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Single-cell sequencing may serve as a powerful complementary technique to 
shotgun metagenomics to study microbiomes. This emerging technology allows 
the separation of complex microbial communities into individual bacterial cells, 
enabling high-throughput sequencing of genetic material from thousands of 
singular bacterial cells in parallel. Here, we validated the use of microfluidics and 
semi-permeable capsules (SPCs) technology (Atrandi) to isolate individual bacterial 
cells from sewage and pig fecal samples. Our method involves extracting and 
amplifying single bacterial DNA within individual SPCs, followed by combinatorial 
split-and-pool single-amplified genome (SAG) barcoding and short-read sequencing. 
We tested two different sequencing approaches with different numbers of SPCs 
from the same sample for each sequencing run. Using a deep sequencing approach, 
we detected 1,796 and 1,220 SAGs, of which 576 and 599 were used for further 
analysis from one sewage and one fecal sample, respectively. In shallow sequencing 
data, we aimed for 10-times more cells and detected 12,731 and 17,909 SAGs, of 
which we used 2,456 and 1,599 for further analysis for sewage and fecal samples, 
respectively. Additionally, we identified the top 10 antimicrobial resistance genes 
(ARGs) in both sewage and feces samples and linked them to their individual host 
bacterial species.
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Introduction

Advances in metagenomic sequencing techniques and bioinformatics approaches have 
significantly expanded our ability to explore the complex ecosystems of the microbial world, 
revealing the functional diversity and taxonomic composition of these communities (Jansson 
et al., 2012). Metagenomic approaches, while providing valuable information about the average 
characteristics of mixed microbial samples, have limitations resolving the true intricacies of 
these complex communities.
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They might obscure the significant variability between individual 
bacterial cells when assembling genomes from mixed DNA populations 
obtained through bulk metagenomic sequencing (Liu et  al., 2022; 
Quince et al., 2017). Microbial diversity can thus be underestimated 
through metagenomics, hindering the identification of individual 
species or strains within a community (Quince et al., 2017).

Single-cell sequencing addresses this limitation by sequencing DNA 
from individually barcoded cells. By utilizing high-throughput single cell 
sequencing, the technology provides insights into the intricate 
composition of the bacterial communities at the individual cell level 
(Hosokawa et al., 2022; Sharma and Thaiss, 2020). This enables a detailed 
exploration of the genetic diversity and functional roles of 
microorganisms at the single-cell level, revealing strain heterogeneity 
and identifying novel taxa within complex matrices. It also offers a 
deeper understanding of the functional contributions of individual cells 
(Blainey, 2013). Thus, single-cell DNA sequencing has the potential to 
reveal the trends of dispersal of antimicrobial resistance genes (ARGs) 
in the context of real-life environmental and host microbiome monitoring.

Droplet microfluidics, which enables the capture of hundreds of 
individual cells per second, is an attractive technology to satisfy the 
throughput requirement, and explore the depths of microbial diversity 
in complex ecosystems (Lan et al., 2024; Tolonen and Xavier, 2017; 
Hosokawa et al., 2017; Zheng et al., 2022; Hosokawa et al., 2022). 
However, the use of liquid droplets as single cell encapsulation for 
single-microbial cell DNA sequencing applications comes with 
challenges. Once a droplet forms, its contents can only be diluted, not 
entirely exchanged, which limits flexibility in subsequent processing 
steps like waste exchange as an example. In addition, lysis, 
amplification, and barcoding reagents within each step must 
be  compatible, which limits their choice. Furthermore, reagent 
addition to droplets is practically challenging and requires training in 
advanced droplet manipulations such as re-injection, pico-injection 
or droplet merging.

Here, we demonstrate the use of the semi-permeable capsules 
(SPCs) technology (Leonaviciene et al., 2020) for single-microbial cell 
DNA sequencing. SPCs enable multistep workflows on thousands of 
individual genomes in parallel without the constraint of reaction 
compatibility, because their content below a given molecular size 
cut-off can be easily and fully replaced. In addition, this innovative 
approach overcomes laborious techniques of droplet manipulation 
and increases the throughput of single-cell genome analysis. In our 
study, we applied this new single cell microbiome sequencing method 
to investigate the microbial diversity and distribution of ARGs in 
individual microbial cells from sewage and pig fecal samples and 
compared it with shotgun metagenomic data. Furthermore, 
we explored the sequencing information that can be obtained through 
deep sequencing (a lower number of bacterial cells with a higher 
number of reads) and shallow sequencing (a higher number of cells 
with a lower number of reads) with this microfluidic single-cell 
isolation and SPCs sequencing method.

Methods

Sample collection and preparation

A sewage sample from Bangladesh in 2018 (Bgd01) (Munk et al., 
2022) and a pig fecal sample collected in Denmark in 2019 on 

14/05–2019 (# 1166, Week 1, pig E, W1E for short) were used. Samples 
were stored in −80°C freezer prior to DNA extraction and single-cell 
encapsulation in SPCs. The third sample sequenced was the sewage 
sample (Bgd01) that was spiked with 100 μL of ZymoBIOMICS® Gut 
Microbiome Standard (No. D6331) containing 14 bacterial and archaeal 
species to 0.1 g of the sewage sample before the SPCs prep procedure.

