to overcome other networks trained

on longitudinal studies.

Multi-view analysis
Liu M. et al. (2022) used a DL approach by designing a complex

algorithm, e-DeepBGC leveraging NLP in the identification of

BGCs. This model includes different protein family domain (Pfam)

information embeddings, CNN, BiLSTM, and data augmentation

between training epochs by synonym replacement of Pfams and

random shuffling to generate artificial genomes. This architecture

outperformed the prediction accuracy of all state-of-the-artmodels,

including the previous version of itself, the DeepBGC (Hannigan

et al., 2019). In addition, DeepIDA-GRU is a pipeline that utilizes

both statistical and deep learning techniques to integrate cross-

sectional and longitudinal data from various sources (Jain and

Safo, 2024). This pipeline includes several key components: variable

selection and ranking using both linear and nonlinear methods,

feature extraction through functional principal component analysis

and Euler characteristics, and joint integration and classification.

For cross-sectional data, it employs dense feed-forward networks,

while recurrent neural networks are used for longitudinal data.

Other architectures and novel trends

The below listed architectures have limited (or no) examples of

application in the microbial sciences.

Liquid state machines and echo state
machines

Liquid State Machines (LSMs) (Maass et al., 2002) and Echo

State Networks (ESNs) (Jaeger, 2001) are specialized types of

recurrent neural networks. LSMs, as spiking neural networks,

use threshold functions instead of sigmoid activations, with each

neuron acting as an accumulating memory cell that triggers a spike

when a threshold is reached. ESNs, in contrast, have random inter-

neuronal connections and employ a unique training method where

only the output layer connections are adjusted over time, while

input data primes the network.

It is unlikely that those models will be widely used in

microbiome analysis due to their specific architecture and

limitations for handling microbiome data. These models rely on

recurrent neural networks with fixed random connections, which

may not effectively capture the complex dynamics and relationships

present in microbiome datasets. Additionally, these architectures

often require careful tuning of parameters and may not offer

significant advantages over more conventional machine learning

approaches for microbiome research.

Neural turing machines and di�erentiable
neural computers

Neural Turing Machines (NTMs) (Graves et al., 2014) are an

advanced form of LSTMs that separate memory from neurons,

combining neural network expressiveness with digital storage

efficiency. NTMs use a neural network to interact with a content-

addressable memory, making them Turing complete by enabling

read, write, and state alteration functions.

Differentiable Neural Computers (DNCs) (Graves et al.,

2016) improve upon NTMs by using RNNs to manage scalable

memory, inspired by the human hippocampus. DNCs incorporate

attention mechanisms to query input similarity, temporal memory

relationships, and update recency for memory management.

However, due to their complexity, high computational

demands, and specialized nature, NTMs and DNCs are unlikely to

be widely adopted in microbiome analysis.

Capsule networks

Capsule Networks (CapsNet) (Sabour et al., 2017) represent an

alternative to pooling in neural networks, inspired by biological

systems. Unlike traditional neural connections that utilize a

single weight (scalar), CapsNet employs multiple weights (vector),

enabling the transfer of comprehensive information, including the

detected feature’s attributes like location, color, and orientation

within an image. The network’s learning algorithm integrates a

localized form of Hebbian learning that emphasizes the importance

of accurate output predictions in subsequent layers. We are

not aware of any biological applications of capsule networks,

but their unique features (like the ability to model complex,

hierarchical feature representations, and in particular preserving

spatial relationships) could enable us to disentangle and tackle the

complexities of human disease.

Kolmogorov-Arnold networks

Kolmogorov-Arnold Networks (Liu et al., 2024) are neural

networks based on the Kolmogorov-Arnold superposition

theorem. This theorem states that any continuous function

of multiple variables can be represented as a combination of

functions of one variable. In neural networks, this concept involves

decomposing complex functions into simpler components,

which are then combined to approximate the original function.

Kolmogorov-Arnold networks use this approach to learn and

represent complex mappings between input and output data,

making them effective for handling diverse and high-dimensional

data in deep learning applications.

