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Machine learning models reveal 
microbial signatures in healthy 
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sterility of human organs
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Background: The presence of microbes within healthy human internal 
organs still remains under question. Our study endeavors to discern microbial 
signatures within normal human internal tissues using data from the Genotype-
Tissue Expression (GTEx) consortium. Machine learning (ML) models were 
developed to classify each tissue type based solely on microbial profiles, with 
the identification of tissue-specific microbial signatures suggesting the presence 
of distinct microbial communities inside tissues.

Methods: We analyzed 13,871 normal RNA-seq samples from 28 tissues obtained 
from the GTEx consortium. Unaligned sequencing reads with the human genome 
were processed using AGAMEMNON, an algorithm for metagenomic microbial 
quantification, with a reference database comprising bacterial, archaeal, and viral 
genomes, alongside fungal transcriptomes. Gradient-boosting ML models were 
trained to classify each tissue against all others based on its microbial profile. To 
validate the findings, we analyzed 38 healthy living tissue samples (samples from 
healthy tissues obtained from living individuals, not deceased) from an independent 
study, as the GTEx samples were derived from post-mortem biopsies.

Results: Tissue-specific microbial signatures were identified in 11 out of the 28 
tissues while the signatures for 8 tissues (Muscle, Heart, Stomach, Colon tissue, 
Testis, Blood, Liver, and Bladder tissue) demonstrated resilience to in silico 
contamination. The models for Heart, Colon tissue, and Liver displayed high 
discriminatory performance also in the living dataset, suggesting the presence 
of a tissue-specific microbiome for these tissues even in a living state. Notably, 
the most crucial features were the fungus Sporisorium graminicola for the heart, 
the gram-positive bacterium Flavonifractor plautii for the colon tissue, and the 
gram-negative bacterium Bartonella machadoae for the liver.

Conclusion: The presence of tissue-specific microbial signatures in certain 
tissues suggests that these organs are not devoid of microorganisms even in 
healthy conditions and probably they harbor low-biomass microbial communities 
unique to each tissue. The discoveries presented here confront the enduring 
dogma positing the sterility of internal tissues, yet further validation through 
controlled laboratory experiments is imperative to substantiate this hypothesis. 
Exploring the microbiome of internal tissues holds promise for elucidating the 
pathophysiology underlying both health and a spectrum of diseases, including 
sepsis, inflammation, and cancer.
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1 Introduction

Microbes exhibit a remarkable spectrum of functions and 
capabilities that enable them to colonize diverse and extreme habitats 
(Merino et al., 2019). The human body serves as a host for a vast array 
of microbes with varied functionalities (Ursell et  al., 2012). Our 
understanding regarding interactions between humans and microbes 
has evolved through the progression of sequencing technologies. 
Pioneering this transformative trajectory was the NIH Human 
Microbiome Project (HMP), which revealed the complex interplay 
between human and microbial cells (The Human Microbiome Project 
Consortium, 2012; The Human Microbiome Project Consortium, 
2012; The Integrative HMP (iHMP) Research Network Consortium, 
2019). Recent advancements have prompted a reevaluation of long-
standing beliefs, showcased by the dismissal of the traditional notion 
that healthy human lung and vagina are sterile environments (Natalini 
et al., 2023; Chen et al., 2021).

The predominant focus of microbiome studies has been on 
characterizing microbial communities in easily accessible 
sampling sites, including the human intestinal tract, the oral 
cavity, and the skin. Internal tissues, less accessible by conventional 
sampling methods, have historically been presumed to be devoid 
of microorganisms due to protective layers of epithelial and 
endothelial tissues. However, this assumption has been challenged, 
particularly in settings such as cancer, where various studies have 
revealed the presence of tumor-specific microbial sequences 
within human tumors, offering a potential new avenue for cancer 
diagnosis (Poore et al., 2020; Dohlman et al., 2021; Narunsky-
Haziza et  al., 2022; Nejman et  al., 2020; Riquelme et  al., 2019; 
Ghaddar et al., 2022; Aykut et al., 2019). As the exploration of 
microbes inside internal tissues has primarily been conducted in 
the context of pathological conditions like cancer, fundamental 
questions regarding healthy status persist. Are there microbial 
residents within human tissues engaged in a commensal 
relationship with human cells? What is the role of their presence? 
Can these microbial signatures trigger an immunological response 
or serve as diagnostic markers for organ health?

Mahmoudabadi et al. observed a notable presence of bacterial 
genera in tumors that is also detectable and similar in adjacent tumor-
free tissues (Mahmoudabadi et al., 2022). This suggests that tumor 
microbiomes may partially originate from neighboring normal tissues, 
indicating that, under healthy conditions, internal tissues host a 
microbiome. Hieken et al. also detected microbial communities in 
aseptically collected human breast tissues in benign and malignant 
conditions (Hieken et al., 2016). Moreover, investigations in germ-free 
mice have unveiled microbiomes within various organs, including the 
brain, muscle, adipose tissue, liver, and heart. This challenges the 
conventional notion that the internal organs of mammals are devoid 
of microbial presence (Lluch et al., 2015).

To elucidate the microbiome inside healthy human tissues, 
we conducted a re-analysis of RNA-seq data derived from Genotype-
Tissue Expression (GTEx) consortium (Lonsdale et  al., 2013). 
Originally designed to explore variations in gene expression within 
healthy human tissues, GTEx’s extensive repository contains samples 
exclusively derived from healthy specimens. Acknowledging certain 
limitations within the GTEx analysis pipeline, such as the employment 
of a poly-A selection protocol and the reliance on post-mortem biopsy 
samples, it remains noteworthy that the GTEx consortium provides 

the most extensive and analytically robust dataset about RNA 
expression within healthy human tissues. To date, GTEx sequencing 
data have not been explored from a microbiome perspective. Here, 
we  present what, to our knowledge, stands as the inaugural and 
comprehensive healthy human tissue microbiome dataset. Leveraging 
ML models, we  identified microbial signatures capable of 
discriminating among various tissue types and investigated the 
potential influence of phenotypic traits (e.g., age, sex, BMI) on these 
signatures. The presence of tissue-specific microbial signatures in 
certain tissues would suggest that these organs are not devoid of 
microorganisms even in healthy conditions, thus challenging the long-
standing dogma of the sterility of internal tissues. The workflow of the 
study is shown in Figure 1.