Preparation of detached bacterial cells 
from the environmental sample for single 
cell encapsulation

A modified version of Morono’s cell detachment protocol was 
used for this experiment (Morono et al., 2013). The modifications of 
the protocol were as follows. 0.1 g of sewage or feces sample was 
suspended in 150 μL of a 2.5% NaCl solution. Subsequently, 50 μL of 
a detergent mix [100 mM EDTA, 100 mM sodium pyrophosphate, 1% 
(v/v) Tween 80] and 50 μL of methanol were added to the suspension, 
and the sample was vigorously shaken for 60 min at 500 r.p.m. using 
a shaker. Following the shaking step, the sediment slurry was sonicated 
three times for 1 min each in a water bath. Next, 1 mL of a 2.5% NaCl 
solution was added to the samples, and the mixture was filtered 
through an 8uM-sized filter syringe. The collected supernatant was 
then centrifuged at 15,000 × g for 10 min, after which the supernatant 
was removed. The cell pellets were suspended in 1x PBS, and washed 
twice at 8,000 × g for 5 min.

Generation of SPCs

Before single-cell encapsulation, the total number of cells in the 
sewage and fecal samples was measured using impedance flow 
cytometry (Bactobox, SBT instrument). The measured total number 
of bacterial cells from each sample was used to achieve lambda of 0.1 
by calculating the prepared sewage and fecal samples concentration 
for droplets loading.

SPCs were produced on the ONYX platform (Cat no 
CHN-ONYX2, Atrandi Biosciences) using the SPCs innovator kit 
(Cat no CKN-G11, Atrandi Biosciences). Core and shell solutions 
were prepared according to the manual, targeting 0.1 cells/SPC 
(lambda value) to prevent the encapsulation of multiple cells in a 
single capsule. After 1 h of encapsulation, the emulsion was collected 
in a 1.5-ml Eppendorf tube and the shells were cross linked using the 
Light Exposure Device (Cat no MHT-LAS1, Atrandi Biosciences). 
Next, the oil phase was removed by aspirating the bottom phase with 
a 1-ml pipette and SPCs were recovered by breaking the emulsions 
with the Emulsion Breaker solution provided in the kit and suspended 
in aqueous buffer supplemented with 0.1% Triton X-100. In this 
study, roughly 100,000 cells were encapsulated for each sewage and 
fecal sample, and around 50,000 cells per sample was used for the 
combinatorial barcoding step, based on the calculation of the 
occupancy value from the fluorescent images after DNA amplification.

Cell lysis protocol

Individual cells in SPCs were lysed in two steps. In the first step, 
SPCs were incubated in 1 mL mixed lysis solutions (50 U/μL 
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Lysozyme Solution (Epicentre), 2 U/mL Zymolyase (Zymo research), 
22 U/mL lysostaphin (MERCK), and 250 U/mL mutanolysin 
(MERCK) in PBS) at 37°C overnight. Then, the SPCs were washed 
with 1 mL of 1x PBS three times to replace the reagent. The second 
lysis treatment involved the 1 mL of 1 mg/mL Proteinase K (Promega) 
in PBS at 40°C overnight, after which the SPCs were washed three 
times with PBS. 500 μL of SPCs were resuspended in the alkaline lysis 
solution (final concentration 0.4 M KOH, 10 mM EDTA, 100 mM 
DTT) and spun down after 15 min incubation at room temperature. 
Following the previous alkaline lysis step, the SPCs were washed three 
times with 1 mL of neutralization buffer (1 M Tris–HCl (pH 7.5)) and 
three times with 1  mL 10 mM Tris–HCl (pH 7.5) with 0.1% 
Triton X-100.

DNA amplification and combinatorial 
barcoding

Whole genome amplification and combinatorial barcoding were 
performed with a custom Single- Microbe DNA Barcoding Kit (Cat 
no CKP-BARK1, Atrandi Biosciences). Briefly, SPCs were incubated 
with the Whole Genome Amplification (WGA) mix at 45°C for 1 h 
and the reaction was inactivated at 65°C for 10 min. Following WGA, 
SPCs were washed three times with 500 μL of 10 mM Tris–HCl (pH 
7.5) with 0.1% Triton X-100. Thereafter, SPCs were stained with 1× 
volume SYBR Green (Thermo Fisher Scientific) in 1x PBS to confirm 
DNA amplification by the presence of green fluorescence in the 
capsules by fluorescent microscopy. Microscope images for SPCs after 
WGA were recorded to estimate the single-amplified genome (SAG) 
occupancy in the SPCs, i.e., the fraction of fluorescent capsules. After 
this quality control step, SPCs underwent DNA debranching and end 
preparation according to the manual. A four-step combinatorial split-
and-pool barcoding was performed to label DNA fragments with 
SPCs-specific sequences. We  used 16 × 96 × 96 × 96 barcode 
combinations producing a diversity of ~14 M unique variants. The 
16-variant barcode (referred to as “barcode D”) is added first, as it is 
used to identify the sample itself in a multi-sample analysis scenario. 
In our study, barcode D variants 1–8 were used to label the fecal 
sample and barcode D variants 9–16 the sewage sample.