Although this approach is relatively new, Kolmogorov-Arnold

Networks are expected to become more popular in microbiome

analysis because they effectively handle complex data with many
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variables. They achieve this by breaking down these complicated

functions into sums and combinations of simpler, single-

variable functions, a method based on the Kolmogorov-Arnold

superposition theorem. By simplifying complex functions into one-

variable components, these networks speed up computations and

make the results easier to interpret.

CRISPR guide RNA

CRISPR technology offers promising tools for microbiome

engineering through targeted genetic modifications

(Ramachandran and Bikard, 2019; Bai et al., 2023), while

deep learning methods assist in refining target selection and

optimization for potential therapeutic use. Deep learning has

significantly enhanced the design of guide RNAs (gRNAs) for

CRISPR/Cas12a-based diagnostics by enabling precise prediction

and optimization of gRNA efficiency and specificity (Lee, 2023).

Traditional gRNA design often struggles with off-target effects

and variability in cleavage efficiency, which can compromise

diagnostic accuracy. Deep learning models, trained on large

datasets of sequence-function relationships, can predict gRNA

binding affinity, cleavage activity, and off-target risks with high

precision. These models account for sequence context, secondary

structure, and thermodynamic properties, enabling the design

of highly effective gRNAs tailored to specific targets. In the

context of diagnostics, optimized gRNAs improve the sensitivity

and specificity of CRISPR/Cas12a systems for detecting nucleic

acids, critical for applications such as pathogen detection, genetic

disorder screening, and environmental monitoring (Huang et al.,

2024; Chuai et al., 2018; Zhang et al., 2023). By leveraging deep

learning, researchers can accelerate the development of robust

and scalable diagnostic tools, addressing diverse biological and

medical challenges.

Notable advancements include
DeepCRISPR developed by Ramachandran and Bikard (2019),

a comprehensive computational platform to unify sgRNA on-target

and off-target site prediction into one framework with CNNs. Liu

et al. (2024) developed a deep learningmodel based on CNNs called

EasyDesign to facilitate rapid and highly efficient crRNA design

for Cas12a-based detection. Zhang et al. (2023) developed three

deep learning models (AIdit_ON, AIdit_OFF, and AIdit_DSB) for

predicting the cleavage activities, editing specificities, and repair

outcomes of SpCas9/gRNA.

Risks and considerations

In the dynamic field of microbiome research, deep learning

faces several critical challenges, each impacting the reliability and

applicability of research outcomes. Here we describe in depth the

most important challenges associated with DL in microbiome.

You can also find a shorter summary table with examples on

microbiome data of the most common risks and potential solutions

that can be implemented (Supplementary Table 4).

Model overfitting

Overfitting (Lever et al., 2016) is a significant challenge in

deep learning, particularly prevalent in microbiome research where

small datasets are common. This issue, where a model learns too

much from the specifics and noise of its training data, compromises

its ability to perform effectively on new, unseen data. Various deep

learning applications in microbiome research, including GANs like

DeepMicroGen (Choi et al., 2023), and GAN-GMHI (Li et al.,

2023), are particularly susceptible to overfitting. When trained on

limited datasets, these models tend to capture noise, resulting in

less effective generalization. Moreover, this can lead to misleading

conclusions about the relationships within microbiome data.

Regularization and careful network architecture design are

crucial to address overfitting. Autoencoders, used for predicting

shifts in microbiome communities (Reiman and Dai, 2019), also

face overfitting risks, which can be mitigated through dropout

techniques and sparse autoencoder implementation. Similarly,

in the analysis of large-scale microbiome data, Batch-Learning

Self-Organizing Maps (BLSOMs) can help mitigate overfitting

by aligning map size with dataset complexity and incorporating

regularization (Iwasaki et al., 2013).