2 Materials and methods

2.1 GTEx data accession

The data used for the analyzes described in this manuscript were 
obtained from dbGaP accession number phs000424.v9.p2 on 
04/01/2023. All GTEx RNA-seq data and matched samples protected 
metadata were accessed via NHGRI Analysis Visualization and 
Informatics Lab-space (AnVIL).1 Details of how these data were 
downloaded, are comprehensively described in the AnVIL site.2 For 
bulk data acquisition, custom Snakemake files were employed. Due to 
constraints in storage capacity, an approach was implemented wherein 
each sample BAM files were downloaded, and only the unmapped 
reads [as was originally mapped by GTEx pipeline using STAR 
(version 2.5.3a) (Dobin et al., 2013)] were retained using samtools 
(version 1.10) (Danecek et al., 2021).

2.2 GTEx sample and subject QC

The original GTEx dataset initially comprised 17,350 RNA-seq 
samples derived from 948 subjects, all of which had successfully met 
the GTEx original quality control (QC) criteria. Subsequently, 52 
samples were excluded from the analysis due to missing data in critical 
variables, namely, Genotype or Expression Batch ID, Date of genotype 
or expression batch, and Total Ischemic time. The dataset was further 
refined to encompass only 14,478 samples originating from tissues 
preserved in the PAXgene tissue fixative solution, specifically 
categorized under “PAXgene” and “Whole Blood:PAXgene” in the 
“current_material_type” variable. Furthermore, an additional 
refinement process involved excluding 32 samples originating from 
tissue sites with fewer than 20 samples, specifically samples from the 
following tissues sites: Kidney Medulla, Fallopian Tube, Cervix 
Extocervix, and Cervix Endocervix were removed. Additionally, 3 
samples possessing an RNA Integrity Number (RIN) less than 5 were 
excluded, along with 139 samples with Total Ischemic time exceeding 
1,440 min (24 h). Following these rigorous sample quality control 

1 https://gen3.theanvil.io

2 https://anvilproject.org/learn/reference/

gtex-v8-free-egress-instructions#step-4---download-object-files
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measures, a total of 14,304 samples from 942 subjects and spanning 
28 different tissues remained in the dataset.

Following, quality control of the subjects was performed. Nine 
subjects were initially excluded due to their ineligibility based on 
GTEx original criteria. Seven subjects were then removed from the 
dataset as they had a current cancer diagnosis, and 16 subjects were 
excluded due to a history of cancer diagnosis within the past 5 years. 

All the samples from the excluded subjects were removed. Following 
this comprehensive sample and subject quality control process, the 
resulting dataset comprised 13,871 RNA-seq samples originating from 
28 distinct tissues (refer to Supplementary File S1) and derived from 
910 subjects. The quality control procedures were implemented 
utilizing custom Python scripts, available on the corresponding 
GitHub repository.

FIGURE 1

Flowchart illustrating the employed methodology. RNA-seq samples were quality controlled and pre-processed. Subsequently, microbial reads were 
assigned to specific microbial species utilizing AGAMEMNON, a very accurate metagenomics and metatranscriptomics quantification analysis suite. 
The microbial taxonomic profiles of samples originating from diverse tissues were then utilized to discriminate the different tissues using Gradient 
Boosting ML models. Eleven tissues presented tissue-specific microbial signatures, capable of discriminating these tissues against all the others. 
Following an in-silico contamination analysis, eight tissues presented contamination-resilient microbial signatures, underscoring the potential 
existence of tissue-specific microbiomes in these tissues. Additionally, the models of these 8 tissues, trained in GTEx data, were further tested on living 
samples (NCBI project PRJEB4337), and 3 living tissues (heart, colon and liver) were discriminated based on their microbial signatures. Furthermore, 
these 8 tissues were further analyzed to find the most important features of these signatures. An evaluation of the potential influence of various lifestyle 
factors and medical history was conducted on the identified signatures. Lastly, the presence of tissue-specific models was further validated using Kaiju, 
a different metatranscriptomics taxonomic tool.
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2.3 Isolation of unmapped reads and 
quality control

For each sample, sequencing reads that failed to align with the 
human reference genome, as indicated by the mapping information in 
the raw BAM files obtained from GTEx,3 were selectively retained. To 
isolate the unmapped reads where both paired reads were unaligned, 
and to eliminate reads classified as non-primary alignments, 
bioinformatic tool Samtools was employed using the arguments “-f 12 
-F 256.”

The unmapped reads underwent a comprehensive quality control 
process, involving the exclusion of reads with a length shorter than 35 
nucleotides (nt), given that the GTEx normal sequencing length was 
76 nt. Additionally, steps were taken to remove adapters and perform 
quality trimming with a threshold at Phred quality score of 15. These 
quality control procedures were executed using Atropos (version 
1.1.31) (Didion et al., 2017). To streamline and automate this sequence 
of steps, custom Snakemake scripts were implemented, available on 
the corresponding GitHub repository.

2.4 Taxonomic assignment using 
AGAMEMNON

To construct the reference database utilized for the taxonomic 
algorithm AGAMEMNON (Skoufos et al., 2022) (version 0.1.0), a 
custom Bash script was employed on 02/14/2023 to download 
microbial genomes from RefSeq. The dataset comprised all bacterial 
representative or reference genomes with complete genome assembly 
level (4,034 bacterial genomes), all archaeal genomes with complete 
genome assembly level (489 archaea genomes), and all viral genomes 
with complete genome assembly level (11,259 viral genomes). 
Furthermore, fungal transcriptomes from representative or reference 
genomes with complete genome or chromosome assembly levels (81 
fungal transcriptomes) were also included in the reference database. 
In the case of fungi, the transcriptome data was specifically employed 
to account for the intricacies of the splicing process. This approach 
ensures a more comprehensive representation of fungal genomic 
information, taking into consideration the variations introduced 
during the splicing of transcripts.

