The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Terrestrial Microbiology
Volume 15 - 2024 |
doi: 10.3389/fmicb.2024.1513528
Long-term adoption of plow tillage and green manure improves soil physicochemical properties and optimizes microbial communities under a continuous peanut monoculture system
Provisionally accepted- Shandong Agricultural University, Taian, China
Continuous monocropping of peanuts (Arachis hypogaea L.) often results in yield decline and soil degradation. The combination of green manure (GM) with tillage practices has been proposed as a sustainable strategy to maintain high crop productivity and improve soil quality. This study investigates the long-term effects of 8 years of GM application combined with plow tillage on soil microbial communities and physicochemical properties under a peanut monocropping system.Treatments included: i) no tillage (NT); ii) plow tillage before the winter fallow period (PT); and iii) growing ryegrass (Lolium perenne L.) during the winter period and applying it as GM before planting next-stubble peanut (PTGM). It was found that both PTGM and PT remarkably decreased the average bulk density (BD), while elevated the mean soil porosity (SP) in 0-30 cm soil layer.Moreover, PTGM significantly increased available potassium (AK), available phosphorus (AP), total nitrogen (TN), and soil organic matter (SOM). Peanut pod yields in the PTGM treatment were 14.1% and 7.2% higher compared to the PT and NT treatments, respectively. Additionally, PTGM could promote shifts in soil bacteria compositions, increasing the abundance of Actinobacteria and Firmicutes while reducing that of Chloroflexi. For fungal abundances, PTGM elevated the abundances of Ascomycota and Basidiomycote. Redundancy analysis demonstrated that SOM, TN, AK, and AP were positively related to dominant flora of fungi and bacteria in PTGM, while negatively related to dominant flora of fungi and bacteria in NT. Overall, tillage practices have the potential to reshape the microbial community during the peanut growing season, primarily due to the influence of SOM, TN, and AP content in shaping microbial diversity and composition. Our study highlights that plow tillage combined with GM application may serve as an effective tillage practice in the future to mitigate continuous cropping obstacles by modulating soil microbial communities, improving soil nutrients and fertility, and enhancing crop productivity.
Keywords: Tillage, Green manure, Soil nutrient, microbial community composition, Continuous cropping constraint
Received: 18 Oct 2024; Accepted: 26 Dec 2024.
Copyright: © 2024 Yao, Zhu, Xiangdong, Hu, DONG and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Zhaoxin Liu, Shandong Agricultural University, Taian, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.