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Human papillomavirus, vaginal 
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Persistent infection with oncogenic human papillomavirus (HPV) types, such as 
HPV 16 or 18, is a major factor in cervical cancer development. However, only a 
small percentage of infected women develop cancer, indicating that other factors 
are involved. Emerging evidence links vaginal microbiota with HPV persistence and 
cancer progression. Alterations in microbial composition, function, and metabolic 
pathways may contribute to this process. Despite the potential of metagenomics to 
explore these interactions, studies on the vaginal microbiota’s role in cervical cancer 
are limited. This review systematically examines the relationship between cervical 
microbiota, HPV, and cervical cancer by analyzing studies from PubMed, EBSCO, 
and Scopus. We highlight how microbial diversity influences HPV persistence and 
cancer progression, noting that healthy women typically have lower microbiota 
diversity and higher Lactobacillus abundance compared to HPV-infected women, 
who exhibit increased Gardenella, Prevotella, Sneathia, Megasphaera, Streptococcus, 
and Fusobacterium spp., associated with dysbiosis. We discuss how microbial 
diversity is associated with HPV persistence and cancer progression, noting that 
studies suggest healthy women typically have lower microbiota diversity and 
higher Lactobacillus abundance, while HPV-infected women exhibit increased 
Gardnerella, Prevotella, Sneathia, Megasphaera, Streptococcus, and Fusobacterium 
spp., indicative of dysbiosis. Potential markers such as Gardnerella and Prevotella 
have been identified as potential microbiome biomarkers associated with HPV 
infection and cervical cancer progression. The review also discusses microbiome-
related gene expression changes in cervical cancer patients. However, further 
research is needed to validate these findings and explore additional microbiome 
alterations in cancer progression.
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Introduction

Human papillomavirus (HPV) is one of the most common sexually transmitted infections 
worldwide, particularly in women under 25 (Sharifian et al., 2023). Nearly 90% of women are 
exposed to HPV during their lifetime, but most infections resolve before viral integration into 
the host genome (Karpinets et al., 2022; Szymonowicz and Chen, 2020; Karpinets et al., 2020). 
However, about 10% persist, significantly increasing the risk of cervical cancer (Shulzhenko 
et al., 2014; Chang et al., 2023; Woodman et al., 2007). High-risk types like HPV 16 and 18 are 
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the leading cause of cervical cancer and are associated with other 
cancers, such as those of the head and neck (Ure et al., 2022; Koshiol 
et al., 2008; Castellsagué, 2008; Banerjee et al., 2015; Chen et al., 2020; 
Condic et al., 2023; Arroyo Mühr et al., 2015; Feng et al., 2008; Zheng 
et al., 2023).

A dysbiotic cervicovaginal microbiome is more permissive to 
persistent HPV infection, facilitating viral oncogene expression and 
subsequent cervical dysplasia and cancer (Fang et al., 2022; Gilbert et al., 
2018; Irfan et  al., 2020). This dysbiosis is especially relevant among 
Hispanic women, whose microbiota is often low in Lactobacillus and 
resembles that of HPV-infected women, increasing their vulnerability to 
persistent infections (Tosado-Rodríguez et al., 2024; Vargas-Robles et al., 
2023; Thyagarajan et al., 2020). A “nonoptimal” microbiota, characterized 
by reduced Lactobacillus species and overrepresented anaerobic bacteria 
and fungi, predisposes this group to cervical dysplasia and malignancy 
(Godoy-Vitorino et al., 2018; Vargas-Robles et al., 2023; Gosmann et al., 
2017; Oliveira de Almeida et al., 2021; Raza et al., 2007). These findings 
highlight ethnic variability in microbiota composition and its influence 
on HPV persistence and cancer progression (Martínez et al., 2021).

Dysbiosis in the cervicovaginal microbiome, marked by decreased 
Lactobacillus and increased anaerobic bacteria, fosters a 
pro-inflammatory environment conducive to HPV persistence and 
cervical dysplasia (Mitra et al., 2016; Brotman et al., 2014; Doerflinger 
et al., 2014; Happel et al., 2020; Libertucci and Young, 2019; Marchesi 
and Ravel, 2015; Ogunrinola et al., 2020; Peebles et al., 2019; Rebersek, 
2021; Yang et al., 2021; Zhou et al., 2021). Chronic inflammation 
driven by cytokines and immune cell recruitment further exacerbates 
epithelial damage, supporting oncogenesis (Mitra et  al., 2015; 
Shannon et al., 2017; Libby et al., 2008). Microbiota dysbiosis also 
impairs mucosal barrier function, heightens local inflammation, and 
promotes conditions for viral persistence and genome integration—
key steps in cervical carcinogenesis (Vyshenska et al., 2017; Baldridge 
et  al., 2015; Schneider et  al., 2022; Turnbaugh et  al., 2007; Wang 
et al., 2017).

This review explores the association between microbiota, HPV, 
and cervical cancer by comparing microbial diversity in healthy and 
HPV-infected women. It highlights the increased prevalence of 
specific microorganisms in HPV-infected women, such as Sneathia 
spp., Prevotella, Megasphaera, Shuttleworthia, Streptococcus, 
Porphyromonas, and Fusobacterium spp., and discusses the 
functional implications of these microbiota shifts. Finally, this 
review identifies gaps in current research and suggests 
future directions.

Methods

We conducted a systematic review on the relationship between 
cervical microbiota, HPV, and cervical cancer, following PRISMA 
guidelines. The research question was framed using the PICOS 
framework. The population included women with HPV infection 
or cervical cancer, with interventions focusing on cervicovaginal 
microbiota composition. Outcomes assessed were HPV 
persistence, microbiota alterations, and cervical cancer 
progression, with comparators being women with normal 
microbiota and no HPV.

Advanced searches were conducted in PubMed, EBSCO, and 
Scopus using predefined search strings combining Medical Subject 

Headings (MeSH) terms and keywords with Boolean operators 
(AND, OR). For instance, the PubMed search string was: (“Human 
papillomavirus” OR “HPV”) AND (“cervical cancer” OR “cervical 
neoplasia”) AND (“microbiota” OR “microbiome” OR “vaginal 
microbiome”). Search strings were tailored for each 
database’s syntax.