Interpretability

Interpretability (Teng et al., 2022) of models in machine

learning, particularly in healthcare, refers to the ability to

understand and explain how and why a model makes its

predictions. It involves deciphering the model’s decision-making

process, making it transparent and understandable to humans. This

is crucial because it builds trust in the model’s predictions, ensures

compliance with state of knowledge and regulatory standards, and

aids in the clinical decision-making process. DL is known for

its “black box” nature, which can obscure insights and imposes

challenges with interpretability and reproducibility. e.g., 16S rRNA

sequencing data from fecal samples of T2D (Pfeil et al., 2023)

patients and healthy control subjects served to identify relative

abundances of thousands of bacterial taxa. Preprocessing, including

removal of low-quality reads and contaminants, normalization

and feature selection, enabled focusing on specific and relevant

bacterial taxa known or hypothesized to be associated with diabetes.

To avoid reproducibility issues at this stage, it is important

to track every change in the data to find out the impact of

different preprocessing methods like dimensionality reduction,

etc. Regarding interpretability this is much more difficult, since

many methods, such as PCA, have low interpretability. This

lack of transparency can be problematic when researchers need

to understand which specific features (e.g., particular microbial

taxa or genes) are driving the associations with disease states or

treatment outcomes.

For our example, the most commonly chosen DL model is

CNN, which usually includes several convolutional and pooling

layers to extract and learn the most relevant features from the

microbiome data, followed by one or more densely connected

layers for classification. Therefore, any changes made to the model,

such as the number of layers or hyperparameter values, must
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be trackable. The standard solution for tracking the evolution of

the code is to use a version control system such as Git, which

can provide the required reproducibility. The same applies to

training and validating the model to monitor its performance

and avoid overfitting. However, it creates problems related to

lack of interpretability. The CNN model acts as a black box,

making it impossible to understand how specific features (taxa)

affect the prediction, which is challenging due to the many levels

of transformation and non-linearities. The convolutional and

dense layers might capture complex interactions between different

bacterial taxa, but these interactions are not readily interpretable

or easily mapped back to biological insights. In addition, there are

what are known as generalization concerns: Without clear insights

into what the model is “learning,” there is a risk that the model

will not generalize well to other datasets or populations and may

capture artifacts or biases in the training data. Therefore, its utility

in providing interpretable insights for scientific understanding or

even clinical decisions is limited.

One of the possible solutions to deal with interpretability issues

is integrating explainable AI (XAI) techniques. These techniques

help to uncover the reasoning behind model predictions, making

the models more transparent and their findings more actionable

in a scientific and clinical context. For example methods like

Layer-wise Relevance Propagation (LRP) (Bach et al., 2015),

SHAP (SHapley Additive exPlanations) (Lundberg and Lee,

2017), or LIME (Local Interpretable Model-agnostic Explanations)

(Ribeiro et al., 2016) can provide explanations for individual

predictions based on approximations, showing how each feature

contributes to the output for a specific sample. This was intended

to provide a better understanding of how different microbial

compositions influence disease prognosis. For example, LRP works

by propagating the prediction backward through the network

layers, assigning a relevance score to each neuron and ultimately

to each input feature. This process highlights which features

have the most significant impact on the model’s output. SHAP

is a flexible framework based on cooperative game theory that

offers consistent and locally accurate explanations of feature

importance for any deep learning models. It works by calculating

Shapley values, which represent the average contribution of each

feature across all possible combinations of features. LIME is a

technique that helps interpret the predictions of complex deep

learning models by approximating them with simpler, human-

readable models.

Nevertheless, it appears that these models do not always show

reliable results in complex models. First, the approximations might

not always capture the true underlying relationships, especially in

highly non-linear or interaction-heavy models. Moreover, there is

a risk of overinterpreting the outputs of models, especially if the

nuances of how these methods generate explanations are not fully

understood. In addition, explanations can sometimes be unstable,

with small changes in the input data leading to significantly

different explanations. One possible strategy to address these issues

could be to combine different interpretability techniques and

sanity checks that provide a more comprehensive understanding

of model behavior.

