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Lipoproteins are crucial for maintaining the structural integrity of bacterial membranes. 
In Gram-negative bacteria, the localization of lipoprotein (Lol) system facilitates the 
transport of these proteins from the inner membrane to the outer membrane. In 
Helicobacter pylori, an ε-proteobacterium, lipoprotein transport differs significantly 
from the canonical and well-studied system in Escherichia coli, particularly due 
to the absence of LolB and the use of a LolF homodimer instead of the LolCE 
heterodimer. This study presents the crystal structure of the H. pylori lipoprotein 
chaperone LolA (LolA-HP) and its interaction with lipopeptide antibiotics such 
as polymyxin B and colistin. Isothermal titration calorimetry revealed that, unlike 
LolA from Vibrio cholerae and Porphyromonas gingivalis, LolA-HP does not bind 
to these antibiotics. Structural comparisons showed that LolA-HP has a deeper 
hydrophobic cleft but lacks the negative electrostatic potential critical for binding 
polymyxins. These findings offer insights into the structural diversity of LolA across 
bacterial species and its potential as a target for antibacterial agents.
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Introduction

Gram-negative bacteria are characterized by a unique double-membrane structure 
consisting of an inner membrane (IM) and an outer membrane (OM), with a periplasmic 
space enriched with peptidoglycans between them. Both membranes are lipid bilayers in 
which a wide variety of associated and integral membrane proteins are embedded. Among the 
OM proteins, porins, structured as β-barrels, facilitate the passive transport of molecules 
across the membrane (Rollauer et al., 2015). The outer leaflet of the OM is mainly composed 
of glycolipids and lipopolysaccharides, which serve as a protective barrier and communication 
interface for the bacteria, whereas the inner leaflet consists of phospholipids. In contrast, both 
leaflets of the IM consist of phospholipids, and the proteins that span the IM predominantly 
adopt helical structures, performing critical functions such as translocating proteins from the 
cytoplasm (Orfanoudaki and Economou, 2014; Green and Mecsas, 2016), mediating 
metabolite exchange, and driving the electron transport chain to generate energy (Wallin and 
von Heijne, 1998). Both membranes also contain lipoproteins, which are synthesized as 
pre-lipoproteins in the cytoplasm, transported over the IM (Green and Mecsas, 2016), and 
anchored to the lipid bilayer through acyl chains covalently attached to a conserved cysteine 
residue. This anchoring process involves several enzymatic steps: diacylglycerol transferase 
(Lgt) catalyzes the attachment of a diacylglyceryl to the sulfhydryl of the cysteine (Sankaran 
and Wu, 1994) resulting in a diacylated protein, and signal peptidase II (LspA) removes the 
signal peptide, exposing the acylated cysteine as the first residue (Vogeley et al., 2016). In many 
bacteria, such as Escherichia coli, the enzyme apolipoprotein N-acyltransferase (Lnt) further 
acylates the free amino group of the cysteine, resulting in a fully matured lipoprotein with 
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three acyl chains (Hillmann et al., 2011). The fate of the lipoprotein, 
whether retained in the IM or transported to the OM, depends on a 
sorting motif after the acylated cysteine. In the case of OM-targeted 
lipoproteins, the localization of lipoprotein (Lol) system plays a key 
role (Narita et  al., 2004; Okuda and Tokuda, 2011). This system, 
particularly well-studied in E. coli, consists of the ABC transporter 
complex, LolCDE. In this complex, LolE extracts the lipoprotein from 
the IM and transfers it to the chaperone LolA, which is bound to the 
periplasmic domain of LolC. A dimer of LolD is located on the 
cytoplasmic side of the LolCE dimer and provides energy to this 
process via its ATPase activity (Figure 1). LolA then forms a complex 
with the lipoprotein, transports it across the periplasm and delivers it 
to LolB, a recipient protein, which itself is a lipoprotein, anchored to 
the OM. In the next step, LolB transfers the acyl chains of the 
lipoprotein to the inner leaflet of the OM (Narita et al., 2004; Okuda 
and Tokuda, 2011). Notably, LolB has only been identified in β- and 
γ-proteobacteria and appears to be absent in all other bacterial classes. 
In the α-proteobacteria, Caulobacter vibrioides, LolA (LolA-CV) has 
been shown to perform both transport and insertion of lipoproteins 
into the OM (Smith et al., 2023).