References were independently screened to remove duplicates. 
Titles and abstracts were assessed using predefined inclusion and 
exclusion criteria. Inclusion criteria required studies on microbiota in 
women with HPV or cervical cancer, published in English between 
2010 and 2024. Exclusion criteria included ongoing studies, pre-prints, 
qualitative cross-sectional studies, duplicates, and null entries. 
Relevant details, including author, year, location, study design, patient 
number, age, and disease description, were extracted. Key findings on 
cervical microbiome, HPV infection, and cancer progression 
were analyzed.

To mitigate bias, the methodological quality of studies was 
assessed using the Newcastle-Ottawa Scale (NOS), with specific 
focus on selection, comparability, and outcome assessment 
domains. Discrepancies between reviewers were resolved through 
discussion with an external collaborator. A total of 62 papers were 
identified, with 22 removed as duplicates or irrelevant. Full-text 
reviews were conducted on 27 studies, of which 14 met the 
inclusion criteria. The results are outlined in the PRISMA diagram 
(Figure 1).

Human papillomavirus

HPV is a small, non-enveloped, epitheliotropic icosahedral DNA 
virus (60 nm in diameter) in the subfamily Papillomaviridae and 
Firstpapillomavirinae. Virions have a single circular double-stranded 
histone-bound DNA molecule (~8 kb) with eight protein-coding 
genes (Sharifian et  al., 2023). The viral genome has three regions 
(Figure 2), each contributing to HPV’s ability to infect, replicate, and 
contribute to carcinogenesis:

 1. A noncoding regulatory long control region (LCR) with a 
promoter, enhancer, and silencer enabling the precise 
regulation of viral gene expression and replication.

 2. A region for transformation and replication, encoding E1 to E7 
proteins. The E6 and E7 oncoproteins are particularly 
significant because they disrupt critical cell cycle regulators, 
p53 and Rb, promoting uncontrolled cell proliferation. E2, in 
contrast, plays a regulatory role by downregulating E6 and E7 
expression, balancing the viral lifecycle (Brianti et al., 2017; 
Van Doorslaer et al., 2018).

 3. A region encoding capsid proteins L1 and L2, essential for 
virion assembly (Brianti et al., 2017; Van Doorslaer et al., 2018).

HPV diversity includes 223 different types, with new types 
continually identified (Bzhalava et  al., 2014; de Villiers et  al., 
2004). Of these, 14 types are high oncogenic risk (HR), including 
HPV 16 and 18 which are the most frequently associated with 
cervical carcinogenesis (de Sanjose et  al., 2010; Muñoz et  al., 
2003). Around 71% of cervical carcinoma cases globally involve 
HPV16 or HPV18, though the prevalence of other genotypes 
varies by region. For instance, while HPV16 dominates in Europe, 
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HPV52 and HPV58 are more prevalent in parts of Asia, 
highlighting the geographical variability in HPV genotype 
distribution and its implications for tailored vaccination strategies 
(Ye et al., 2024).

Cervical cancer

Cervical carcinoma is the fourth most prevalent cancer and 
leading cause of cancer-related mortality among women globally 
(Fang et al., 2022; Weill Cornell Medicine, n.d.). In 2020, there were 
604,127 new cases and 341,831 deaths worldwide (Sharifian et al., 
2023; Chang et al., 2023; Siegel et al., 2020). Mortality rates can reach 
up to 88% in severe cases, particularly in developing countries 
(Banerjee et al., 2015; Arbyn et al., 2011).

Cervical cancer involves uncontrolled cell proliferation in the 
cervix, which connects the uterus to the vagina (National Cancer 
Institute, 2023). It is classified into five stages (Figure 3):

 • Stage 0: Cervical dysplasia, with irregular cells on the 
cervix surface.

 • Stage 1: Cancer confined to the cervix, with tumors 3 mm to 4 cm 
in diameter.

 • Stage 2: Cancer extends beyond the cervix and uterus to the 
upper two-thirds of the vagina.

 • Stage 3: Tumor invades the lower third of the vagina, pelvic walls, 
and lymph nodes.

 • Stage 4: Advanced cancer, with metastasis to distant organs such 
as the bladder, rectum, liver, lungs, or distant lymph nodes 
(National Cancer Institute, 2022; American Cancer Society, 2020).

The progression of cervical cancer is closely tied to persistent HPV 
infection, particularly with high-risk types such as HPV 16 and 18. 
Persistent HPV infections can lead to cervical dysplasia (Stage 0), a 
precursor to invasive cervical cancer. As the infection persists, viral 
oncogenes E6 and E7 disrupt tumor suppressors p53 and Rb, 
promoting uncontrolled cell proliferation and enabling the transition 

FIGURE 1

PRISMA Flow Diagram of Study Selection Process. This figure illustrates the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) flow chart detailing the systematic review process for assessing the relationship between cervical microbiota, HPV and cervical cancer 
progression. The diagram is divided into several sections representing different stages of the review process.
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from precancerous lesions to invasive stages (Figure 3; Doorbar et al., 
2012; Crosbie et al., 2013).

Cervical microbiota

Microbiota refers to the range of commensal, symbiotic, or 
pathogenic microorganisms found in multicellular organisms. Each 
part of the human body has a specific microbiota playing a key role in 
health, such as the intestinal or vaginal microbiota (Sharifian et al., 
2023). The disruption of microbiota homeostasis increases 
vulnerability to viral infections (Avilés-Jiménez et al., 2017; Schwabe 
and Jobin, 2013). Changes in the abundance of certain 
microorganisms, their functional abilities and the changes caused in 
the metabolic pathways are factors that can contribute to cancer 
progression (Shin et al., 2015; Heintz-Buschart and Wilmes, 2018; 
Deng et  al., 2021). Yet, the exact mechanisms of how microbiota 
disruptions lead to diseases are still unknown (Condic et al., 2023).