Another approach to overcome the black box is to develop

more intuitive visualization tools that can help interpret model

outputs and make these methods more accessible to non-experts.

Pfeil et al. (2023) used a radial heatmap to visualize classified

microbiome sequencing data, which resulted in a discrimination

accuracy of 96%. Different visualizations at the genus level were

used for training and classification to check robustness and

generalization potential. The applied cross-validation and the

comparison between validation and test set revealed no particularly

advantageous visualization. This method contributes significantly

to interpretability and could potentially be used to predict

other diseases. Finally, the multimodal variational information

bottleneck (MVIB) from Grazioli et al. (2022) proposes as an

approach in microbiome the integration of multiple heterogeneous

data modalities into a unified disease prediction framework. This

integration provides a more comprehensive understanding of the

microbiome’s role in various disease states. Its ability to classify

diseases effectively, as demonstrated through its application to

diverse disease cohorts, is complemented by its interpretability.

MVIB employs a saliency technique, allowing it to identify the

most relevant microbial species and strain-level markers in making

predictions. This interpretability is invaluable, offering insights

into the specific microbial factors associated with diseases and

guiding more targeted therapeutic strategies (Lundberg and Lee,

2017).

Data leakage and information leakage

Data leakage in machine learning happens when a model

accidentally gets access to information that it shouldn’t have or

sensitive information could be extracted from the model. The

extent of the potential damage depends on the type of leakage,

where we can distinguish two main types.

1. Data Leakage where a model accidentally gets access to

information from the validation or test sets (Chollet, 2021). This

can occur if, for example, the entire dataset is preprocessed

before splitting it into the different data sets. Thus, causing

information from the test set to influence the training data.

Another common source is tuning model hyperparameters based

on test set performance, which means the model is indirectly

learning from data. In such a case the test set no longer

serves as an independent evaluation of the model’s performance,

resulting in biased and misleading performance metrics (Chen

et al., 2020). This leakage is a significant problem because

it leads to overly optimistic performance metrics; the model

appears to perform better than it genuinely does because it

has effectively “seen” the answers in advance. As a result, the

model may not generalize well to new, unseen data, defeating

the purpose of building a predictive model. It might perform

exceptionally on the validation or test sets but fail in real-

world applications where it encounters truly new data. To

deal with this problem, it is crucial to carefully separate your

dataset into three distinct sets: training, validation, and test

sets. The training set is used to fit the model, the validation

set is used to tune hyperparameters and make decisions

about the model architecture, and the test set is reserved

strictly for the final evaluation after all tuning is complete. By

ensuring that the model doesn’t have access to the validation
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or test data during training, you prevent information from

leaking and obtain a more accurate assessment of the model’s

true performance.

2. Information Leakage where sensitive information can be

extracted from models containing original data subjects/owners.

This could happen, particularly through gradient inversion in

deep learning (Hatamizadeh et al., 2023) and represents a

significant risk in fields such as microbiome research. It usually

can happen when samples are not properly randomized or when

certain variables that correlate with the outcome are included

in both datasets. This issue, involving the unintended exposure

of sensitive medical data, is a major concern in the analysis

of complex datasets. Susceptible to this risk are advanced deep

learning models like Generative Adversarial Networks (GANs),

autoencoders, and Transformers. These models, while effective

in processing intricate data, can inadvertently reveal sensitive

information, especially if the learning gradients are exposed. The

implications of data leakage in medical applications are substantial.

For instance, in studies employing models like TaxoNN for disease

prediction (Sharma et al., 2020) or deep representation learning

techniques (Melnyk et al., 2023), the unintended exposure of

patient-specific microbiome data could result in privacy violations,

breaching confidentiality and raising legal and ethical issues.