Helicobacter pylori is an ε-proteobacterium known for colonizing 
the human gastric mucosa and for contributing to conditions such as 
peptic ulcers and gastric inflammation (Suerbaum and Michetti, 2002; 
Nomura et al., 2002). H. pylori harbors approximately 40 lipoproteins, 
including CagT, a component of the type IV secretion system that 
secretes the oncoprotein CagA (Babu et al., 2006; Backert et al., 2015). 
Despite its reliance on functional lipoprotein transport, the Lol system 
in H. pylori differs significantly from the canonical system in E. coli. 
Specifically, H. pylori lacks the LolB receptor protein at the OM and, 
instead of the LolCE dimer at the IM utilizes a homodimeric LolF 

(Figure 1), which combines the functions of LolC and LolE (LoVullo 
et al., 2015). This divergence underscores the critical role of acylation 
and transport in maintaining bacterial membrane integrity, making 
these processes attractive targets for antibacterial drug development.

Inhibiting components of the Lol system, particularly LolCDE in 
E. coli, has been explored as a potential strategy for novel antimicrobial 
agents (Nickerson et al., 2018; Caro et al., 2019). Additionally, LolA 
has been implicated in the transport of polymyxins—lipopeptide 
antibiotics used as a last-resort treatment—across the periplasm to the 
IM (Weerakoon et al., 2021; Pedebos et al., 2021). Previous studies 
have shown that LolA from bacteria such as Porphyromonas gingivalis 
and Vibrio cholerae bind polymyxin B, while LolB from V. cholerae 
does not (Jaiman et al., 2023). To assess the potential of LolA as a 
broad-spectrum antibacterial target, it is essential to investigate its 
structure and binding properties across different bacterial classes. If 
LolA exhibits conserved binding mechanisms, it could serve as a 
universal target for Gram-negative bacteria. However, structural 
variability might limit its applicability to specific bacterial species. 
While crystal structures of LolA have been determined for several 
γ-proteobacteria, including Pseudomonas aeruginosa, E. coli, Yersinia 
pestis, and V. cholerae (Jaiman et al., 2023; Remans et al., 2010; Takeda 
et al., 2003), as well as the Bacteroidota P. gingivalis (Jaiman et al., 
2023), structural studies on other bacterial classes remain limited. 
Additionally, LolA from E. coli (LolA-EC) has been studied in complex 
with LolC both using crystallography and cryo-electron microscopy 
(Kaplan et al., 2018; Tang et al., 2021). These studies were recently 
supplemented with the crystal structure of LolA-EC in complex with 
a triacylated peptide, offering valuable insights into complex 
formation and function (Kaplan et al., 2022). The recent determination 
of a LolA-LolB complex in Xanthomonas campestris (γ-proteobacteria) 

FIGURE 1

Lipidation and transport of lipoproteins. The prelipoprotein is transported over the IM and the signal peptide is removed. Three acyl chains are added to 
the N-terminal cysteine which anchors the protein to the membrane. In E. coli (left), the lipoprotein is recognized by the LolCED2 which transfers it to 
the chaperone protein LolA. Next, the lipoprotein will be delivered to LolB, which in turn will transfer it to the OM. In H. pylori (right) the LolCE 
heterodimer is exchanged for a LolF2 dimer. A protein corresponding to LolB has not been found in H. pylori. The figure was created with BioRender.
com.
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(Furlanetto and Divne, 2023) further highlights the diversity of the Lol 
system. In this study, we present the crystal structure of LolA from 
H. pylori (LolA-HP) and examine its interaction with lipopeptide 
antibiotics. Our findings provide a foundation for future drug 
discovery efforts targeting the Lol system across diverse classes of 
Gram-negative bacteria.