The role of the microbiome in cancer development has gained 
recognition, now considered one of the emerging hallmarks of cancer 
(Hanahan, 2022; Ekström et  al., 2013). Microbial communities 
influence processes like inflammation, immune evasion, and 
metabolic reprogramming.

The vaginal microbiota thrives in an anaerobic habitat, receiving 
nutrients like glucose and oxygen (Linhares et al., 2011). It is also 
dynamic, influenced by age, menstrual cycle, sexual activity, stress, 
and pregnancy (Chen et al., 2021; Culhane et al., 2002; Noyes et al., 
2018; Aagaard et  al., 2012). Vaginal dysbiosis, the most common 
disorder among reproductive-age women, involves irregular microbial 
growth, increased diversity, and imbalance, leading to higher infection 
susceptibility (Sharifian et al., 2023; Chen et al., 2021; Javed et al., 
2019; Eschenbach, 1993) with symptoms such as elevated vaginal pH, 
irritation and discharge (Torcia, 2019; Brotman et al., 2014). Dysbiosis 
contributes to cervical cancer development through epithelial barrier 

disruption, metabolic dysregulation, abnormal cell proliferation, 
genome instability, chronic inflammation, and angiogenesis (Sharifian 
et al., 2023; Castanheira et al., 2021; Mitra et al., 2016).

Microbial metabolism plays a crucial role in modulating the 
cervicovaginal microenvironment and promoting carcinogenesis. 
Dysbiotic microbiota alter metabolite production, such as short-chain 
fatty acids (SCFAs), which typically support vaginal health but can 
promote inflammation under dysbiosis (Tjalsma et al., 2012; Bokulich 
et al., 2022). Elevated SCFA levels activate pro-inflammatory pathways 
like NF-κB, increasing cytokines such as IL-6 and TNF-α, creating a 
pro-carcinogenic environment (Mitra et al., 2016).

Inflammatory cytokines like IL-1β, IL-6, and IL-8, elevated during 
dysbiosis, recruit immune cells that release reactive oxygen species 
(ROS), causing oxidative stress and DNA damage. This facilitates HPV 
genome integration, overexpressing E6 and E7 oncoproteins, which 
drive cellular proliferation and inhibit apoptosis (Schmitt et al., 1994; 
Sharifian et al., 2023).

Pathways such as glycan biosynthesis and amino acid metabolism, 
enriched in dysbiotic microbiomes, further promote cancer 
progression. Glycan biosynthesis weakens the epithelial barrier, 
increasing pathogen invasion (Fang et al., 2022), while amino acid 
metabolism supports pathogenic bacteria growth, exacerbating 
inflammation and HPV persistence (Usyk et al., 2020).

Vaginal microbes are classified into 5 community status types 
(CST) based on the predominance of certain species. The CST 
classification system was originally proposed by Ravel et al. (2011), 
identifying CST-I, CST-II, CST-III, and CST-V are dominated by 
Lactobacillus species: L. crispatus, L. gasseri, L. iners, and L. jensenii, 
respectively. CST-IV is divided into CST IV-A, with modest 
Lactobacillus presence, and CST IV-B, dominated by anaerobes like 
Atopobium, Prevotella, Parvimonas, Gardnerella, and Megasphera 
(Chen et al., 2021; Sharifian et al., 2023; Kyrgiou et al., 2017; Romero 
et al., 2014; Table 1). Recently, the CST classification has been refined 
using VALENCIA software, which identifies CSTs based on amplicon 
sequencing data and provides a more standardized approach to 
classifying vaginal microbial communities. Unlike the original 
framework, VALENCIA offers greater granularity, particularly within 
CST-IV, by identifying subtypes dominated by specific anaerobes, thus 
enabling a more detailed understanding of dysbiotic states (Gajer 
et al., 2012; France et al., 2020).

Metagenomics of the vaginal microbiome 
during HPV infection

Recent years have seen a revolution in studying microbiota and 
their connection to cancer with the advent of metagenomics (Banerjee 
et al., 2015). Metagenomics examines the functions, structures, and 
interactions of microorganisms by analyzing entire nucleotide 
sequences from bulk samples (Banerjee et  al., 2015). Previously, 
microbiota studies relied on traditional bacterial culture methods, 
which were limited because most microorganisms cannot be cultured 
in laboratories (Fang et al., 2022; Arokiyaraj et al., 2018; Wei et al., 
2021). Using whole metagenomic sequencing, researchers can 
sequence the entire DNA within a sample, increasing the depth and 
specificity of identified species and providing insights into gene 
function and metabolic pathways (Fang et al., 2022; Shah et al., 2018; 
Biegert et al., 2021). This approach has enabled associations between 

FIGURE 2

Structure of HPV 16. It includes the noncoding regulatory long 
control region (LCR), a region containing genes (E1–E7) responsible 
for transformation and replication, including E6 and E7, and a region 
encoding capsid proteins L1 and L2.
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the predominance of certain microorganisms in the vaginal 
microbiome and the development of cervical cancer (Luan et al., 2020).

It is well established that healthy women tend to show lower 
microbiota diversity and a higher presence of Lactobacillus spp. 
compared to women with bacterial vaginosis. For instance, Chen et al. 
(2021) review article highlights the differences in the vaginal 
microbiome between healthy women and those with bacterial 
vaginosis showing that in healthy women, the vaginal microbiome is 
predominantly composed of Lactobacillus spp. For this, they compiled 
information by conducting a thorough literature search, selecting 
relevant studies based on predefined criteria, extracting, and analyzing 
key data, and integrating findings to provide a comprehensive review 
of the female vaginal microbiome. Studies claim that healthy cervical 
microbiota is characterized by the presence of Lactobacillus spp. 
whereas an increase in Gardnerella vaginalis, Prevotella bivia, and 
Atopobium vaginae, is significantly associated with the development 
of dysbiosis (Muzny et al., 2018). One caveat of the study is that results 
rely on self-collected samples could introduce variability in sample 
quality and timing. Additionally, the study focused on a specific 
population, African American women who have sex with women, 
which may limit the generalizability of the findings to other groups. 
Fredricks et al. (2007) also argue that the presence of certain bacteria, 
such as Gardnerella vaginalis, Atopobium vaginae, and BV-associated 
bacterium-1, was strongly associated with bacterial vaginosis. It is, 
however, important to notice that in the study they used targeted PCR 
assays for the detection of vaginal bacteria in vaginal samples collected 
from women diagnosed with vaginal dysbiosis which could lead to 
some bacteria missing from the essay. Finally, the study by Srinivasan 
et al. (2012) found significant differences in the bacterial communities 
of healthy women compared to those with bacterial vaginosis. Using 
high-resolution phylogenetic analyses, the study identified that 
women with vaginosis had a higher diversity of bacterial species, 
predominantly anaerobes such as Gardnerella vaginalis, Atopobium 
vaginae, and Mobiluncus.