Library preparation for Illumina sequencing

The SAG sequencing libraries were prepared from sub-aliquots 
of SPCs containing barcoded genomes from the pool of sewage and 
fecal samples. SPCs were dissolved using the Release Reagent 
(Atrandi Biosciences) and barcoded DNA was purified with 0.8X 
Ampure XP (Beckman Coulter) paramagnetic beads. Next, the NGS 
library was prepared using the NEB Next® Ultra™ II FS DNA Library 
Prep Kit for Illumina (Cat. No E7805S, NEB) and custom PCR 
indexing primers (Supplementary chart 1, IDT) according to the 
instructions provided in Single-Microbe DNA Barcoding Kit. The 
obtained libraries were quantified with Agilent High Sensitivity DNA 
Kit (Cat. No. 5067–4,626, Agilent). Two different libraries (deep 
sequencing and shallow sequencing) from the same encapsulation 
sample were created. For the deep sequencing approach, 400 SPCs 
from fecal sample (W1E) and 400 SPCs from the sewage sample 
(Bgd01) were combined for the last DNA purification step for a total 

of 800 SPCs targeting 60 GBp. For the shallow sequencing method, 
4,000 SPCs from fecal sample (W1E) and 4,000 SPCs from the sewage 
sample (Bgd01) also targeting 60 GBp reads. Libraries were loaded at 
1.8 pM concentration for sequencing on the Illumina NextSeq550 
platform with High Output Kit v2.5 (300 cycles). Sequencing 
performed with the following read lengths: R1–134 bp, R2–178 bp, 
i7 – 6 bp and the raw sequence data (.bcl files) were used as input for 
further processing.

Basecalling and de-multiplexing the 
sequencing data from the SAG libraries

The bcl files from each flow cell were basecalled using Illumina 
bcl2fastq2 Conversion Software v2.201 with the default settings. Each 
pair of FASTQ files were thereafter de-multiplexed based on their 
barcoding plate well-specific barcode, sequenced on the reverse read, 
using Ultraplex v1.2.5 (Wilkins et al., 2021). The supplied barcodes 
were formatted as a list of the 16 possible 8-mer oligos and padded 
with Ns on the 5′ end to the total length of 44 bases. In each barcode, 
a maximum of one mismatch was allowed.

To estimate the observed number of cells (Supplementary chart 1), 
the barcode-bearing parts (B, C, D) of the resulting FASTQ files, after 
demultiplexing by barcode A (Supplementary chart 1, step 1), were 
analyzed. Briefly, unique A-B-C-D combinations were counted, and 
the results were plotted as a weighted histogram in Python (plt.hist(np.
log10(reads_counts_per_bc_combination), weights = reads_counts_
per_bc_combination)). Note that in this analysis, barcode A is 
matched against the expected whitelist, while barcodes B, C, and D are 
analyzed in a whitelist-agnostic manner.

The raw FASTQ files were trimmed in two steps using fastp 
v0.23.2 (Chen et al., 2018). In the first pass, the TruSeq adapters 
were removed, and the reads were trimmed to have a minimum 
average quality score of 30 (99.9%) and a minimum length of 100. 
Afterwards, the reverse reads were split into the genomic fragment 
and the barcode, with the three 8-mer oligos being excised and 
concatenated together. Thereafter, the forward read and the 
genomic fragment containing reverse read were again processed 
with fastp to remove any barcode from the 3′ end of the forward 
reads, using the default overlap analysis method and the quality 
and length filtering disabled.

The trimmed paired-end FASTQ files were further de-multiplexed 
into individual SAGs via their SPCs-specific barcode-triplets using 
high_dimensional_demultiplexing.py (https://bitbucket.org/
genomicepidemiology/hitesc, commit: 1d71f7e). The input parameters 
for sub-sampling (n = 0.005r) and minimum read counts (c = 0.0005n 
and 0.0003n) were derived from the fastp-reported total trimmed read 
counts (r). For the annotation steps, the sewage and feces SAGs were 
filtered based on the number of reads for each SAG. We excluded 
SAGs with more than 1 million reads for both the shallow and deep 
sequenced SPCs, and fewer than 50,000 for the sewage and fewer than 
70,000 reads for the feces SAGs for deep sequencing. The spike-in 
sample derived SAGs with less than 60,000 reads were filtered out.

1 https://emea.support.illumina.com/downloads/bcl2fastq-conversion-

software-v2-20.html
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Mapping the spike-in sample to its 
reference genomes

Trimmed reads were mapped to the reference genomes of the 
Gut Microbiome Standard (D6331) using KMA v1.4.12a (Clausen 
et al., 2018) with the parameters `-ID 0.50 -apm f -mrs 0.84 -ml 100`.