Materials and methods

Cloning, overexpression, and purification 
of LolA

The lolA gene from H. pylori strain J99 (GenBank AAD06296) 
was PCR amplified from genomic DNA (primer sequences are 
presented in Supplementary Table S1). Primers were designed not to 
include the signal peptide residues 1–19. The lolA PCR product was 
digested with NcoI/EcoRI and ligated into equivalent sites of 
pET-His1a, in-frame with a tag with sequence MKHHHHHH 
PMSDYDIPTTENLYFQGAM followed by LolA residues 20–184. The 
protein was overexpressed in E. coli BL21 (DE3) cells in LB medium 
at 37°C and induced with 0.5 mM isopropyl β-d-1-
thiogalactopyranoside (IPTG). The cells were harvested by 
centrifugation, and the pellets were stored at −80°C until further use. 
The cell pellets were resuspended in buffer (50 mM sodium phosphate 
pH 7.6, 0.3 M NaCl) containing 10 mM imidazole and supplemented 
with 1% Triton X-100. After sonication on ice, the lysate was 
centrifuged (63,000×g for 20 min). The supernatant was incubated 
with His60 Ni-resin (Takara Bio). The Ni-resin was washed with the 
same buffer containing 30 mM imidazole and transferred to an 
Econo-Pac column (Bio-Rad), from which the protein was eluted with 
a buffer containing 0.3 M imidazole. The histidine tag was removed 
by incubation with ~1% (w/w) TEV protease overnight at +4°C at 
reducing conditions. The buffer was exchanged (50 mM sodium 
phosphate pH 7.6, 0.2 M NaCl), and the protein was passed over the 
Ni column again. The flow-through fractions were concentrated and 
further purified by gel filtration (HiLoadTM 16/60 Superdex™200 
prep-grade column (GE Healthcare)) equilibrated with 20 mM Tris 
pH 7.5, 150 mM NaCl. LolA from P. gingivalis and V. cholerae were 
purified as described previously (Jaiman et al., 2023). The purity of the 
proteins is shown in Supplementary Figure S3.

Crystallization and structure determination

LolA was screened for crystals with crystallization screens from 
Molecular Dimensions using sitting-drop vapor diffusion at room 
temperature in 96-well MRC-crystallization plates (Molecular 
Dimensions). Droplets of 0.2 μL protein were mixed with 0.1 μL of 
mother liquor using a Mosquito (TTP Labtech) pipetting robot. The 
protein concentration was 105 mg/mL. Crystals were obtained from 
the MIDAS Plus screen in several conditions. The crystal used for 
structure determination was grown in 50% pentaerythritol 
propoxylate and 0.1 M Tris pH 8, flash-cooled in liquid nitrogen, and 
stored until data collection. Diffraction data were collected remotely 
at 100 K on beamline ID30B operated by the European Synchrotron 
Radiation Facility (ESRF), Grenoble, France. The diffraction images 
were automatically processed with XDS (Kabsch, 2010), and data 

reduction was performed using Aimless (Evans and Murshudov, 2013) 
from the CCP4 package (Winn et al., 2011). The structure of LolA-HP 
was solved by molecular replacement using Phaser (McCoy, 2007) and 
a search model produced by AlphaFold (Jumper et al., 2021). Rounds 
of refinement and model building were performed using phenix.refine 
(Afonine et al., 2012) and COOT (Emsley et al., 2010). Figures were 
prepared using CCP4MG (Schrodinger, LLC, 2015; McNicholas et al., 
2011) and BioRender. Data processing and refinement statistics are 
presented in Supplementary Table S2.

Sequence alignments

The protein sequences of LolA from H. pylori (WP_000643052), 
E. coli (WP_247094763), V. cholerae (EHU6507077), P. gingivalis 
(WP_012457548), X. campestris (WP_000643052), and C. vibrioides 
(WP_096034663) were pairwise aligned using Clustal Omega 
(Madeira et  al., 2024) to calculate the percentage similarity. All 
sequences were further aligned with T-Coffee (Floden et al., 2016) and 
visualized with Espript3 (Robert and Gouet, 2014).

Isothermal titration calorimetry 
experiments

Isothermal titration calorimetry (ITC) experiments were 
conducted as described previously (Jaiman et al., 2023). In short, the 
experiments were performed at 25°C using a MicroCal auto-iTC200 
instrument in a buffer containing 20 mM HEPES pH 7.5 and 150 mM 
NaCl. For interactions involving LolA-HP, LolA-VC, LolA-PG, and 
polymyxin B/colistin/nonapeptide, the stirring speed was maintained 
at 1000 rpm.