The quality-controlled non-human reads of each sample 
underwent mapping against the custom reference database 
described above, using the Puffaligner algorithm (Almodaresi 
et al., 2021). For Puffaligner, the flag “--noOrphans” was used in 
order to discard the orphans reads. The term “orphan” refers to 
one end of paired-end read that is confidently aligned to some 
genomic position, but for which the other read end is not jointly 
aligned nearby (and paired). Puffaligner aligns the reads to the 
compiled microbial genomes, enabling the identification of reads 
of microbial origin within the samples. Puffaligner is a fast, 
sensitive and accurate aligner based on a compacted sequence 
graph and is meticulously crafted to embody a dual emphasis on 
high sensitivity in alignment tasks and efficient computational 
performance. Its design capitalizes on the utilization of a colored 

3 https://gtexportal.org/home/methods

compacted de Bruijn graph to efficiently identify and factor out 
recurring sub-sequences within the reference.

As highlighted by Gihawi et al. (2023), in order to be sure that no 
human read had succeeded to infiltrate in our analysis, we remapped 
the reads that were classified by Puffaligner as reads of microbial 
origin to the most recent human genome assembly (T2T-CHM13v2.0 
from T2T Consortium) using bowtie2 (version 2.2.3) (Langmead 
et  al., 2019; Langmead and Salzberg, 2012) with the “preset” 
parameters of “--very-sensitive” and kept all the reads that were not 
mapped concordantly. Custom snakemake scrips were used to 
automate the process. Then by using only the remaining reads, 
we analyzed them with AGAMEMNON (a changed version, deposited 
in the github repo of the present study) to find the microbial profile of 
each sample. AGAMEMNON represents a metagenomics and 
metatranscriptomics algorithm, notable for its integration of a time 
and space-efficient indexing scheme. This feature facilitates rapid 
pattern matching, allowing for the efficient indexing and analysis of 
extensive datasets using commonly available computational resources. 
In the abundance estimation step, the primary approach relies on the 
expectation maximization (EM) algorithm. The goal is to maximize 
the likelihood of observed reads by iteratively adjusting the abundance 
values linked to various taxa. At last, after running AGAMEMNON, 
the taxonomic profile of each sample was generated.

2.5 Diversity metrics and core microbiome 
per tissue

The taxonomic profiles generated by AGAMEMNON at the 
species level were employed to calculate the microbiome richness of 
each sample. Microbiome richness was defined as the count of species 
with non-zero abundance in each sample. To compute the Shannon 
diversity index, the “diversity” function from the R package vegan 
(version 2.6.4) was utilized.

The core microbiome for each tissue was defined by considering all 
species present in at least 10% of the respective tissue’s samples. The 
10% threshold was chosen to exclude species identified in a limited 
number of samples, that may be indicative of opportunistic infections, 
and to retain only species that are consistently present in tissue samples. 
Given the inherent diversity and dynamic nature of the microbiome, a 
relatively low threshold (10%) was applied to avoid excluding too many 
species. For comparisons of the core microbiome across tissues, UpSet 
plots were generated using the R library UpSet (version 1.4.0).

2.6 Normalization of taxonomic profiles

To address biases, particularly due to differences in sequencing 
depth among samples, we employed Cumulative Sum Scaling (CSS) 
normalization in the taxonomic profiles (Paulson et al., 2013). CSS, 
functioning as a median-like quantile normalization method, corrects 
for variations in sampling depth or library size. Unlike standard 
relative abundance normalization, which rescales all samples to a 
uniform total sum (e.g., 100%), CSS retains variability in total counts 
across samples. This normalization method adjusts samples based on 
a subset (quartile) of lower-abundance taxa that remain relatively 
constant and independent, mitigating the impact of high-abundance 
taxa that may dominate a study. For CSS normalization, the 
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metagenomeSeq library (version 1.40.0) in R was employed. This 
normalization approach was also applied to normalize taxonomic 
profiles at the genus level and functional profiles generated by 
HUMAnN 3 (Beghini et al., 2021).

2.7 ML models 1vsAllOther27tissues

To discern potential biological significance within the taxonomic 
profiles of samples, we endeavored to construct ML models for each 
tissue to discriminate it from all the other 27 tissues. We  trained 
stochastic gradient boosting machine (GBM) learning models, known 
for their efficacy in classification tasks and resilience to imbalanced 
datasets (Friedman, 2001). The models were implemented and fine-
tuned using the R libraries GBM (version 2.1.8.1), Caret (version 
6.0.94), and PRROC (version 1.3.1) (for calculating AUROC and 
AUPR values). The training and testing phases occurred on distinct, 
randomly selected, stratified sampling splits of 70 and 30% of the data, 
respectively, with a fixed random seed for reproducibility. CSS 
normalization was performed separately in each split. After 
normalization of each split, only the total core species of the 28 tissues 
were retained for training the model as we were interested in the 
signatures present in the core microbiome within tissues.

Two-fold cross-validation and grid search optimization were 
applied to tune GBM parameters, including interaction depth (1–3) 
and the number of trees (50–150), while keeping the learning rate at 
0.1 and minimum observations per node at 3. Up-sampling of the 
minority class was used during training to address class imbalance. 
Final model performance metrics (AUROC and AUPR) were 
calculated on the unseen test set, with 100 iterations performed per 
tissue model to compute mean values and 95% confidence intervals. 
Relative AUPR, defined as the ratio of AUPR (model) to AUPR 
(random), was used as a normalized performance metric. For 
computational efficiency, ML scripts utilized 10 cores with the R 
libraries parallel (version 4.2.2) and “doMC” (version 1.3.8). Pearman’s 
rank correlation was used to assess the relationship between mean 
AUROC/relative mean AUPR and sample size using the R library stats 
(version 4.2.2). The same approach was applied at the genera level, 
using 738 core microbial genera across 28 tissues as features.

2.8 In silico contamination

For the in silico contamination approach, we  introduced 12 
distinct contaminants into the dataset, simulating two categories: 
high-volume contaminants, characterized by their high volume (high 
number of reads attributed to them) on a small subset of samples, 
positing that their detection would be possible if they affected a larger 
sample pool; and low-volume contaminants, which, although 
affecting a greater number of samples, did so at lower volumes (small 
number of reads attributed to them), thereby evading their detection. 
This included six contaminants of each category, as illustrated in 
Figure 2. Contaminants were added post-CSS normalization, and 100 
iterations were performed, randomly selecting contaminated samples 
in each iteration using a custom Python script. Gradient Boosting 
Machine (GBM) models were constructed for the 11 tissues with 
tissue-specific microbiomes, using the core microbiome (1,612 
microbial species plus 12 contaminants) to distinguish each tissue 

from the other 10. Additionally, 100 uncontaminated GBM models 
were created for comparison. Feature importance was assessed using 
GBM and Caret, with contributions calculated as the percentage of 
the total feature importance score (by dividing its importance score 
by the sum of all features’ importance scores for the given model). 
Wilcoxon test was applied to compare AUROC and AUPR values 
between contaminated and uncontaminated models across the 11 
tissues using the R library stats.