Pre-processing the sequencing data from 
the metagenomic libraries

The sewage and the pig fecal sample was also shotgun 
metagenomic sequenced, as described in Munk et  al. (2022). The 
paired-end FASTQ files for the metagenomes were adapter- and 
quality trimmed with BBduk2 script from BBMap v36.49 (Bushnell, 
n.d.). The quality trimming was set to remove bases on the 3′ end 
below phred score of 20, using a sliding window.

Taxonomic profiling and 
antimicrobial-resistance gene prediction

The individual trimmed FASTQ files for the SAGs and the 
metagenomes were profiled using MetaPhlAn v4.0.6 (Blanco-
Míguez et al., 2023) with the default settings and database vOct22. 
Taxonomic annotation was accepted, if the mapped reads’ relative 
abundance was larger than 40%. For the antimicrobial-resistance 
gene prediction, we used KMA v1.4.12a (Clausen et al., 2018) with 
the parameters ` -ID 45.0 -bc 0.5 -mrs 0.90 -ml 75 -cge` aligning 
reads to the PanRes database v1.0.0 (Martiny et al., 2024). The hits 
were summed to both homologous reference gene clusters with 
90% identity, and antimicrobial classes as provided in 
PanRes metadata.

Results

Semi-permeable capsules enabled the 
sequencing of tens of thousands of 
individual genomes

Following the cell detachment protocol from sewage and fecal 
samples, single bacterial cells were isolated in semi permeable capsules 
(SPCs) (65-70 μm). In our procedure, roughly 100,000 cells were 
encapsulated for each sewage and fecal sample, as estimated from a 
digital enumeration of fluorescent SPCs post-MDA and DNA staining. 
Around 50,000 single-amplified genomes (SAGs) per sample 
underwent a ligation-based combinatorial split-and-pool barcoding, 
preceded by a fragmentation and DNA end-prep step. Post-barcoding, 
the content of SPCs was released and pooled, followed by further steps 
for Illumina pair-end sequencing library preparation (Figure 1).

Spike-in sewage sample

In order to demonstrate the capability of the method for capturing 
genomic DNA from cells in a complex biological matrix, we spiked 
cells from a gut microbiome standard (Zymo) into a sewage sample 
(bgd01) before processing it. After sequencing and demultiplexing to 
individual SAGs, 60.4% of the trimmed reads were assigned to SAGs 
with more than 60,000 reads each. Our anticipated number of SAGs 
was 4,000 for this experiment, of which we captured 2,330.

We mapped the trimmed reads to the reference genomes of the 
cells that were spiked in to verify the efficiency of the DNA extraction 
and amplification methods. We  found that the procedure could 
amplify both Gram-positive and Gram-negative genomes, however 
Gram-negative species in the mock community had consistently lower 
depth of coverage than the Gram-positive cells of the same proportion 

FIGURE 1

Experiment outline from sample to demultiplexed per-cell sequencing data. The figure highlights the workflow for both the pig feces and sewage 
samples. SPC – semi-permeable capsules; SAG – single amplified genome.
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of genomic DNA (Supplementary Table 1). Note that metagenomic 
applications, for which the standard was designed and that rely on 
whole DNA extraction, are unaffected by Gram-negative 
population lysis.

Single amplified genomes (SAGs)—shallow 
sequencing and deep sequencing

Library sizes (targeting 400 SAGs for deep sequencing and 
4,000 SAGs for shallow) were estimated by digitally enumerating 
fluorescent SPCs post-MDA (see Methods). The observed number 
of cells per library was determined from weighted barcode 
abundance histograms (Figure 2). In these histograms, barcodes 
are binned by read number, with the y-axis representing the 
number of reads per bin. This representation offers two key 
advantages. Firstly, it allows for visual identification of a natural 
threshold to distinguish target SAGs from noise, such as any trace 
barcode cross-contamination between wells Secondly, since the 
histogram area is directly proportional to the number of reads, it 
emphasizes the economic impact of thresholding.

The four libraries received between 164 M and 255 M reads. By 
design, deep sequencing libraries were expected to contain about 
10-fold fewer cells. When comparing deep vs. shallow libraries, the 
distributions were expected to have similar shapes but be  shifted 
roughly 10x on the x-axis. Both the consistent distribution shape and 
the approximate 10x shift on the x-axis were observed (Figure 2). A 

bimodal distribution was observed for both sample types, with a more 
pronounced separation in the fecal samples. The lower read count 
subset may represent smaller genomes (such as phages) or partial 
genomes, either due to fragmentation during sample preparation and 
storage or incomplete lysis.