Control experiments were performed for both the proteins and 
polymyxin derivatives by injecting ligands at the same concentrations 
used in the tests into the buffer. The resulting data were subtracted 
from the corresponding interaction data using a linear fit. Raw data 
were analyzed with the MicroCal PEAQ-ITC software, applying a 
single-site binding model for all datasets. Polymyxin B, colistin, and 
nonapeptide were obtained from Merck.

Results

Overall architecture of LolA from H. pylori 
and comparison with other LolA proteins

LolA from H. pylori was overexpressed, and the protein was 
purified and crystallized. After X-ray diffraction data were collected, 
the structure of LolA-HP was determined with molecular replacement 
using a search model obtained from AlphaFold (Jumper et al., 2021). 
The structure was refined to 2.05 Å with final Rwork and Rfree values of 
20.2 and 25.2%, respectively (Supplementary Table S2).

Despite low sequence similarities comparing LolA-HP with 
other LolA proteins—ranging from 26% comparing LolA-HP and 
LolA-EC to 19% comparing LolA-HP and LolA-PG (Table 1)—the 
overall structures are more similar with a root mean square 
deviation (RMSD) of 2.92 Å for the LolA-HP-LolA-PG pair. Similar 
to other LolA structures, LolA-HP comprises a curved antiparallel 
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FIGURE 2

Overall structure and electrostatic map of LolA-HP. (A) LolA from H. pylori with the open β-barrel depicted in blue and the helices and turns that fill the 
cavity in green. Residues that may be of interest for function (Ala62, Pro63, Leu74, and Pro99) are depicted as cylinders and labeled. (B) Electrostatic 
surface representation of LolA-HP where the helix and turns in the cavity are shown as ribbons in green. (C) LolA-HP where the structural elements 
filling the cavity are depicted as an electrostatic surface. The figure was created with BioRender.

β-sheet that consists of 12 strands (Figure 2). The last strand, β12, 
links to β11 through an elongated segment that extends along the 
outwardly curved surface of the β-sheet. The concave side of the 
sheet forms a hydrophobic cleft, shielded from the adjacent solvent 
by the presence of a helix (α2) and an extended loop region between 
β6 and α2. The base of this cleft is formed by the N-terminal helix, 
α1. In LolA-EC and other studied LolA structures, there is an 
additional helix that protects the cleft, which is equivalent to the 
extended β6α3 loop in LolA-HP. The LolA structures studied so far, 
have a conserved proline in connection to the helices in the cleft 
which is likely to restrict their flexibility. In LolA-HP there is a 
proline (P99) at the end of β6 that precedes the extended region, but 
no other prolines are present in the segment that fills the cleft 
(Supplementary Figure S1). This results in a more accessible and 
deep binding cleft, 709 Å3 compared to 36 Å3 in LolA-PG (PDB 
8CGM) (Jaiman et al., 2023), the very shallow clefts of 12 Å3 in 
LolA-EC (PDB 1IWL) (Takeda et al., 2003), and 0.15 Å3 in LolA-VC 
(PDB 8CHX) (Figure  3 and Supplementary Figure S7). The 
volumes were calculated with CastP (Tian et al., 2018). There is 
unmodeled electron density in the LolA-HP binding cleft 

(Supplementary Figure S4) that we  hypothesize belongs to the 
crystallization precipitant pentaerythritol propoxylate.

Conserved residues in LolA and LolB

The sequence similarity between LolA from different bacteria is 
generally low but highly conserved within different H. pylori strains 
(Table 1 and Supplementary Figures 1, 2). In our comparison, LolA-EC 
and LolA-VC, which share 39% sequence similarity, are the most 
similar. Both are γ-proteobacteria and share an Arg-Pro motif, located 
on the β2β3 loop, which, in E. coli, has been suggested to be important 
for lipoprotein binding and delivery to LolB (Kaplan et al., 2022). In 
contrast, LolA-HP, which is reported not to have a LolB receptor 
instead features an Ala-Pro sequence in the corresponding loop. This 
motif resembles LolA from X. campestris, (LolA-XC), a 
γ-proteobacterium, which has a Thr-Pro at the same position. Notably, 
LolA-XC has a LolB partner to which it binds effectively despite the 
absence of the arginine residue (Furlanetto and Divne, 2023). Studies 
on LolB from E. coli (LolB-EC), have shown that a conserved leucine 

TABLE 1 Pairwise sequence alignments.