2.9 ML models 1vs7 tissues

To focus on the signatures identified within the 8 contamination-
resilient tissues (Blood, Testis, Colon, Stomach, Muscle, Bladder, Liver, 
and Heart), we reconstructed GBM models using samples exclusively 
from these tissues. These models utilized the concatenated core 
microbiome of the 8 tissues, consisting of 1,597 species for species-level 
models. The configurations mirrored those described in the section ML 
models 1vsAllOther27tissues. Each model was executed 100 times to 
compute the mean AUROC, AUPR, and margins of error. Feature 
importance scores were estimated using the first iteration of the models, 
highlighting differences in microbial compositions across these tissues. 
The same methodology was applied at the genus level, using 695 genera 
as features from the combined core microbiome of the 8 tissues.

2.10 ML models with Kaiju

To validate the robustness of findings for the 8 tissue-specific 
signatures, we utilized an alternative taxonomic tool, Kaiju (Menzel 
et  al., 2016) (version 1.9.2), to identify the taxonomic profiles of 
samples from the 8 contamination-resilient tissues. Using QCed reads 
(post-Atropos processing), Kaiju classified sequencing reads by 
comparing their translated amino acid sequences against the microbial 
subset of the NCBI BLAST non-redundant protein database (nr), 
including fungi and microbial eukaryotes. The database was 
downloaded on 03/30/2023 from https://bioinformatics-centre.github.
io/kaiju/downloads.html. The kaiju2table tool converted the outputs 
into summary tables at the species level.

Based on these taxonomic profiles, GBM models were 
reconstructed for each tissue to discriminate it from the other 7 
tissues, following the methodology described earlier. The features for 
these models included the concatenated core microbiome of the 8 
tissues, as identified by Kaiju, comprising 1,864 microbial species. 
Each model was executed 100 times to compute mean AUROC, 
AUPR, and margins of error. Feature importance scores were 
estimated using a single iteration, as previously described.

2.11 Functional assignment using HUMAnN 3

To characterize the functional profile of samples from the GTEx 
consortium, reads that were identified as microbial by AGAMEMNON 
were analyzed using HUMAnN 3 (version 3.6.1) for profiling the 
abundance of microbial genes. HUMAnN 3 is a method designed to 
efficiently and accurately conduct functional profiling in metagenomic 
or metatranscriptomic sequencing data. Due to constraints in 
computational resources and time, HUMAnN 3 was executed with the 
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option “--bypass-nucleotide-search” to skip all alignment steps before 
the translated search. For this translated search, the full UniRef90 
database (version 201901b) served as the reference.

Subsequently, the functional profiles of all samples were 
concatenated and normalized using CSS normalization. GBM models 
were then created following the approach described previously, 
utilizing the 1-vs-7 tissues strategy and incorporating only the core 
gene repertoire. This repertoire consisted of genes present in at least 
10% of each tissue’s samples, amounting to 1,831 different microbial 
genes across the 8 tissues.

For models integrating both functional and taxonomic profiles, 
the core gene repertoire (1,831 genes) and the core species microbiome 
(1,597 species) were utilized in the creation of GBM models. Each 
component was separately normalized using CSS normalization, and 
then the normalized genes’ and species’ taxonomy profiles were 
merged for the training and testing datasets. The GBM models were 
constructed using the same parameters as described earlier. To 
calculate the mean AUROC and AUPR, along with their margins of 
error, 100 iterations of each model were generated.

2.12 Factors associated with tissue 
microbiome

To investigate the influence of various traits [age, Body Mass Index 
(BMI), smoking status, drinking status, ancestry], as well as disease 
history (hypertension history, ischemic heart history, diabetes II history, 
diabetes I  history, arthritis history, seizures history, schizophrenia 
history, rheumatoid arthritis history, liver disease history, dialysis 

treatment, depression history, COPD or CLRD history, cerebrovascular 
disease history, asthma history, Alzheimer or dementia history), on the 
core microbiome of the 8 tissues with contamination-resilient tissue-
specific microbiomes, GBM models were created for each trait and 
tissue combination with aim to discriminate in each tissue the samples 
with the specific trait from the samples without this trait. Tissues with 
fewer than 20 samples within each different group of specific trait/
disease were excluded due to insufficient data for model creation.

For continuous traits such as age and BMI, GBM models were 
constructed using 5-fold cross-validation and Root Mean Squared 
Error (RMSE) was used to select the optimal model with the smallest 
RMSE value. Mean Absolute Error (MAE) and R-squared were 
calculated using the “postResample” function from the Caret package. 
The mean RMSE, MAE, and R-squared were computed across 100 
iterations of each model.

For categorical traits (smoking, drinking, sex, and ancestry), as 
well as models for disease history, GBM models were developed 
similarly to tissue models but with 4-fold cross-validation to mitigate 
overfitting. Mean AUROC and mean AUPR were computed across 
100 iterations of each model. For the ancestry trait, samples with 
ancestries other than “White” or “Black or African American” were 
removed due to limited representation.

2.13 Validating significant ML models with 
living samples

To validate the previously developed 1-vs-7 tissue models in living 
tissues, we analyzed RNA-seq data from the 8 contamination-resilient 

FIGURE 2

The different types of in silico contaminants. In silico contaminants can be classified into two main categories: high abundance contamination and low 
abundance contamination. The primary routes of contamination in the GTEx original analysis protocol include the collection site, the DNA isolation 
step (DNA/RNA isolation procedure), and the expression analysis step (RNA sequencing procedure). At each step, we introduced different types of in 
silico contaminants to mitigate possible contamination scenarios.
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tissues using samples from NCBI Bioproject PRJEB4337, which 
contains living tissue samples from the Swedish Biobank. Only 
samples corresponding to these tissues were retained, although this 
project lacked data for muscle tissue and blood. The RNA-seq data 
were generated using a poly-A selection protocol and processed 
consistently with GTEx samples.