As shown in Figure 2, we visually selected thresholds of 10,000 
reads for deep sequencing libraries and a 10-fold lower threshold for 
shallow libraries. In deep sequencing libraries, this threshold identified 
1,796 and 1,220 barcodes (SAGs) for feces and sewage, respectively. In 
shallow sequencing, the SAG counts were 12,731 and 17,909, 
respectively—3 to 4 times more than anticipated from the digital 
quantification of fluorescent SPCs. This discrepancy highlights the 
challenge of estimating SAG numbers in environmental samples, 
where genome sizes and the corresponding amount of amplified DNA 
can vary across several orders of magnitude. A possible explanation 
for underestimating SAG counts using digital quantification is the 
difficulty in distinguishing between empty SPCs and those containing 
low amounts of DNA.

For taxonomic annotation, antibiotic resistance gene analysis, and 
comparison to metagenomic data, we proceeded with a minimum of 
70,000 reads per SAG for feces and 50,000 reads per SAG for sewage 
in the deep sequencing libraries (Supplementary Figure 1). The 
threshold for shallow sequencing libraries was automatically scaled for 
each barcode A variant during demultiplexing (parameter 0.0005c n=
; see Methods) and ranged from ~9,000 to 14,000 reads for feces and 
from 5,000 to 24,000 reads for sewage. This resulted in 599 and 576 
cells (deep sequencing), and 1,599 and 2,456 cells (shallow sequencing) 

FIGURE 2

Weighted histograms of reads-per-barcode. Barcodes are binned by the number of reads, and the y-axis shows the number of reads coming from 
each bin. The gray area in the figure is proportional to the number of reads.

https://doi.org/10.3389/fmicb.2024.1516656
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ling et al. 10.3389/fmicb.2024.1516656

Frontiers in Microbiology 06 frontiersin.org

being used for further analysis of sewage and fecal samples, 
respectively.

Top taxonomic labels of bacteria agree 
between shallow and deep sequencing

The five most abundant species in the pig fecal sample using the 
shallow sequencing method were: Lactobacillus amylovorus (412 
SAGs), Mogibacterium kristiansenii (96 SAGs), Streptococcus 
alactolyticus (89 SAGs), Limosilactobacillus reuteri (76 SAGs) and 
Streptococcus suis (38 SAGs) (Supplementary data). The top five 
dominant species for deep sequencing were similar, with the exception 
that Streptococcus suis was replaced by a Clostridial bacterium (33 
SAGs). However, Streptococcus suis still remained one of the top ten 
dominant species in deep sequencing.

For the sewage sample, the five most abundant species using the 
shallow sequencing method were: Streptococcus suis (404 SAGs), 
Planococcus plakortidis (113 SAGs), Planomicroboium koreense (61 
SAGs), Streptococcus equinus (59 SAGs), Planococcus rifietoensis (51 
SAGs) (Supplementary data). The five most abundant species 
identified through shallow sequencing closely resemble those found 
using the deep sequencing method. For example, Streptococcus suis 
(189 SAGs) remained the most dominant species while Planococcus 
plakortidis (12 SAGs) and Streptococcus equinus (10 SAGs) were the 
next two dominant species found in the deep sequencing approach. 

With the exception that Planomicrobium koreense is not the dominant 
species, the dominant species is replaced by Bifidobacterium longum 
(9 SAGs) and Bifidobacterium adolescentis (8 SAGs) which are two 
Bifidobacterium sp. that commonly found in the human gut 
microbiota and Ligilactobacillus ruminis (8 SAGs).

In general, deep sequencing of the fecal sample revealed a lower 
count of bacterial species but not number of families. Especially 
Streptococcaceae and Lachnospiraceae were common (Figure 3). For 
both samples, a higher fraction of SPCs assigned to Streptococcaceae 
were seen in deep sequencing as compared to shallow sequencing. 
Shallow sequencing of the sewage sample showed higher proportions 
of cells in the Enterococcaceae family.

Read based ARG prediction for deep and 
shallow sequencing

Acquired antimicrobial resistance genes were predicted in the 
SAGs using the PanRes database. The ARG with the highest hit count 
in both samples was ermB (U86375), which confers resistance to 
macrolides and lincosamides.

Our results showed that the shallow sequencing approach 
detects more ARGs than the deep sequencing in the more prevalent 
bacterial species. In the pig feces sample (Figure 4), L. amylovorus 
(412 SAGs in shallow sequencing) was the dominant bacterial taxon, 
and it was associated with the most frequently detected ARGs: it 

FIGURE 3

Taxonomic distribution at family level for both shallow sequencing and deep sequencing from sewage and pig feces, showing the top 10 families in 
each sample. Top 10 families from each sample are plotted across all 4 bars. Dark green color for “Other” category contains the families that were not 
in the top ten in the samples. The NA category encompasses the droplets where taxonomy on the family level could not be assigned.
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harbored all but three of the top 10 ARG groups found via deep 
sequencing, and all the top ARG groups are attributed to it by the 
shallow sequencing method. Similarly, the deep and shallow 
sequencing approaches both identified six major ARGs in 
S. alactolyticus.