Sequence 
identity %

LolA-EC 
(1IWL)

LolA-VC 
(8CHX)

LolA-HP 
(9GTX)

LolA-PG 
(8CGM)

LolA-XC 
(8ORN)

LolA-CV 
(model)

LolA-EC (1IWL) 100 39 26 22 26 18

LolA-VC (8CHX) 100 24 26 31 23

LolA-HP (9GTX) 100 19 22 22

LolA-PG (8CGM) 100 25 24

LolA-XC (8ORN) 100 23

LolA-CV (model) 100

The protein sequences of LolA from E. coli (EC), V. cholerae (VC), H. pylori (HP), P. gingivalis (PG), X. campestris (XC), and C. vibrioides (CV) were pairwise aligned using clustal omega. The 
PDB codes are shown when applicable.
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that is exposed on the loop that connects strands β3 and β4 is crucial 
for lipoprotein delivery to the OM (Hayashi et al., 2014). This leucine 
is also found in the same position in LolB-VC; however, LolB-XC 
instead has a valine in the same position. The extensive sequence 
variability across species and the lack of conservation in motifs suggest 
that generalizations about specific residues being essential for certain 
functions may not be valid.

Binding to polymyxin B, colistin, and 
nonapeptide

Polymyxins are cyclic cationic lipopeptide antibiotics that disrupt 
bacterial membranes through electrostatic interactions with lipid A. It 
has been proposed that LolA transports the lipid tail of polymyxin 
across the periplasm to the IM (Weerakoon et al., 2021; Pedebos et al., 
2021). Previous ITC studies showed that LolA-VC and LolA-PG bind 
polymyxin B with dissociation constants (Kd) of 56 μM and 14 μM, 
respectively, while LolB-VC binds very poorly (Jaiman et al., 2023). In 
this study, the experiments were repeated to also include colistin, 
nonapeptide (polymyxin B without acyl chain) (Supplementary  

Figure S5), and LolA-HP. The dissociation constants are shown in 
Table 2 and Supplementary Figure S6. In contrast to LolA-VC and 
Unlike LolA-VC and LolA-PG, LolA-HP showed only non-reproducible 
results, indicating no or very weak binding to all tested compounds.

Analysis of the electrostatic properties of LolA-PG, LolA-VC, and 
LolA-HP illustrated that LolA-PG exhibits the most pronounced 
negative electrostatic potential at the mouth of the binding cleft, 
followed by LolA-VC with moderate negative potential, and LolA-HP, 
which primarily contains neutral residues (Figure  4 and 
Supplementary Figure S7). This variation in electrostatic potential 
may account for the observed differences in affinity for the positively 
charged substances, where LolA-PG has a higher affinity for both 
colistin and polymyxin B compared to LolA-VC whereas LolA-HP 
exhibits no binding. Neither of the tested proteins shows strong 
interaction with nonapeptide.

Discussion

Helicobacter pylori belongs to the class ε-proteobacteria, and its 
Lol machinery exhibits significant differences compared to the 

FIGURE 3

Solvent accessibility of LolA from different bacteria. (A) LolA-EC, (B) LolA-VC, (C) LolA-PG, and (D) LolA-HP. The solvent-accessible part of the binding 
clefts is calculated with CASTp (Tian et al., 2018) using protein structures 1IWL, 8CHX, 8CGM, and 9GTX. The figure was created with BioRender.

TABLE 2 ITC data for colistin, polymyxin, nonapeptide, and LolA proteins.