Healthy cervical microbiota is overrepresented with Lactobacillus 
spp. since they can withstand infections by producing bacteriocin, 

biosurfactants, and lactic acid (Banerjee et al., 2015; Fang et al., 2022; 
Witkin and Linhares, 2017). For example, a study in Brazil sequenced 
cervical samples from over 500 women from five different regions 
and found that Lactobacillus, specifically L. crispatus, is the dominant 
species in HPV-negative women. They argue Lactobacillus spp. are 
crucial for maintaining vaginal health by producing lactic acid and 
maintaining a low pH environment (Marconi et al., 2020). Yet, it is 
important to acknowledge that, the study focused on taxonomic 
composition without delving into the functional implications of the 
microbiota, which could provide deeper insights into the health 
impacts of microbiota changes. The study by Chen et  al. (2021) 
demonstrated, using 16S rRNA gene sequencing, that in healthy 
women, the vaginal microbiome is predominantly composed of 
Lactobacillus spp., including species such as Lactobacillus crispatus 
and Lactobacillus iners. These bacteria produce antimicrobial 
compounds like lactic acid and bacteriocins, which maintain a low 
vaginal pH and inhibit pathogen colonization. In contrast, the 
cervical microbiota of women with vaginal dysbiosis, caused by 
HPV, is characterized by a marked reduction in Lactobacillus spp. 
and an increase in anaerobic bacteria, including Gardnerella 
vaginalis, which forms biofilms and shelters other bacterial 
vaginosis-associated microbes. One study’s limitation is that it 
acknowledges the high heterogeneity across different studies, making 
it challenging to generalize findings to other settings. This study also 
does not delve deeply into the functional implications of the 
microbiome composition changes which could further explain the 
importance of Lactobacillus spp. in healthy women. Furthermore, a 
study culturing HeLa cells treated with culture supernatants of 
Lactobacillus crispatus showed a significantly decreased the 
expression of the HPV E6 oncogene, creating an anti-proliferative 
state (Motevaseli et al., 2016). However, the study’s findings are based 
on in  vitro experiments, which may not fully replicate in  vivo 
conditions and only focused on a few autophagy genes, leaving out 
potential impacts on other relevant pathways or genes. Results are 
also specific to HeLa cells and may not be generalizable to other 
cell types.

FIGURE 3

Cervical Cancer Stages. This graphic illustrates the progression of cervical cancer from stage 1, where it is limited to the cervix, to stage 2, where it 
begins to spread to other regions of the uterus. Stage 3 is characterized by the cancer reaching the lower part of the vagina, and stage 4 shows cancer 
spreading to other parts of the body. Stage 0 is not included in this depiction.
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While Lactobacillus dominance is generally protective for vaginal 
health, specific species play varied roles. Lactobacillus crispatus is the 
most protective, producing high levels of lactic acid to maintain low 
vaginal pH, inhibit pathogens, and strengthen the epithelial barrier 
(Petrova et al., 2017; Borges et al., 2022). Its production of bacteriocins 
and hydrogen peroxide further enhances its protective effects.

Conversely, Lactobacillus iners is associated with transitional 
microbiota states. It adapts to dysbiotic environments and may 
contribute to inflammation through its enzyme and metabolite 
production, potentially promoting HPV persistence and cervical 
dysplasia (Vaneechoutte, 2017; van der Veer et al., 2017). Lactobacillus 
jensenii and Lactobacillus gasseri have intermediate roles, with lower 
acid production and less pronounced pathogen inhibition compared 
to L. crispatus.

Based on this information it is not surprising that CST-I and 
CST-II are common in HPV-negative women, while CST-IV 
dominates during HPV infection and cervical cancer development 
(Table 2; Chen et al., 2021; Brotman et al., 2014; Shannon et al., 2017; 
Xu et al., 2020). CST-IV is associated with persistent HPV due to 
G. vaginalis secreting vaginolysin, causing cellular lysis and dysbiosis 
(Sharifian et al., 2023; Nowak et al., 2018). CST-III characterized by a 
dominant presence of L. iners is prevalent among HPV-positive 
women because this bacteria can survive in varying pH ranges and 
inhibits pathogen colonization (Sharifian et al., 2023; Romero et al., 
2014; Macklaim et  al., 2013; Macklaim et  al., 2011). L. iners also 
produces inerolysin, a cytotoxin that creates pores, facilitating HPV 
entry into the vaginal epithelium (Sharifian et al., 2023; Pleckaityte, 
2020; Curty et al., 2019).

TABLE 1 Summary of studies on cervical microbiota composition on HPV and cervical cancer women.

Study Key Findings Methodology Limitations Country

Chen et al. 

(2021)

Healthy women show lower microbiota diversity 

and higher presence of Lactobacillus spp.; Women 

with bacterial vaginosis show higher diversity and 

presence of anaerobic bacteria

C comprehensive literature review with 

predefined criteria and data extraction

High heterogeneity across 

studies; did not deeply analyze 

functional implications of 

microbiota changes

Various 

(literature 

review)

Muzny et al. 

(2018)

Healthy cervical microbiota characterized by 

Lactobacillus spp.; Increase in Gardnerella vaginalis, 

Prevotella bivia, and Atopobium vaginae linked to 

dysbiosis

Self-collected samples, specific 

population (African American women 

who have sex with women)

Variability in sample quality and 

timing; limited generalizability to 

other populations

United States

Srinivasan et al. 