In the sewage sample, a similar trend is observed; the second 
and third most prevalent species Planococcus plakortidis and 
Streptococcus equinus revealed more ARGs in shallow sequencing 
as compared to deep sequencing (Figure 5). The deep sequencing 
approach only revealed more ARGs compared to shallow 
sequencing in those bacterial species that are less prevalent within 
the samples such as Enterococcus aquimarinus, Enterococcus 
gallinarum, or Bifidobacterium adolescentis.

Comparisons between metagenomic data, 
shallow and deep SAGs: taxonomic profiles 
and ARGs

We performed a comparison of taxonomic assignments and 
ARGs based on (1) shallow SAGs, (2) deep SAGs and (3) 
metagenomics, separately for feces and sewage. We only sequenced 
SAGs from a few thousands of cells, whereas the genomic data 
obtained through shotgun metagenomics data results from 
sequencing from cells, so the two approaches have distinct advantages 
and disadvantages.

In pig feces, one extra family was found by deep sequencing 
compared to shallow sequencing: Propionibacteriaceae. 

FIGURE 4

Top ARG groups in pig fecal sample (W1E) and the predicted species of the SAG they were found in. Top: Shallow sequencing; Bottom: Deep 
sequencing.

https://doi.org/10.3389/fmicb.2024.1516656
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ling et al. 10.3389/fmicb.2024.1516656

Frontiers in Microbiology 08 frontiersin.org

We detected 13 bacterial families exclusively in shallow sequencing 
(unclassified Bacillales, Carnobacteriaceae, Corynebacteriaceae 
Dietziaceae, Enterococcaceae, FGB3048, FGB39849, FGB8240 
unclassified Lactobacillales, Methanosarcinaceae, Micrococcaceae, 
Ornithinimicrobiaceae, Peptostreptococcaceae), owing to the fact, 
that the shallow sequencing method sequences more bacterial cells 
from the same sample and provides insight into larger 
bacteria diversity.

In the sewage sample, bacteria in four bacterial families were 
unique to the deep sequencing method: Brucellaceae, 
Bradyrhizobiaceae, Legionellaceae and Peptococcaceae. On the 
other hand, 11 bacterial families were uniquely detected by 
shallow sequencing (Bacillaceae, unclassified Bacilli, 
Chromatiaceae, Dermacoccaceae, Dermatophilaceae, FGB7832, 

Hungateiclostridiaceae, Ornithinimicrobiaceae, Rhizobiaceae, 
Sphingobacteriaceae, Vibrionaceae) (Supplementary data).

The relative abundance estimates from metagenomic sequencing 
and the SAG counts from SC sequencing did not correlate well for all 
phyla and families (Figures 6, 7). For the fecal sample, Prevotella was 
the most abundant species in metagenomic data, while the most 
abundant species in SC data was Lactobacillus amylovirus. Interestingly, 
only two SAGs of Prevotella were found using the SC method. Our 
mock community analysis likewise revealed that the SC method 
captured more Gram-positive bacterial DNA than Gram-negative 
genomic DNA. This is consistent with the higher relative abundance of 
the phylum Bacteroidetes (Gram-negative) observed in metagenomic 
data compared to our SC protocol in feces. The single cell sequencing 
method revealed two phyla in the pig fecal sample that metagenomic 

FIGURE 5

Top ARG groups in the sewage (Bgd01) sample and the predicted species of the SAGs they were found in. Top: Shallow sequencing; Bottom: Deep 
sequencing.
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sequencing did not recover: Actinobacteria and Chloroflexi (Figure 6). 
For the sewage sample, the phyla that were identified by single cell 
sequencing are also found in metagenomic sequencing.

The dominant class of resistance in the sewage sample, by both 
shallow and deep sequencing, is lincosamide (Figure  8), while 
tetracycline was the most frequently found resistance class based on 
metagenomic analysis. Similarly, in the pig fecal sample, lincosamide 
was the dominant class that was found in SAGs and tetracycline was 
the dominant resistance class found in the metagenome data.

Discussion

Shotgun metagenomic sequencing of environmental samples 
has made it possible to profile entire microbial communities. 
Combining recent advancements in microfluidics and SPCs 
technology, direct genomic analysis of individual microbial cells 
within complex environmental samples, called single cell 
metagenomic sequencing, is now enabling the focused analysis of 
single members of complex communities, without the bias of 
pre-selection (Lan et  al., 2024). Our study demonstrated a 
laboratory platform that can access high-throughput single cell 
metagenomic sequencing techniques including single cell isolation 
from sewage and pig feces microbiomes, genome amplification in 
SPCs techniques and split-pool ligation-based barcoding of tens of 
thousands of individual SAGs in parallel.

Single bacterial cells were isolated in 65-70 μm SPCs that have a 
liquid core surrounded by a thin semi-permeable shell, which retains 
DNA fragments >500 bp but allows enzymes, oligos and smaller 
molecules to diffuse through (Leonaviciene et  al., 2020). Thus, 
encapsulated cells can lyse in a lysis mix and process through series of 

washing steps to purify and amplify the cells’ genetic material 
(Leonaviciene et al., 2020). To mitigate DNA losses during further 
library preparation steps, the purified DNA was amplified by multiple-
displacement amplification (MDA) within SPCs. To ensure single cell 
encapsulation of bacteria within environmental samples, the total 
bacterial count within a sample is important for the precalculated 
lambda values prior to encapsulation. Due to the variability of the 
initial measurement of bacteria number within an environmental 
sample that might be  influenced by bacterial cell clusters, the 
precalculated SAGs used for sequencing might not represent the final 
number of SAGs that are sequenced (Figure 1).