Protein Kd (Colistin) Kd (Polymyxin B) Kd (Nonapeptide)

LolA-PG 33 μM 14 μM Weak

LolA-VC 91 μM 56 μM Weak

LolA-HP No binding No binding No binding

FIGURE 4

Electrostatic representation of the opening of the hydrophobic cavity of LolA from different bacteria. (A) LolA-HP, no binding to polymyxins, (B) LolA-
VC binds polymyxin with a dissociation constant of 56 μM, and (C) LolA-PG binds polymyxin with a dissociation constant of 14 μM. The figure was 
created with BioRender.
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well-characterized system in E. coli, which represents the class 
γ-proteobacteria. In E. coli, the IM complex LolCDE plays a crucial 
role: LolE extracts lipoproteins from the membrane, while LolC 
transfers them to LolA. Conversely, H. pylori utilizes a LolF dimer that 
integrates both of these functions (LoVullo et al., 2015; McClain et al., 
2020). In both organisms, a LolD dimer located on the cytoplasmic 
side provides energy through its ATPase activity.

Additionally, E. coli and other γ-proteobacteria, feature LolB, a 
lipoprotein anchored to the inner leaflet of the OM, which receives the 
lipoprotein cargo from LolA. In this transfer, LolA and LolB are 
hypothesized to interact through a mouth-to-mouth mechanism, 
driven by electrostatic attraction between the negatively charged LolA 
and the positively charged LolB, during which the acyl groups of the 
lipoprotein bound to LolA slide to the binding cleft of LolB (Okuda 
and Tokuda, 2009). Subsequently, by an unknown mechanism, the 
acyl chains are transferred from LolB to the lipid bilayer resulting in 
the anchoring of the lipoprotein to the membrane. It has been shown 
that an exposed and conserved Leu in the loop between β3 and β4 in 
LolB-EC is critical for its ability to anchor lipoproteins (Hayashi et al., 
2014). This Leu is not completely conserved in all γ-proteobacteria; 
instead, X. campestris has a valine in the same position and the crystal 
structure of its LolA-LolB complex clearly shows that the loop 
containing the valine is deeply buried in the binding cleft of LolA, in 
close contact with many hydrophobic residues. Interestingly, a 
modeled structure of LolA from the α-proteobacteria C. vibrioides, 
(LolA-CV), a bacterium that does not have a LolB protein, also shows 
an exposed leucine, but in a long loop connecting strands β8 and β9. 
It has been demonstrated that LolA-CV can compensate for the 
functions of both LolA and LolB in E. coli ΔlolA and ΔlolB deletion 
mutants and that this leucine is particularly important (Smith et al., 
2023). Hence, LolA-CV has dual roles which indicates that dual 
functionality is a possible solution for lipoprotein membrane 
association in bacteria that lack the LolB protein. H. pylori does not 
have a LolB and indeed LolA-HP intriguingly possesses a leucine 
(Leu74), in the same position as LolB-EC, suggesting that LolA-HP 
also might fulfill a dual function. However, this calls for a more 
extensive study as leucines are present on several loops in LolA-HP: 
Leu46 on the β1β2 loop, Leu74 on the β3β4 loop, and Leu92 on 
loop β5β6.

An alternative hypothesis regarding lipoprotein insertion into the 
membrane is that certain bacterial species may have evolved other 
proteins with the capacity to receive lipoproteins at the OM, yet these 
proteins are too divergent in sequence from the reference protein 
LolB-EC to be detected via conventional sequence analysis. This could 
represent an instance of convergent evolution, where proteins with 
different structures result in the same outcome. For example, 
Bacteroides fragilis, which lacks the Lnt enzyme, nonetheless exhibits 
triacylated lipoproteins. In this case, an enzyme named lipoprotein 
N-acyltransferase in Bacteroides (Lnb) was recently discovered and 
characterized, displaying similar catalytic activity as Lnt despite a 
different predicted structure (Armbruster et  al., 2024). Further 
investigation is required to explore these alternatives in greater detail.