The highly personalized nature of microbiome data amplifies the

need for stringent measures to prevent such leakage. To mitigate

this risk, several strategies are being implemented. Differential

privacy in deep learning models ensures that outputs do not

disclose sensitive individual information, crucial in models that

might learn identifiable patterns. Secure Multi-Party Computation

facilitates collaborative deep learning without exposing individual

data points, relevant in collaborative projects like multi-layer

and recursive neural networks for metagenomic classification.

Homomorphic encryption1 (Munjal and Bhatia, 2023) allows

for computations on encrypted data, without having to decrypt

it. The resulting computations are left in decrypted form,

protecting sensitive information in deep learning applications, a

vital approach in studies identifying antimicrobial peptides or

bacteriophages. Moreover, establishing robust data sharing and

processing protocols, including data anonymization and secure

handling practices, is essential in large-scale studies for disease

prediction or microbe-disease associations.

Data imbalance

Data imbalance (Fang, 2023), where certain classes or

conditions are underrepresented, can bias predictive models.

This is evident in disease prediction studies like (Sharma et al.,

2020), where models may favor the majority class. Moreover,

generative models like MB-GAN (Rong et al., 2021), used for

microbiome simulation or data imputation, also struggle with

data imbalance. They may produce less diverse or skewed

synthetic data, adversely affecting analyses and interpretations,

1 Homomorphic encryption is a form of cryptography that enables

computations to be performed directly on encrypted data, eliminating the

need for decryption.

especially in disease prediction and diagnosis. Additionally, data

imbalance poses a challenge in capturing rare but significant

microbiome events or features, potentially overlooking critical

biological insights.

To tackle these challenges, the approaches demonstrated by

DeepMicro (Oh and Zhang, 2020) and phyLoSTM (Sharma

and Xu, 2021) provide effective strategies. DeepMicro, with its

deep representation learning framework, addresses the high-

dimensionality and sparsity of microbiome data, a direct outcome

of data imbalance. On the other hand, phyLoSTM’s novel approach

of combining CNNs and LSTMs offers an advanced method to

analyze longitudinal microbiome sequencing data. This model

effectively manages variable time points in subjects and balances

the weights between imbalanced cases.

Other data biases

A prevalent issue in deep learning for microbiome research

is data bias. This occurs when training data doesn’t accurately

reflect real-world scenarios, leading to skewed results. Biases in

microbiome data that impact deep learning models arise from

various stages of experimental and analytical workflows (Nearing

et al., 2021). For example, sample collection methods can introduce

biases based on how, when, and where samples are collected,

leading to inconsistent microbial representation. DNA extraction

protocols further contribute to bias since different microbes

have varying cell wall strengths, resulting in unequal extraction

efficiencies. Amplification biases during PCR can skew the

observed abundance of certain microbes, as some DNA sequences

amplify more efficiently than others. Sequencing platforms also

introduce biases due to differences in error rates and read lengths.

Additionally, bioinformatic processing, such as sequence filtering

and taxonomic classification, can further distort the true microbial

composition. In addition, models like phyLoSTM (Sharma and Xu,

2021) or DL-TODA (Cres et al., 2023), used for disease prediction,

may perform inaccurately for underrepresented groups if trained

on data from a specific population.

Consequently, even the most sophisticated models cannot

produce reliable outcomes if trained on biased or poor-quality

data, as this can lead to overfitting, reduced generalizability,

and misleading predictions. Improving the reliability of deep

learning applications in microbiome research requires diverse,

representative training data and the application of fairness-

aware machine learning techniques. Regular model auditing and

interdisciplinary collaboration are also essential for effectively

mitigating these biases.

Model Drift is a critical challenge in deep learning applications,

where the performance of machine learning (and deep learning,

in particular) models degrades over time due to changes

in the underlying data or environment. This phenomenon

is particularly prevalent in microbiome research, as the

characteristics of microbial communities are subject to change due

to environmental shifts, dietary changes, and other factors. Models

like DeepMicroGen (Choi et al., 2023), used for microbiome

simulation or data imputation, and disease prediction models

like GAN-GMHI (Li et al., 2023) or DeepMicro (Oh and Zhang,
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2020), are susceptible to accuracy loss as microbial landscapes and

human-microbiome interactions evolve.