(2012)

Women with bacterial vaginosis have higher 

bacterial diversity, predominantly anaerobes like 

Gardnerella vaginalis, Atopobium vaginae, and 

Mobiluncus

High-resolution phylogenetic analyses None mentioned United States

Marconi et al. 

(2020)

Lactobacillus (specifically L. crispatus) dominant in 

HPV-negative women; crucial for maintaining 

vaginal health by producing lactic acid

Sequenced cervical samples from over 

500 women from five different regions 

in Brazil

Focused on taxonomic 

composition, not functional 

implications

Brazil

Motevaseli et al. 

(2016)

L. crispatus culture supernatants decreased HPV E6 

oncogene expression, creating an anti-proliferative 

state

Culturing HeLa cells treated with 

culture supernatants of L. crispatus

In vitro experiments may not 

replicate in vivo conditions; 

focused on a few autophagy 

genes

Iran

Lee et al. (2013) HPV-positive women had more diverse vaginal 

microbiota; higher proportions of anaerobic 

bacteria like Gardnerella, Atopobium, and Prevotella

Study on a Korean twin cohort Findings specific to Korean twin 

cohort; small sample sizes for 

some subgroup analyses

South Korea

So et al. (2020) Cervical cancer associated with increased anaerobic 

bacteria like Atopobium and Prevotella, especially 

Gardnerella

Investigated changes in vaginal 

microbiota during cervical 

carcinogenesis in women with HPV

Small sample size (only 50 

women, 10 healthy); limited 

generalizability

South Korea

Chen et al. 

(2020)

Gardnerella present in HPV-negative women at 

lower levels; significantly higher in HPV-positive 

women

Analysis of Gardnerella and other 

anaerobic bacteria in relation to HPV 

infection and cervical intraepithelial 

neoplasia progression

None mentioned China

Tango et al. 

(2020)

Gardnerella can be present in HPV-negative women 

but significantly increases in HPV-positive 

individuals and those with cervical cancer

Study on taxonomic and functional 

differences in cervical microbiota 

associated with cervical cancer

None mentioned South Korea

Sharifian et al. 

(2023)

Increased diversity in vaginal microbiota, higher 

presence of anaerobic bacteria like Prevotella linked 

to HPV infection and cancer progression

Comprehensive review of literature on 

microbiota diversity and its impact on 

HPV and cancer progression

None mentioned Various 

(literature 

review)

This table summarizes key information from various studies examining the relationship between cervical microbiota, HPV, and cervical cancer. It includes the main findings, methodologies 
used, any limitations noted in each study, and the countries where the studies were conducted. This comprehensive overview highlights the significant role of microbial diversity and specific 
bacterial species in the progression and management of cervical cancer.
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As HPV infection progresses, the abundance of Lactobacillus spp. 
decreases and is accompanied by a sharp increase in diversity of 
anaerobic bacteria such as Sneathia spp. and Fusobacterium spp. 
(Aitmanaitė et al., 2023; Audirac-Chalifour et al., 2016; Łaniewski 
et al., 2018; Wu et al., 2021; Tango et al., 2020). For example, the study 
by Lee et al. (2013) showed that HPV-positive women had a more 
diverse vaginal microbiota compared to HPV-negative women in a 
Korean twin cohort. The dominant bacterial genera in HPV-negative 
women were Lactobacillus species, whereas HPV-positive women 
exhibited higher proportions of anaerobic bacteria such as Gardnerella, 
Atopobium, and Prevotella. While these findings provide valuable 
insights into the microbiota-HPV connection, the study was 
conducted exclusively on a Korean cohort, which limits the 
generalizability of the results to other populations, as each population 
has unique microbiota characteristics influenced by genetic, 
environmental, and cultural factors. Nonetheless, it serves as an 
important reference for understanding the relationship between HPV 
status and microbiota diversity. Some subgroup analyses, such as those 
involving postmenopausal women, had relatively small sample sizes, 
affecting the robustness of the conclusions.

The presence of Gardnerella could be used as a potential marker 
for HPV infection and cancer progression. Some studies argue that 
Gardnerella is mainly found in women infected with HPV and cervical 
cancer (Lee et  al., 2013). In fact, a study by So et  al. (2020) that 
investigated the changes in vaginal microbiota during cervical 
carcinogenesis in women with HPV infection indicated that women 
with cervical cancer showed an increase in anaerobic bacteria such as 
Atopobium, and Prevotella and specially Gardnerella. However, they 
sampled only 50 women with only 10 of them being healthy. Thus, the 
relatively small sample size may affect the generalizability of the 
findings. According to a study by Chen et al. (2020), Gardnerella was 
present in HPV-negative women, although at lower levels compared 
to HPV-positive women. This highlights that the presence and 
abundance of Gardnerella and other anaerobic bacteria increase 
significantly in women with HPV infection and cervical intraepithelial 
neoplasia progression. A study by Tango et al. (2020) also indicates 
that Gardnerella can be  present in HPV-negative women, but its 
abundance significantly increases in HPV-positive individuals and 
those with cervical cancer. While Gardnerella is frequently associated 

with HPV infection and cervical cancer (Brotman et al., 2014; Mitra 
et  al., 2016), its reliability as a biomarker is limited due to low 
specificity and its presence in other dysbiotic conditions like bacterial 
vaginosis. Rather than serving as a standalone marker, Gardnerella is 
better understood as part of a dysbiotic microbial community 
contributing to disease progression. Further studies are needed to 
quantify its sensitivity, specificity, and predictive values for clinical use.