First, the fastq files were aligned to the human genome using 
STAR (version 2.7.10b), and unmapped reads were isolated and 
quality-controlled using Atropos with the same settings. These QCed 
reads were mapped to the microbial database using Puffaligner, 
remapped to the latest human genome with Bowtie2, and finally 
analyzed taxonomically using Agamemnon, ensuring identical 
processing pipelines for GTEx and PRJEB4337 samples.

Next, the original 1-vs-7 tissue models (100 iterations per 
tissue) developed using GTEx data were tested on the 38 
PRJEB4337 living samples. Performance metrics, including 
AUROC and AUPR, were calculated using the PRROC library. To 
confirm that the high performance observed was due to tissue-
specific microbial signatures, 100 iterations of random models 
were created by shuffling tissue labels in the GTEx dataset. These 
random models were then tested on the living dataset, and their 
performance was compared with the original models using a 
Wilcoxon test. This comparison ensured that observed 
performance was driven by tissue-specific microbial signatures 
rather than random chance. Additionally, samples from 
PRJEB4337 were analyzed using the Kaiju tool to generate 
microbial profiles, following the same pipeline used for GTEx 
data. The GBM models based on Kaiju profiles of GTEx data were 
tested on the PRJEB4337 samples, with 100 iterations executed for 
performance evaluation.

3 Results

3.1 Low-biomass microbial RNA is detected 
in GTEx samples

A total of 13,871 RNA-seq samples originating from 28 distinct 
tissues (e.g., Lung, Liver, Pituitary, Blood Vessel, Thyroid, Skin, 
Salivary Gland, Esophagus, Heart, Muscle, Pancreas, Adipose Tissue, 
Vagina, Blood, Ovary, Spleen, Prostate, Adrenal Gland, Nerve, 
Stomach tissue, Colon tissue, Testis, Brain, Breast, Uterus, Small 
Intestine tissue, Kidney, Bladder tissue) within the GTEx consortium 
have been utilized. All samples were designated as non-diseased and 
free of pathology, as the specimens were reviewed by a panel of 2–3 
pathologists and any specimen found with an incidental finding had 
been systematically excluded.

Following the removal of reads of human origin, the remaining 
reads were aligned against an extensive database comprising 4,034 
bacterial, 489 archaeal, 11,259 viral, and 81 fungal entities. The 
microbial composition of each sample was determined utilizing 
AGAMEMNON. AGAMEMNON provides precise genus, species, 
and strain abundances through an efficient indexing scheme for rapid 
pattern matching, facilitating analysis of extensive datasets using 
common computational resources. The abundance estimation 
employs expectation maximization algorithm and targets maximizing 
the likelihood of the observed reads by gradually altering the 

abundance value associated to different taxa. On average, out of 
~93 × 106 raw reads per sample, ~2 × 106 reads (2.35% of the raw 
reads) did not align to the human genome. After quality control (QC) 
and filtering of the non-human reads, ~3.5 × 105 reads (0.38% of the 
raw reads) were preserved. Employing Puffaligner, ~4.3 × 104 (0.046% 
of the raw reads) were attributed to bacteria, archaea, fungi, or viruses. 
To eliminate any residual human-associated sequences, a realignment 
of microbial reads to the most recent human genome assembly 
(T2T-CHM13v2.0) was executed, resulting in ~4.2 × 104 reads 
(0.045% of raw reads) remaining. Finally, using AGAMEMNON, all 
the remaining reads (4.2 × 104 reads, 0.045% of raw reads) were 
successfully classified into microbial species (Figure 3A). The reported 
read counts are the mean values across all samples at each step of 
the analysis.

The bladder exhibited the most pronounced abundance of 
microbial reads, whereas the adrenal gland, brain, heart, muscle, 
salivary gland, and testis demonstrated the lowest microbial read 
counts (Supplementary File S2). In each of the 28 tissues examined, a 
discernible presence of low-biomass microbial RNA was identified. 
The microbial communities detected within these tissues may either 
genuinely inhabit the respective tissues or be a result of potential 
contamination. As in the case of microbial reads, the bladder exhibited 
the highest microbial species richness in its microbial community, 
whereas the brain, heart, muscle, salivary gland, and testis displayed 
the lowest richness, as depicted in Figure 3B. Notably, the Shannon 
index of the bladder was markedly lower compared to the rest of the 
samples (Figure 3C), which arises from the fact that bladder samples 
demonstrated elevated counts for a few selected species, and 
comparatively lower counts for the remaining species.

To identify species that are consistently present in each tissue and 
are not sporadic opportunistic pathogens, we retained species present 
in at least 10% of samples from each tissue. The retained species are 
hereafter referred to as the core microbiome of the tissue. Species 
meeting this criterion for at least one tissue were included in 
subsequent analyzes, resulting in a total of 1,708 different species 
across all four kingdoms. As expected, the tissue with the smallest 
core microbiome was the brain, consisting of 720 species, while the 
bladder exhibited the most diverse core microbiome, comprising 
1,344 species (Figure  3D; Supplementary File S3 for details). 
Additionally we noticed that across all tissues, bacteria constituted 
the predominant component, making up over 95% of the core 
microbiome for each tissue. The core microbiome of each tissue for 
all four kingdoms, namely bacteria, fungi, viruses and archaea, is 
documented in Supplementary Files S4–S7, respectively.