We used MetaPhlAn4 with individual SAGs as input to predict the 
taxonomical profile of the sequenced microbial communities. 
However, reference databases are not expected to contain all strains 
found in all types of environments and host microbiomes. Microbial 
dark matter, made up of yet un-discovered or un-described taxa, could 
make up a significant portion of a complex environmental community. 
Thus, identifying all our SAGs from complex microbial communities 
down to the species level through comparison with known reference 
genomes is not entirely feasible. More complete reference databases, 
or reference-free methods could potentially identify more unknown 
SAGs. Additionally, the limited coverage of the genomes can hinder 
taxonomic assignment, especially on the lower taxonomic levels. 
Despite these challenges, our single cell metagenomic sequencing 
method revealed a diverse range of bacterial species from various 
phyla both with deep and shallow sequencing.

The single cell sequencing method we  introduce here 
demonstrated potential bias against Gram-negative bacteria 
(Supplementary Figure 2). The observed discrepancy could 
be attributed to the freeze–thaw process during sample storage or 
preparation protocol. Specifically, sample preparation steps like 

FIGURE 6

Bacterial phyla of the gut microbiota in pig feces (W1E) from deep sequencing, shallow sequencing and metagenomic sequencing. The coloring and 
size of the circles correspond to the relative abundance of each phylum.
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microbial cell detachment, which includes sonication and 
centrifugation steps may lyse Gram-negative cells before the cell 
encapsulation step. Therefore, the microbial community 
composition might be altered after post-extraction procedure. In 
contrast to the standard protocol for metagenomic library 

preparation, single cell sequencing also excludes the free-floating 
DNA that has been prematurely released from cells before cell 
encapsulation step. Therefore, samples that are used for single-cell 
DNA sequencing should be prepared or extracted using a procedure 
that has minimal impact on cell lysis before the cell encapsulation 

FIGURE 7

Bacterial phyla from sewage sample (Bgd01) from deep sequencing, metagenomic and shallow sequencing. The coloring and size of the circles 
correspond to the relative abundance of each phylum.

FIGURE 8

ARG phenotypic distribution for the SC deep sequencing, SC shallow sequencing and MG data for pig feces (W1E) and sewage (bgd01). Fractions are 
calculated on the total number of ARGs or reads found in each sequencing run.
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step. The results from the spiked sample are also consistent with 
previous attempts to use the Zymo reference standard for single-cell 
method evaluation, which report Gram-negative 
underrepresentation due to lysis caused by the DNA/RNA Shield 
reagent (Li et al., 2023; Lan et al., 2024). Future studies employing 
single-cell metagenomic protocols should modify the sample 
preparation steps to use alternative methods that avoid lysing 
bacterial cells before encapsulation. Additionally, it is crucial to 
ensure that the method can effectively detach bacterial cells from 
clustering, aggregating, or adhering to environmental particles.

In our single cell workflow, a single run of experiment can 
generate roughly 100,000 SPCs that each contain a single cell. Due to 
the limited sequencing capacity of flow cells, different number of 
SAGs sequenced in one flow cell would change the read number 
obtained per SAG (Figure  1). Therefore, different SC sequencing 
approaches can be used to serve various research objectives. The Deep 
sequencing method samples fewer bacteria, which reduces the 
bacterial diversity obtained but increases the number of reads per cell. 
More reads per SAG might provide a broader sampling of genetic 
material in one cell including antibiotic resistance genes (ARGs) and 
potentially improve taxonomy assignment accuracy for rare bacterial 
strains. In contrast, shallow sequencing yields higher bacterial 
diversity information within the sample by capturing more 
information across a higher number of SAGs, potentially making it 
useful to track specific ARGs across multiple bacterial species. It could 
also still provide detailed genetic insights into dominant bacterial 
species as the lower number of reads per cell can be compensated by 
the increased number of SAGs. However, the shallow sequencing 
approach may not effectively capture rare species. The two different 
sequencing approaches using the single cell barcoding workflow 
presented here should be adjusted based on specific research objectives.