Prevotella is another genus frequently linked to cervical cancer 
progression, as it provides nutrients to other dysbiosis-related bacteria, 
making the host more vulnerable to HPV infections (Sharifian et al., 
2023; Pybus and Onderdonk, 1997; Chao et al., 2020). Sharifian et al. 
(2023) reported that increased vaginal microbiota diversity, 
particularly a higher presence of anaerobic bacteria such as Prevotella, 
is associated with HPV infection and progression to cervical cancer. 
However, Prevotella is also commonly found in other dysbiotic 
conditions, such as bacterial vaginosis and pelvic inflammatory 
disease, raising questions about its specific role in cervical 
carcinogenesis (Mitra et al., 2016; Brotman et al., 2014). Pybus and 
Onderdonk (1997) demonstrated a symbiotic relationship between 
Gardnerella vaginalis and Prevotella bivia, where ammonia produced 
by P. bivia supports the growth of G. vaginalis. This interaction may 
contribute to bacterial vaginosis pathogenesis by promoting an 
environment conducive to overgrowth of BV-associated bacteria, 
which could indirectly influence HPV persistence and 
disease progression.

In addition to Gardnerella and Prevotella, other anaerobic and 
facultative anaerobic bacteria, such as Sneathia, Megasphaera, 
Streptococcus, and Fusobacterium spp., play significant roles in HPV 
persistence and cervical cancer development. Sneathia spp. have 
been consistently associated with cervical dysplasia and cancer, 
likely due to their ability to induce pro-inflammatory cytokines and 
damage epithelial barriers, creating a microenvironment conducive 
to HPV persistence and integration into the host genome (Mitchell 
et al., 2015; Brotman et al., 2014). Similarly, Megasphaera spp. are 
known to produce metabolites that disrupt vaginal pH and promote 
immune evasion, facilitating viral persistence and progression to 
neoplasia (Mitra et  al., 2016). Fusobacterium spp., commonly 
implicated in other cancers such as colorectal cancer, have also been 
identified in cervical dysplasia and cancer. They may contribute to 
carcinogenesis through chronic inflammation, production of 
genotoxic metabolites, and interactions with host immune cells that 
suppress anti-tumor responses (Kostic et al., 2013; Shannon et al., 
2017). Additionally, while Streptococcus spp. are not traditionally 
associated with vaginal dysbiosis, certain pathogenic strains have 
been linked to HPV persistence through their potential to enhance 
inflammation and alter mucosal immunity, further supporting a 
permissive environment for viral oncogenesis (Gillet et al., 2011).

Co-infections with other sexually transmitted infections (STIs), 
such as Chlamydia trachomatis, Neisseria gonorrhoeae, and 
Trichomonas vaginalis, have been shown to exacerbate HPV infection 
and persistence, potentially contributing to cervical cancer 
progression. These pathogens induce chronic inflammation and 
disrupt the epithelial barrier, creating an environment conducive to 
HPV replication and persistence (Gillet et al., 2011; Moscicki et al., 
2012). For example, Chlamydia trachomatis has been associated with 
increased expression of pro-inflammatory cytokines, which may 
impair HPV clearance and promote oncogenesis (Moscicki et  al., 
2012). While not the focus of this review, understanding the interplay 

TABLE 2 Dominant species in vaginal community state types (CSTs).

Vaginal community 
state types

Dominant species

CST I Lactobacillus crispatus

CST II Lactobacillus gasseri

CST III Lactobacillus iners

CST IVA Dominated by Candidatus Lachnocurva vaginae 

but also presence of Gardnerella vaginalis, 

Atopobiumvaginae and Prevotella species

CST IVB Dominated by Gardnerella vaginalis, but also 

presence of Candidatus Lachnocurva vaginae, 

Atopobium vaginale and Prevotella species

CST V Lactobacillus jensenii

This table lists the dominant species corresponding to each of the five categories of vaginal 
community state types. For CST IV, the table includes the two subdivisions (IV-A and IV-B) 
and specifies the most common species found in each.
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between HPV and co-infecting STIs highlights the importance of 
addressing these co-factors in cervical cancer prevention strategies.

Women who receive the HPV vaccine are largely protected from 
cancer caused by high-risk HPV strains. Limited evidence suggests that 
vaccination does not directly alter the cervicovaginal microbiota but 
may indirectly affect it by reducing HPV-induced dysbiosis. For 
example, studies have shown that HPV infection is associated with shifts 
in microbiota composition, including reduced Lactobacillus dominance 
and increased anaerobic bacteria such as Gardnerella and Prevotella 
(Mitra et al., 2016; Brotman et al., 2014). By preventing HPV infection, 
vaccination may help maintain a more stable and protective microbiota.

Functional role of microbiota vaginal 
during cervical cancer

Metagenomic studies also allow us to explore the functional 
profile of genes annotated during the sequencing analysis. For 
example, Kwon et al. (2019) used the KEGG database for pathway 
annotation and the HUMAnN2 pipeline to map microbial genes to 
metabolic pathways, identifying enriched pathways in cervical cancer 
patients compared to healthy women. These included bacterial 
invasion, biofilm formation, and inflammatory responses, highlighting 
how altered microbiota promotes bacterial persistence, immune 
evasion, and chronic inflammation, all contributing to carcinogenesis 
(Table 3; Figure 4). However, it is important to note that these findings 
do not establish causality, as microbiota alterations may also result 
from carcinogenesis rather than act as a direct causal factor.

Similarly, Tango et  al. (2020) used KEGG-based functional 
analyses and shotgun sequencing to confirm the enrichment of these 
pathways in cervical cancer patients (Table 3). Their findings reinforce 
the role of chronic inflammation and microbial persistence in disease 
progression, though the lack of temporal data restricts understanding 
of dynamic microbiota changes.

Fang et al. (2022) and Usyk et al. (2020) applied KEGG annotations 
and HUMAnN2, identifying enriched pathways for nucleotide 
metabolism, glycan biosynthesis, and amino acid metabolism in 
HPV-positive women (Table  3; Figure  4). These functional 
enrichments support viral replication, epithelial barrier disruption, 
and an environment conducive to prolonged HPV infection.

Pathway enrichment also revealed upregulated peptidoglycan 
biosynthesis in cervical cancer patients (Kwon et al., 2019), which may 
sustain bacterial populations driving inflammation. Karlsson et al. 
(2012) similarly found enriched peptidoglycan biosynthesis in gut 

microbiota associated with atherosclerosis, suggesting shared 
inflammatory mechanisms. Additionally, Kwon et al. (2019) observed 
depletions in pathways for dioxin degradation and defense 
mechanisms in cervical cancer patients (Table 4; Figure 4), indicating 
reduced toxin processing and weakened microbial defense, which may 
exacerbate HPV persistence. Small sample sizes and population 
specificity highlight the need for validation in diverse cohorts.