Notably, a total of 529 species, accounting for ~31% of the overall 
core microbiome, were shared across all tissues, showing that tissues 
share in some extent a common microbiome (Figure 3E). Among 
fungi, the majority (24 out of 37 species) were present in all tissues, as 
indicated in Supplementary Figure S1 and Supplementary File S8. 
However, for bacteria, only 504 out of 1,297 species (38.86%) and for 
viruses, only Geobacillus virus E2 out of 13 viruses were present in all 
tissues, as illustrated in Supplementary Figures S2, S3 and 
Supplementary Files S9, S10, respectively. Archaea were exclusively 
identified in specific tissues, including the bladder and kidney (species 
Methanocaldococcus jannaschii), the colon and small intestine tissues 
(species Methanosarcina sp. WH1), and the spleen (species 
Methanocaldococcus jannaschii) (Supplementary File S7).
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3.2 Eight tissues harbor specific microbial 
signatures at species level

While solely the identification of microbiomes within tissues does 
not warrant the existence of microbial communities within these 
tissues, the presence of discernible biological footprints within these 
communities would imply a non-coincidental occurrence of microbes 
inside these tissues. To explore this, Machine Learning models were 
employed to detect potential microbial footprints for each tissue. By 
using Cum-Sum Scaling method to normalize microbial profiles 
across samples, stochastic Gradient Boosting Machine Learning 
models (GBM models) were trained to distinguish individual tissues 
from all other tissues. Notably, 11 out of the 28 models (models for 
Brain, Small Intestine tissue, Liver, Bladder, Muscle, Heart, Salivary 

Gland, Stomach tissue, Colon tissue, Testis, and Blood) exhibited 
robust performance (mean AUROC ≥ 0.70 and relative mean 
AUPR ≥ 1.4) discriminating each specific tissue type from the 
collective representation of all other tissues, as illustrated in Figure 4A 
and Supplementary File S11. There was no significant correlation 
between the sample size and mean AUROC performance (rho = 0.207, 
p-value = 0.28) and the normalized mean AUPR performance 
(rho = −0.152, p-value = 0.43).

The identified microbial signatures based on species abundances 
within these 11 tissues were further analyzed to investigate if the 
microbial presence could be  attributed to sample contamination. 
Given that the primary objective of the GTEx initiative was to 
investigate gene expression, the samples were not processed under 
sterile conditions. Due to the nature of GTEx experiment protocol, it 

FIGURE 3

(A) The mean of reads (log10 space) at each step of the analysis, including raw reads, unmapped to human genome reads, QCed reads, microbial 
reads, non-human microbial reads and lastly classified microbial reads. (B) Boxplots illustrating the microbial richness of the samples across 28 tissues 
(the darker shades of blue correspond to lower mean values, while brighter shades indicate higher mean values). (C) Boxplots depicting the microbial 
Shannon index of samples in each tissue. (D) The distribution of the core microbiome per tissue in the four kingdoms of life. (E) An UpSet plot 
illustrating the shared species present in the core microbiome across all tissues, comprising a total of 1,708 species.
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was inefficient to employ an in-silico decontamination approach and 
to overcome this inefficiency, an alternative strategy was implemented. 
A randomized in silico contamination approach was used to evaluate 
the potential impact of systematic contamination on the performance 
of the models. To scrutinize whether possible contamination could 
drive the performance of ML models exhibiting high performance, 12 
pseudo-contaminants were strategically introduced to the data. These 
pseudo-contaminants aimed to simulate diverse scenarios of 
contamination throughout the analytical process, encompassing 
potential contamination scenarios from the initial sampling to the 
sequencing procedure.

We retrained the ML models of the 11 tissues presenting high 
discriminatory power (mean AUROC ≥ 0.70 and relative mean 
AUPR ≥ 1.4) and compared their performances with and without in 
silico contamination (Supplementary File S12). Only the models of 
Salivary Gland, Brain, and Small Intestine had significantly higher 
performance (both mean AUROC values and mean AUPR values) in 
the contaminated iterations, with in silico contaminants playing an 
important role in the models’ performance. On the other hand, for the 
rest of the models in the contaminated iterations, models did not rely 
on the inserted pseudo-contaminants (Figure  4B), therefore, the 
models for the Salivary Gland, Brain, and Small Intestine tissues were 
deemed unreliable as their high performance could be the result of 
contamination. The contamination type, that could potentially 
influence the performance of these 3 models, is a low volume 
contamination (contamination type 8) which imitates a contaminant 
that is systematically present in the samples of a collection site center. 
Nevertheless, in the rest 8 tissues (Blood, Testis, Colon tissue, Stomach 
tissue, Muscle, Bladder, Liver, and Heart), the tissue-specific microbial 
signatures exhibited resilience against potential contamination. The 
ability of GBM models to discriminate these tissues solely based on 
their microbial profiles independently of any potential contaminations, 
underscores the presence of distinctive microbial signatures specific to 
each of these tissues. To investigate microbial differences among these 
8 tissues, GBM models were recreated using data exclusively from 
these contamination-resilient tissues, distinguishing each tissue from 
the combined representation of all the other 7 tissues. Remarkably, all 
8 tissues demonstrated robust performance in terms of AUROC and 
relative AUPR (mean AUROC ≥ 0.70 and relative mean AUPR ≥ 1.4), 
as illustrated in Figure 4C and Supplementary File S13.

Collectively, these results suggest that each of these 8 tissues harbors 
a distinct and unique microbiome. To assess the biological relevance of 
these microbial signatures, a detailed examination of the most important 
features from the 8 models was conducted. Boxplots of the abundance 
of the most important features across the different tissues are depicted 
in Figures 4D–K. Supplementary File S14 contains the full catalog of 
features importance scores for each tissue. In the colon tissue model, the 
2 most predominant features were the bacterium Enterocloster bolteae, 
formerly known as Clostridium bolteae, a recognized constituent of 
human feces and Flavonifractor plautii (formerly Eubacterium plautii), 
which has been isolated from human feces, blood, intra-abdominal pus, 
and infected soft tissues in humans (Carlier et al., 2010) (Figures 3D,E). 
In the case of Heart, the most crucial feature was the fungus Sporisorium 
graminicola and for the Blood model, the 2 most important features 
were Schizosaccharomyces pombe and Sporisorium graminicola 
(Figures 4F,G, respectively). These two fungal species are capable of 
synthesizing mannosylerythritol lipids (MELs) (Morita et al., 2014). 
MELs belong to the glycolipid class of biosurfactants and are known for 

their outstanding interfacial and biochemical characteristics, as 
highlighted by Morita et al. (2015). For the Muscle model, the overall 
importance of features was relatively subdued, and many features 
contributed equally lightly in the model’s discriminatory ability. In the 
Stomach model, the pivotal feature was the virus Human betaherpesvirus 
7, previously identified as an inhabitant of gastric mucosa (Gonelli et al., 
2001) (Figure 4H). For the Testis model, the critical feature was the 
Human endogenous retrovirus K (HERV-K) (Figure 4I). The human 
genome harbors numerous copies of HERV-K, many of which retain 
intact open reading frames (ORFs). These ORFs are capable of being 
transcribed and translated, particularly during early embryonic 
development and in cancerous conditions (Garcia-Montojo et al., 2018). 
For the Bladder model, the foremost feature was the bacterium 
Caldimonas thermodepolymerans, an underexplored microorganism 
phylogenetically proximate to the Comamonadaceae group that was 
systematically less abundant in the samples of bladder (Figure  4J). 
Lastly, in the Liver model, the primary feature was Bartonella machadoae 
(Figure  4K). Bartonella machadoea is a bacteria belonging to 
Proteobacteria genus, and it was recently reported that the liver is 
inhabited mainly by proteobacteria by a gut-liver-specific axis 
(Broderick and Nagy, 2022).