Sample size

An article by Rajput et al. (2023) suggests that when using

machine learning in microbiome research, an appropriate sample

size of data is essential to obtain reliable results. The paper proposes

two criteria. First, the sample should be large enough for the effect

of its analysis to be significant [average or grand, of at least 0.5

according to Cohen’s scale,2 a measure of effect size (Cohen, 1988)].

Second, the accuracy of machine learning models on this sample

should be at least 80%, and additional data above this sample size

should not significantly increase accuracy. In short, the idea is to

find a “golden point” in sample size where additional data does not

significantly improve accuracy. Still, the sample is large enough for

the results to be reliable.

Model benchmarking

Benchmarking is crucial for evaluating the performance of

any computational method prior to its release. This is equally

true for microbiome DL analysis methods, which require well-

designed benchmarks to accurately reflect the diverse conditions

in microbiome studies. Depending on the aim, benchmarking can

assess various evaluation metrics, such as model performance,

runtime, or memory usage. This can be done both in an

absolute setting (only for a new method) or a relative setting,

when comparing the method with other approaches (Bokulich

et al., 2020). Several aspects need to be considered while

creating the benchmark with the most important: selection of

a representative test set, parameter tuning and selection of

appropriate metrics.

Microbiome data presents unique challenges for benchmarking

deep learning models due to its compositional nature, correlation

between taxa, high dimensionality, and sparsity. Test data typically

should allow measurements of method accuracy which mean we

need to have a “ground truth” of some type, e.g., samples with

known composition. Several types of data can be used for that

purpose: mock data, biological data or simulated data (Bokulich

et al., 2020). Mock data consist of mixtures of microbial cells mixed

at known ratios and their taxonomic identities (Dale et al., 2018;

Highlander, 2013). As the known composition of mock data makes,

they are frequently used in microbiome benchmarking. However,

since they require running experiments, they are expensive to

generate and often of limited availability. Biological data also

come from experiments but they are typically not measured

for the purpose of testing methods. Analysis of such data then

requires accounting for all challenges related to preprocessing

measurements coming from real operating conditions. There

are many repositories of such datasets such as NCBI-SRA,

2 Cohen’s d statistics is frequently used in estimating sample sizes for

statistical testing.

European Nucleotide Archive or Qiita (Gonzalez et al., 2018)

but the main issue with using such data is that we do not

have objective truth to compare with. Finally, simulated data

are cheap to generate compared to mock or biological data.

However generating the realist dataset is challenging as methods

need to take into account the characteristics of the microbiome

data such as correlation between taxa, sparsity, overdispersion,

and compositionality (He et al., 2024). Ideally, for benchmarking

purposes, various different datasets should be analyzed, as different

sample types (for example gut vs. soil) can be characterized

by different microbial diversity. By using many different dataset

one can avoid overfitting the method to a particular type of

a sample.

Training DL models usually involves searching for model best

hyperparameters and finding such parameters can significantly

impact the model performance. In contrast to the classical machine

learning approach in deep learning, hyperparameter tuning is

often more critical due to the complexity and depth of neural

networks. Deep learning models have many hyperparameters,

such as learning rate, batch size, number of layers, and types of

activation functions (Li et al., 2022). Proper tuning can significantly

impact the models performance and convergence, and is essential

for achieving high accuracy and generalization. However, when

performing parameter tuning it is crucial to avoid introducing

bias and apply tuning procedure to all the methods which are

used in comparison with a new method (Weber et al., 2019). The

researchers should not assume that when comparing with other

methods, they should be applied with “out-of-the-box” parameter

settings as applying any ML or DL model to a practical problem

requires tuning its hyperparameters to fit a specific dataset. This

can pose a significant challenge, as given the large number of

parameters and the non-linear nature of deep learning models,

finding the optimal set of hyperparameters can be extremely

computationally expensive (Yang and Shami, 2020).