Future perspectives

Recent studies provide evidence of an association between cervical 
microbiota composition and cervical cancer development, though 
causal relationships remain to be validated through prospective cohort 
or experimental studies (Usyk et al., 2020; Kwon et al., 2019; Fang 
et al., 2022). However, the mechanisms underlying this relationship 
remain unclear. This is mainly because studies exploring the role of 
cervical microbiota in cancer development are scarce due to significant 
challenges. Longitudinal studies require large cohorts and extended 
follow-up periods to capture the temporal dynamics of microbiota 
changes, which demand considerable resources and logistical 
coordination (Shannon et al., 2017; Usyk et al., 2020). Functional 
metagenomics and host-microbiome interaction studies necessitate 
advanced bioinformatics tools and experimental validation, which are 
both time-intensive and costly (Fang et al., 2022; Kwon et al., 2019). 
External factors such as diet and antibiotic use introduce variability 
that is difficult to control in human populations, further complicating 
study design (Brotman et al., 2014). These complexities highlight why 
such research is limited, despite its critical importance in 
understanding the microbiota’s role in cancer progression.

Longitudinal studies will enable to investigate the temporal 
relationship between changes in cervical microbiota and the 
progression of HPV infections to cervical cancer. These studies offer 
vital insights into how microbiota composition and functional 
pathways change during infection and disease progression. Large-
scale longitudinal cohort studies with regular cervical microbiota and 
HPV sampling are essential to identify microbial markers linked to 
HPV clearance, persistence, and cancer progression (Figure 5). For 
instance, Usyk et al. (2020) stressed the value of longitudinal data but 
was limited by only two sampling points, restricting its ability to track 
microbiome dynamics over time. Recent studies by Shannon et al. 
(2017) and Huang et al. (2022) provide deeper insights into temporal 
microbiota-HPV interactions. Shannon et al. found fluctuations in 
Lactobacillus spp. dominance associated with transitions between 

TABLE 3 Summary of enriched and depleted pathways/functions on cervical cancer and microbiome studies.

Study Enriched pathways Depleted pathways/functions

Kwon et al. (2019)
Bacterial invasion, biofilm formation, inflammatory responses, 

peptidoglycan synthesis

Dioxin degradation, 4-oxalocrotonate tautomerase activity, COG 

category related to ‘Defense mechanisms’

Tango et al. (2020) Bacterial invasion, biofilm formation, inflammatory responses Not specified

Fang et al. (2022) Nucleotide metabolism, glycan biosynthesis, amino acid metabolism Not specified

Usyk et al. (2020) Nucleotide metabolism, glycan biosynthesis, amino acid metabolism Not specified

Karlsson et al. (2012) Peptidoglycan synthesis
Not specified (focused on gut microbiome in atherosclerosis, analogy 

to cervical cancer discussed)

This table shows the pathways and functions that were found to be enriched or not enriched in various studies investigating the functional profiles of cervical microbiota in relation to HPV 
and cervical cancer. It includes the main findings from each study, notes any limitations, and provides context on the specific pathways and functions investigated.
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HPV persistence and clearance, emphasizing frequent sampling to 
capture microbiome shifts. Similarly, Huang et al. linked temporal 
increases in anaerobes like Prevotella and Gardnerella to HPV 
persistence and progression to high-grade cervical lesions, 
highlighting the dynamic microbiome changes during 
disease development.

Functional metagenomics will allow the exploration of the 
functional capabilities of the cervical microbiota and their role in 
modulating the host environment and immune response. While most 
studies rely on 16S rRNA sequencing, which provides valuable 
taxonomic information (Ranjan et al., 2016), tools such as PiCrust2 
extend its utility by inferring metabolic pathways from 16S data. For 
instance, a study by France et al. (2021) used PiCrust2 to analyze the 
vaginal microbiome in HPV-positive and HPV-negative women, 
identifying functional pathways associated with immune modulation 
and inflammation, such as increased nucleotide metabolism and 
glycan biosynthesis, in HPV-positive individuals. Similarly, Zhang 
et al. (2020) employed PiCrust to infer functional gene profiles of 
vaginal microbiomes, linking dysbiotic microbiota with enhanced 
pro-inflammatory pathways, highlighting their potential role in HPV 
persistence and progression to cervical cancer. These applications 
demonstrate that PiCrust2 is a powerful tool for generating hypotheses 
and gaining functional insights into microbial communities using 16S 
data. However, because these inferences are based on predicted gene 
content rather than direct measurements, they lack the precision and 
depth provided by shotgun metagenomic sequencing. Shotgun 
approaches can identify the full spectrum of microbial genes and 
metabolic pathways, including previously uncharacterized ones, 
offering new insights into how microbial functions may contribute to 
immune modulation and metabolic alterations that drive HPV 
persistence and cancer progression (Figure  5). Integrating both 
approaches could therefore provide a more comprehensive 
understanding of the microbiome’s role in cervical carcinogenesis.

Emerging evidence suggests that the cervicovaginal microbiota 
modulates immune responses through metabolite production and 
inflammatory cytokines (Aggarwal et al., 2023; Cullin et al., 2021). 
Bokulich et  al. (2022) identified microbial metabolites as key 
predictors of the cervicovaginal microenvironment, influencing 
immune responses and contributing to HPV persistence and 
carcinogenesis. Similarly, Tosado-Rodríguez et al. (2024) showed that 
dysbiotic microbiota, characterized by increased microbial diversity 
and reduced Lactobacillus spp., is linked to elevated inflammatory 
cytokines in women with cervical dysplasia. These cytokines 
exacerbate chronic inflammation, disrupt epithelial integrity, and 
facilitate HPV immune evasion.

Further research into host-microbiome interactions is needed to 
explore how microbial communities influence immune responses and 
vice versa. Techniques such as host transcriptomics and microbiome 
profiling in women with varying HPV and cervical cancer statuses are 
recommended (Kwon et al., 2019).