For additional validation, the samples from the aforementioned 
eight tissues underwent analysis using Kaiju, a different computational 
method for microbial taxonomic profiling. Kaiju assigns each sequencing 
read to a taxon in the NCBI taxonomy by comparing it to a reference 
protein database. The used reference database was the microbial subset 
of the NCBI BLAST non-redundant protein database, encompassing 
bacteria, archaea, virus, fungi and microbial eukaryotes. Subsequently, 
GBM models for these 8 tissues were reconstructed using the taxonomic 
profiles generated by Kaiju. Remarkably, the performance of these 
models exhibited a high performance (mean AUROC ≥ 0.70 and 
relative mean AUPR ≥ 1.4) as depicted in Figure  4L 
(Supplementary File S15), indicating that regardless of the bioinformatics 
method analysis, these tissues present a distinctive microbial signature. 
The most important features of the microbial signatures found by Kaiju 
(Supplementary File S16) were different compared to the microbial 
profiles derived by AGAMEMNON. Employing different approaches for 
read classification, the taxonomic profiles and, respectively, the most 
important features of the models are differing, mainly due to the 
different reference databases that each tool uses for the classification of 
the reads and to the algorithm used in assigning the reads to 
each organism.

3.3 Heart, colon, and liver tissue preserve 
the tissue-specific microbial signatures in 
the living state

As the specimens sourced from the GTEx consortium 
originate from post-mortem biopsies, an investigation was 
conducted to examine whether the identified signatures for the 
eight tissues resulted from post-mortem microbial colonization or 
were present during the subjects’ lifetime. To address this, the 
eight models, comparing one tissue against the seven others, were 
subjected to testing using data derived from an entirely distinct 
project (NCBI Bioproject ID PRJEB4337). This dataset sourced 
from living tissues of subjects within the Swedish Biobank 
(Fagerberg et al., 2014). This project did not contain samples from 
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FIGURE 4

(A) The performance of the models (AUROC and relative AUPR) for all tissues in the models 1TissuevsAll27OtherTissues. It is evident that 11 tissues 
presented high AUROC and AUPR values. (B) A bubble plot showing the mean importance score of each contamination type in the 11 tissues models. 
The contamination 8 plays an important role in small intestine, brain and salivary gland models. (C) The performance of the models (AUROC and 
relative AUPR) for the tissues that presented tissue-specific contamination-resilient microbiome. All eight tissues presented high AUROC and AUPR 
values in the 1vs7OtherTissues models. (D–K) Boxplots of the normalized abundances of the most important features of each model, in the headline of 
each boxplot is written the species name and in parenthesis the tissue for which this species is the most important feature. (L) The performance of the 
models (AUROC and relative AUPR) for the tissues that presented tissue-specific contamination-resilient microbiome but with the taxonomic profiles 
produced by Kaiju. All eight tissues presented high AUROC and AUPR values in the 1vs7OtherTissues models even with the employment of a total 
different taxonomic tool.
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muscle tissue and blood, so only 6 out of the 8 models (heart, 
colon, stomach, liver, bladder, testis models) were tested with data 
from living tissues. The data were processed utilizing the same 
pipeline as applied to GTEx data, and normalization was separately 
carried out on this specific distinct dataset using the CSS 
normalization method.

For each tissue, all 100 iterations of the 1vs7Tissues models (that 
were created before) were tested again using the living dataset. The 
obtained results were then compared with the performance of models, 
generated with randomly assigned tissue labels to ascertain the 
significant contribution of tissue origin to model performance 
(Supplementary File S17). Remarkably, 5 out of 6 tissues (only the 
model for bladder tissue did not) exhibit a statistically significant 
difference in AUROC and AUPR in the living dataset (p-value < 0.05) 
between the true tissue labeled model and the random tissue 
labeled model.

Among the six models, the models for Heart, Colon, and Liver 
tissue demonstrated robust AUROC and relative AUPR in the living 
dataset (AUROC ≥ 0.7 and relative AUPR ≥ 1.4) (Figure  5A; 
Supplementary File S18). This suggests that the microbial signatures 
identified in these tissues (Heart, Colon, and Liver) also exist in the 
healthy living state. The 5 most abundant species in the living dataset 
for the 3 tissues are depicted in Figures 5B–D (refer for frequencies of 
all microbiomes inside living tissues of the project PRJEB4337  in 
Supplementary File S19).

The lack of high performance for the remaining three tissues may 
be attributed to the likelihood that the microbial signature of these 
tissues undergoes significant alterations during the event of death. The 

high performance of the Heart, Colon, and Liver models was not 
observed in the models created with the taxonomic profiles derived 
from Kaiju (Supplementary File S20).

3.4 Lifestyle factors and medical history do 
not influence tissues’ microbiome

Additionally, the putative impact of lifestyle factors on the 
composition of tissue-specific microbiomes across the eight human 
tissues was examined. The following variables were studied: Age, BMI, 
Sex, Alcohol consumption, Smoking status, Ancestry. To elucidate 
potential associations, GBM models were constructed for each tissue 
to predict the specific trait. However, despite rigorous computational 
analyzes, the findings reveal a lack of robust predictive capability of 
the tissue microbiomes for these traits across all examined tissues. 
Detailed performance metrics for each trait within each tissue are 
provided in Supplementary File S21.