Selection of the proper metric is related to the task performed

which typically is classification or regression. Microbiome datasets

are typically multi-class datasets with highly imbalanced microbial

communities and any applied metric should account for such data

characteristics and be suitable to the specific problem. Usually

more than one performance metric should be analyzed in order to

avoid an implicit bias by so-called selective reporting by searchers

testing their own method and thus providing over-optimistic

results (Norel et al., 2011). As there weremany works discussing the

guidelines related to metrics for classification and regression tasks

(Marcos-Zambrano et al., 2021; Hoffmann et al., 2019; Fischer et al.,

2024; Liu et al., 2018) we will not cover this topic in depth here, but

you can find a summary of the most commonly used evaluation

metric in Supplementary Table 3. In addition to standard metrics

used in machine learning settings, for the microbiome data, alpha-

diversity (diversity within a community) or beta-diversity (diversity

between communities) vs. the expected diversity can be used (Sinha

et al., 2017; Wirbel et al., 2024). In a similar way, the values of

alpha and beta diversity metrics can be compared with the expected

diversity measurements for simulated ormock communities (Willis

and Martin, 2022).

Considering the complexity of benchmarking deep learning

models for microbiome studies, we have included a comparative
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table (Supplementary Table 5) summarizing the strengths and

weaknesses of the models discussed in this review. This table is

designed to assist end-users in making informed decisions when

selecting models for their specific applications.

Conclusions

Deep learning has the potential to revolutionize microbiome

research by providing powerful tools to manage the complexity and

high dimensionality of microbiome datasets. This review presents

a comprehensive overview of deep learning applications in

microbiome research, highlighting the capability of these methods

to enhance our understanding of microbial communities and

their intricate interactions. Various deep learning architectures,

including convolutional neural networks, recurrent neural

networks, autoencoders, and generative adversarial networks,

have demonstrated promising results across several microbiome-

related tasks. These tasks include taxonomic profiling, functional

annotation, data augmentation, and disease prediction.

Despite the clear benefits of DL in managing high-dimensional,

sparse, and complex microbiome data, several challenges remain.

Issues such as overfitting, data leakage, interpretability, and data

imbalance continue to hinder the robustness and generalizability

of these models. Addressing these challenges will require the

development of more sophisticated architectures, the application

of regularization techniques, and the integration of explainable AI

methods to enhance transparency and trust in model outcomes.

As the field of DL progresses, the importance of rigorous

benchmarking for evaluating DL models becomes increasingly

clear. Benchmarking is essential to ensure the reliability,

reproducibility, and robustness of DL-based microbiome methods.

Selecting evaluation metrics that align with the specific task,

whether it be classification or regression, is critical to avoid biased

reporting and to facilitate meaningful comparisons across different

methods. Future advancements in microbiome DL research will

hinge on addressing these benchmarking challenges. Developing

standardized, community-driven benchmarks that take into

account the unique characteristics of microbiome data will be

crucial. Additionally, implementing transparent hyperparameter

optimization practices and conducting unbiased comparative

evaluations are essential for building trust in the results produced

by new methods.

The manuscript primarily focuses on applications of deep

learning for the analysis of amplicon and shotgun metagenomic

data sets due to the wealth of research and advancements in this

area. However, we also recognize the importance of exploring

DL applications in other fields of microbiome research, such as

metatranscriptomics, metabolomics, and proteomics, as well as

studies focused on microbial interactions and dynamics beyond

taxonomic and metabolic profiling.

As microbiome research generates increasingly large and

intricate datasets, DL approaches are well-positioned to drive

future innovations. Integrating multi-omics data, improving

model interpretability, and developing novel architectures tailored

to microbiome-specific tasks will be critical in unlocking deeper

insights into microbial ecosystems. By overcoming current

limitations, DL has the potential to revolutionize microbiome

studies across medicine, agriculture, and environmental

science, ultimately leading to new diagnostic, therapeutic,

and ecological applications.
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