External factors, including diet and antibiotics, also affect cervical 
microbiota and cancer risk. High-fat, low-fiber diets have been linked 
to altered vaginal microbiota, promoting inflammation and HPV 
persistence (Piyathilake et al., 2016; Kim et al., 2020). Overuse of 
antibiotics disrupts microbial diversity and reduces protective 
Lactobacillus populations, increasing dysbiosis and HPV persistence 
(Sobel et al., 2019; Macklaim et al., 2015). Studies exploring the impact 
of diet, probiotics, and antibiotics on cervical microbiota are essential 
to identify modifiable risk factors (Figure 5). For example, Zamani 
et  al. (2014) demonstrated how diet and antibiotics alter gut 
microbiota and metabolic profiles in colon cancer patients, identifying 
potential biomarkers using nuclear magnetic resonance (NMR) 
spectroscopy. However, combining NMR with mass spectrometry 
could enhance metabolite detection.

Omics technologies, including metagenomics, metabolomics, and 
proteomics, offer comprehensive tools to explore the relationship 

FIGURE 4

Pathway Enrichment Bar Chart on Cervical Microbiota. The bar chart visualizes the relative abundance of various pathways in the cervical microbiota 
across three different groups: cervical cancer patients, HPV-positive women, and healthy controls. The chart highlights that cervical cancer patients 
(red bars) show higher enrichment in pathways related to bacterial invasion, biofilm formation, and inflammatory responses. HPV-positive women (blue 
bars) exhibit increased activity in nucleotide metabolism, glycan biosynthesis, and amino acid metabolism. Healthy controls (green bars) have lower 
enrichment scores in pathways associated with cancer and viral infection.
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FIGURE 5

Future Perspectives on the Relationship Between HPV, Cervical Cancer, and Microbiota. This figure illustrates the key future research directions 
necessary to deepen our understanding of the relationship between human papillomavirus (HPV), cervical cancer, and cervical microbiota. The central 
node, labeled “Future Research Directions,” connects to five critical areas of study, each represented by a radial node.

TABLE 4 Summary of studies on cervical microbiota functionality and its impact on cervical cancer progression.

Study Key findings Methodology Limitations Country

Kwon et al. (2019) Increased pathways related to bacterial invasion, biofilm 

formation, and inflammatory responses in cervical cancer 

microbiota. Suggests functional changes may contribute to 

carcinogenesis.

Shotgun sequencing of 

cervical samples

Conducted on a specific 

population, limiting 

generalizability

South Korea

Tango et al. (2020) Significant functional differences in cervical microbiome 

associated with cancer. Enriched bacterial invasion, biofilm 

formation, and inflammation pathways. Indicates microbiome-

induced inflammation as a factor.

Functional analysis of 

cervical microbiomes

Did not account for temporal 

changes in the microbiome

South Korea

Fang et al. (2022) HPV-positive women showed increased pathways related to 

nucleotide metabolism, glycan biosynthesis, and amino acid 

metabolism, supporting viral replication and persistence.

Metagenomic sequencing 

of cervical samples

Focused on functional analysis 

without deep taxonomic analysis

China

Usyk et al. (2020) Enriched pathways in nucleotide metabolism, glycan 

biosynthesis, and amino acid metabolism in HPV-positive 

women.

Longitudinal study with 

metagenomic analysis

Lack of temporal resolution in 

microbiome changes

Costa Rica

Karlsson et al. (2012) Enrichment in peptidoglycan synthesis pathways in patients 

with symptomatic atherosclerosis. Suggests potential role in 

inflammatory responses and disease progression.

Metagenomic analysis of 

gut microbiomes

Conducted on fecal samples, 

which may not directly correlate 

with vaginal microbiome

Sweden

Table summarizes key findings, methodologies, limitations, and countries of studies exploring the functional profiles of cervical microbiota in relation to HPV and cervical cancer. It highlights 
the significant pathways and microbial functions that are altered in cervical cancer patients compared to healthy individuals. The table also notes the limitations of each study, such as the 
specific populations studied and the methodologies used, which may impact the generalizability of the findings.
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between cervical microbiota and cancer development. These 
approaches detail microbial communities and their functional roles, 
revealing how microbiota-driven metabolic alterations contribute to 
carcinogenesis (Zamani et  al., 2014). Metabolic pathways such as 
nucleotide metabolism, glycan biosynthesis, and amino acid 
metabolism have been linked to HPV infections and cervical cancer 
progression (Fang et  al., 2022). Proteomics analyzes protein 
expressions and modifications, uncovering host immune responses 
and molecular mechanisms underlying cancer (Kwon et al., 2019). For 
example, proteomic analyses reveal bacterial influences on immune 
responses and epithelial integrity, facilitating HPV persistence and 
cancer progression (Kwon et  al., 2019). Together, these omics 
technologies provide potential biomarkers for early detection, 
prognosis, and therapeutic targets for cervical cancer (Usyk et al., 
2020; Sharifian et al., 2023).

Conclusion

Vaginal microbiota plays a crucial role in the acquisition, 
persistence, and clearance of HPV, influencing infection outcomes 
(Sharifian et  al., 2023). HPV infection alters vaginal microbiota 
diversity, reducing Lactobacillus and increasing anaerobes like 
Gardnerella and Prevotella (Wang et al., 2023; Chen et al., 2020). This 
shift can promote HPV persistence, raising cervical cancer risk (Zhai 
et  al., 2021; Shannon et  al., 2017). A healthy vaginal microbiota 
promotes a proper vaginal environment and enhances immunity 
(Wang et al., 2023). Advances in metagenomics, especially shotgun 
sequencing, have enabled the exploration of microbial diversity in 
environments like the vaginal tract (Banerjee et  al., 2015). Many 
cancers are linked to microbes, and metagenomic studies help identify 
disease-causing pathogens, advancing cancer research. Discovering 
potential cancer targets will stimulate drug therapy research, 
benefiting patients with HPV infection and cervical cancer (Banerjee 
et al., 2015).
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