The SC sequencing method has the potential to quantify 
abundance of specific bacterial taxa within a sample, relative to the 
number of representative encapsulated cells which reveal the presence 
of dominant species in environmental or fecal samples. The presence 
of dominant species like Lactobacillus amylovorus, Streptococcus 
alactolyticus, Limosilactobacillus reuteri in our pig fecal sample is in 
concordance with the results showing the top 5 most prevalent species 
found in a large-scale deep metagenomic sequencing study conducted 
on bacterial isolates from pig intestines (Wylensek et  al., 2020). 
L. amylovorus is the most abundant species found at both the deep and 
shallow sequencing methods in pig fecal sample (145 SPCs, 412 SPCs). 
L. amylovorus, the most abundant species found in our pig fecal 
sample, is commonly found in pig feces and is known for its probiotic 
effect in piglets (Shen et al., 2022; Wylensek et al., 2020). Moreover, 
several species normally found within pig specific gut microbiota were 
also found to be  abundant, such as species of Lactobacillus, 
Streptococcus, Clostridium, and Enterococcus (Wylensek et al., 2020). 
One of the newly cultured taxa that represents a dominant species 
from pig intestine described by Wylensek et al. (2020) is Mogibacterium 
kristiansenii which is the second most abundant species found in our 
single cell study. This result showed that single cell sequencing has the 
potential to reveal certain new bacterial taxa, complementing efforts 
to cultivate new bacterial taxa from specific environments or hosts.

Interestingly, in pig feces, SC sequence data from both deep and 
shallow sequencing revealed the presence of Actinobacteria, which 
was not found in the metagenomic sequencing of our sample 
(Figure 7). A previous study has shown that the core gut microbiota 

of piglets mainly consists of the bacterial phyla Firmicutes, 
Proteobacteria, Bacteroidetes, and two minority phyla: Actinobacteria 
and Fusobacteria (Cremonesi et al., 2022). Another study also showed 
that Actinobacteria is one of the three phyla that dominate piglet feces 
(Lührmann et  al., 2021). This demonstrates the potential of SC 
sequencing to uncover certain bacterial phyla that cannot 
be  discovered by certain metagenomic analysis unless one would 
make a thoroughly detailed bioinformatics analysis on certain 
metagenome sequence data.

The taxonomy assignment of both sequencing approaches reveals 
the dominant bacterial taxa within the samples while providing extra 
information that can directly link ARGs to each taxon and the 
distribution of the ARGs across multiple bacterial classes. Compared 
to metagenomic sequencing, the direct linking of specific genes from 
single-cell sequencing offers a significant advantage. It allows for 
tracking the spread of ARGs within the same environment and 
between different bacterial species. Both shallow sequencing and deep 
sequencing methods can identify ARGs within bacterial genomes in 
sewage and fecal samples (Figures 5, 6). In our study, we were able to 
identify the ARGs in Streptococcus suis, a bacterial pathogen associated 
with swine and human disease (Rayanakorn et al., 2018; Hughes et al., 
2009), that dominates the Bangladesh open sewage systems. This 
demonstrates that single-cell sequencing can be used to determine 
antibiotic susceptibility profiles of specific bacterial taxa within the 
sample, which is crucial for mapping the epidemiological spread of 
ARGs of certain human pathogens in the environment that is close to 
human contact.

Twenty five bacterial species harbor the top ARGs found within 
the deep sequencing of the pig fecal sample and 48 bacterial species 
are represented in the top ARGs found in the shallow sequencing 
approach. Shallow sequencing will provide distribution of dominant 
ARGs across different bacterial taxon and species within the 
environment. The deep sequencing method is a better approach if the 
objective of study is to investigate ARGs within less dominant bacterial 
species while shallow sequencing approach is better for investigating 
the ARGs within the most dominant bacterial species. This was shown 
in the feces sample analysis where L. amylovorus associated with most 
frequent ARGs detected in shallow sequencing approach which 
attributed to L. amylovorus taking up a large fraction of the SAGs (412 
SAGs) in the data. Therefore, more SAGs can compensate for fewer 
reads per SAG in shallow sequencing compared to with other less 
dominant bacterial species.

Conclusion

Single-cell metagenomics sequencing, when combined with bulk 
sequencing approaches for the entire microbial community, enables the 
study of microbial community heterogeneity in the environment by 
revealing cell-to-cell variability. Our study demonstrated that different 
sequencing strategies in single-cell metagenomics can yield varying 
results, where one must choose between higher sampled diversity but 
lower genome coverage, or lower diversity with higher genome coverage 
depending on the research objective. Despite underrepresentation of 
bacterial phyla due to the prerequisite for DNA in the sample to be cell-
contained and to the number of selected droplets for sequencing, this 
technology remains valuable for exploring potential novel bacterial 
species that cannot be  discovered through shotgun metagenomic 
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sequencing. For investigating the acquisition of antibiotic resistance and 
the transmission of ARGs within the gut microbiome or environmental 
contexts (such as sewage environments), single-cell sequencing has 
proven to be  a useful tool. The single-cell metagenomics analysis 
directly links ARGs genes to their bacterial hosts, as demonstrated in 
our study, could provide new insights into the complexity of ARGs 
evolution, dispersal, and emergence in real-life environments. Instead 
of simply copying the sequencing depth and number of SPCs used here, 
researchers would be able to determine an appropriate number of cells 
at an appropriate depth to accommodate their goals and sequence. It 
takes significantly more reads to consistently hit a single ARG, which 
means estimating resistance prevalence in low-abundance species 
requires more sequencing efforts.
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