In the LolA protein of E. coli, an Arg-Pro motif located between 
β2 and β3 has been extensively analyzed. The arginine residue within 
this motif, which faces the base of the binding cleft, is critical for both 
the binding of the triacylated lipoproteins and their delivery to 
LolB. Sequence analysis (Supplementary Figure S1) shows that the 

Arg-Pro motif is relatively conserved in β-and γ-proteobacteria and is 
suggested to be associated with the presence of a LolB protein for 
interaction. Again, X. campestris is an exception as it has a Thr-Pro in 
the equivalent position. Despite these differences, LolA and LolB in 
X. campestris interact with a similar dissociation constant (Kd) as the 
E. coli LolA-LolB pair (14.6 μM vs. 30.6 μM) and is the only LolA–
LolB pair that has been co-crystallized (Furlanetto and Divne, 2023; 
Nakada et al., 2009).

In LolA-HP, this motif is replaced by an Ala-Pro motif (Ala62, 
Pro63), and the space that would be occupied by the arginine side 
chain in LolA-EC is instead filled by a phenylalanine side chain 
(Phe107) on the α3-helix. Intriguingly, LolA-CV, which has been 
reported to have dual LolA–LolB functions has a classical Arg-Pro 
motif. The variation does however indicate that the sequence 
conservation is not strictly maintained even within the same phylum 
and that the Lol system is very variable.

Lol proteins are considered promising drug targets because the 
transport of lipoproteins is vital for the biogenesis of the membrane 
and the subsequent survival of Gram-negative bacteria. The main 
focus has been on targeting the IM protein complex LolCDE. The 
initial hits pyridinepyrazole (Breidenstein et  al., 2024) and 
pyridineimidazole (Nayar et  al., 2015; McLeod et  al., 2015) have 
recently been developed into a promising substance, lolamicin, that 
selectively spares the gut bacteria (Muñoz et al., 2024). The soluble 
LolA was predicted to bind and transport acylated peptides such as 
the antibiotic polymyxin (Weerakoon et  al., 2021; Pedebos et  al., 
2021), and we could indeed show experimentally that both LolA-VC 
and LolA-PG bind the substance (Jaiman et al., 2023). In the present 
study, using ITC, we demonstrated that LolA-VC and LolA-PG also 
bind the lipopeptide colistin with dissociation constants in the 
micromolar range. They also exhibit weak binding to nonapeptide, 
which has the same peptide backbone as polymyxin B but lacks the 
acyl tail. Hence the acyl part of the polymyxins is most important for 
binding to LolA but also the peptide part contributes to binding 
(Table 2).

However, binding is not a universal trait for all LolA proteins as 
LolA-HP does not bind polymyxin B, colistin, or nonapeptide. 
Comparative analysis of the electrostatic surface potentials of various 
LolA proteins reveals notable variability. For instance, LolA from 
E. coli, V. cholerae, and P. gingivalis mainly display negative electrostatic 
potential around the mouth of the binding cleft. In contrast, LolA 
from H. pylori and the modeled structure of LolA from C. vibrioides 
predominantly feature a more hydrophobic, non-polar environment 
around the binding cleft mouth. This observation aligns with the fact 
that the tested molecules carry a positive charge, which would 
preferentially interact with the negatively charged surfaces of LolA-VC 
and LolA-PG. This difference in electrostatic properties suggests that 
the binding affinities of LolA proteins are influenced by their surface 
potentials, which could be  exploited in the design of selective 
antibacterial agents targeting specific Gram-negative pathogens 
(Figure 4 and Supplementary Figure S7).

Lol proteins are regarded as promising drug targets due to their 
critical role in lipoprotein transport, which is essential for membrane 
biogenesis and the survival of Gram-negative bacteria. Despite the low 
sequence similarity, the high structural conservation of LolA across 
various bacterial species (Table  1) highlights the potential for 
designing antibacterial agents that selectively target LolA components 
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in specific pathogens. This approach, similar to the selective binding 
of lolamicin to pathogenic bacteria, could minimize the impact on 
commensal organisms (Muñoz et  al., 2024). This highlights the 
importance of studying a wide variety of bacteria to understand what 
will work.

Our findings significantly enhance and expand the current 
understanding of lipoprotein transfer diversity in Gram-negative 
bacteria. Furthermore, they reveal that homologous proteins, which 
serve as potential drug targets, may exhibit varying affinities for 
antibacterial agents despite having highly similar biological functions. 
These findings underscore the vast knowledge that 
remains to be uncovered regarding the diversity of biological systems 
in bacteria.
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