In addition, each tissue underwent a thorough examination to 
discern whether its microbial profile harbored predictive potential for 
various medical conditions, encompassing Alzheimer’s or Dementia, 
Asthma, Cerebrovascular Disease, COPD-CLRD, Depression, 
Diabetes Type I  and II, Dialysis Treatment (Renal Failure), 
Rheumatoid Arthritis, Hypertension, Ischemic Heart Disease, Liver 
disease, Schizophrenia, Seizures, and Arthritis (as a comprehensive 
category inclusive of various types of arthritis). Only in the case of 
dialysis treatment (renal failure) could discernment be  achieved 
between heart tissues of subjects with renal failure and heart tissues of 

FIGURE 5

(A) The performance of the 8 models created from GTEx samples tested on the samples from living tissues. Colon tissue, heart and Liver presented a 
high AUROC and relative AUPR in the living samples, showing that the microbial signatures of these tissues are present during the lifetime of individuals 
too. (B–D) The 5 most abundant microbial species on the living samples of the colon tissue, heart, and liver. The species that are common among 
tissues are depicted with same color.
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subject without renal failure. However, for the rest of the diseases, 
discrimination of subjects’ diagnosis across the tissues was not 
feasible. Detailed performance metrics for each disease in each of the 
eight tissues are presented in the Supplementary File S22. Overall, the 
analysis of tissue microbiomes suggests a lack of inherent microbial 
signatures indicative of lifestyle factors or systemic disease status.

3.5 The utmost significance in unraveling 
tissue-specific microbial signatures lies 
within the species-level analysis

To elucidate the optimal taxonomic level for investigating 
microbial signatures across the eight vital tissues, we  constructed 
GBM models utilizing microbial profiles at the genus level. 
AGAMEMNON supports the aggregation of microbial counts at the 
taxonomic level of choice. Employing microbial profiles at the genus 
level, we developed GBM models for the aforementioned eight tissues. 
GBM models based on genera exhibited slightly inferior performance 
compared to those derived from species-level data (refer to 
Supplementary File S23). Although the distinctions are subtle, the 
majority of the eight models demonstrated enhanced performance 
when analyzed at the species level; only, the bladder model exhibited 
superior mean AUROC and mean AUPR at the genera level.

To investigate if any other of the 20 tissues, that did not present 
microbial footprints at species level analysis, manifested distinct 
microbial signatures at the genus level, we  generated GBM models 
utilizing taxonomic profiles at the genus level for each tissue. Only the 
models from the same tissues as species level models presented high 
performance (AUROC ≥ 0.7 and relative AUPR ≥ 1.4), most of the times 
slightly diminished when compared to their species-level counterparts. 
Only the brain tissue models did not present high performance at the 
genus level, but as previously shown, the species-level brain model is 
possibly a result of contamination (refer to Supplementary File S24).

In light of the known redundancy in the functional repertoire (i.e., 
genes) across diverse microorganisms, we endeavored to investigate 
whether tissue-specific microbial signatures predominantly arise from 
a tissue-specific microbial gene repertoire rather than a specific 
microbial taxonomy. Also, another goal was to identify tissue-specific 
microbial genes and pathways. To delineate the functional profile of 
samples, microbial reads identified by AGAMEMNON were subjected 
to analysis using HUMAnN 3, specifically employing translational 
searches against the Uniref90 database. Subsequently, GBM models 
for the aforementioned eight tissues were reconstructed utilizing the 
CSS-normalized functional profiles of the samples (refer to 
Supplementary File S25). Remarkably, only the Blood, Colon, and 
Bladder tissues exhibited high performance, with a mean 
AUROC ≥ 0.70 and a relative mean AUPR ≥ 1.4. In an attempt to 
integrate both functional and species-level information, 
we reconstructed GBM models using both the functional and the 
taxonomic profiles of the samples. However, even with this 
comprehensive approach, a very slight enhanced performance was 
attained and not in all models (see Supplementary File S26), indicating 
that in our scientific setup the information of functional repertoire 
contributes very slightly in discriminating tissues. It is crucial to note 
that the low performance of the functional models, could most 
probably be attributed to the technical characteristics of the GTEx 
RNA-seq data. The data, generated using a poly-A selection 

sequencing protocol, inherently filtered out a significant proportion 
of microbial RNAs.

4 Discussion

In each of the 28 examined tissues, a modest yet substantiated 
presence of transcriptionally active microbial communities was 
observed. Contrary to traditional notions of sterility of internal tissues, 
this analysis, alongside analogous investigations in other mammalian 
species, suggests that tissues potentially harbor a low-biomass 
microbiome not only in the context of disease but also in normal state. 
In light of recent controversies, such as the retraction of a major study 
on cancer tissue microbiomes (Poore et  al., 2020), this analysis 
addresses and resolves the methodological concerns previously raised. 
Extending beyond pathological conditions, our analysis suggests that 
certain human internal tissues consistently maintain a low-biomass 
microbiome. This phenomenon prompts speculation that the 
microbiome may serve as a functional reservoir contributing to tissue 
well-being or act as a regulator of the immune system.

The robust discriminatory performance demonstrated by the 
models for eight tissues, relying solely on microbial profiles of samples, 
strongly suggest that the observed microbiome is not a result of random 
chance. Despite the impracticality of conducting in silico 
decontamination due to the uniform utilization of the same RNA 
quantity for each sample in the processing of GTEx samples and the 
absence of negative controls, a reverse analysis—implementing in silico 
contamination—illustrated the robustness of microbial signatures in 
eight tissues against various potential contaminations. It is imperative 
to clarify that the in silico contamination approach does not seek to 
substitute a laboratory analysis conducted under the most stringent 
sterile conditions, nor is it exhaustive in considering all conceivable 
contaminations. Rather, it serves as a validation step to evaluate whether 
contamination occurred at different stages of the analysis and to assess 
its potential impact on models performance. In total, eight tissues 
demonstrated a tissue-specific microbiome that exhibited resilience 
against various potential contaminations, thereby indicating the 
presence of a distinct microbiome in each tissue. Interestingly, this 
tissue-specific microbiome primarily diverges not in terms of species 
but predominantly in the composition of these species. The microbial 
signatures for heart, colon and liver tissues seem to be distinctive also 
in an independent dataset from healthy living tissues, supporting the 
presence of microbiomes inside these tissues also in a living healthy state.

In colon tissue, the most pivotal component of its microbial 
signature is Flavonifractor plautii, a prevalent bacterium in the human 
gastrointestinal tract recognized for its notable butyrate production 
(Rajilić-Stojanović and De Vos, 2014). In liver tissue, the primary 
microbial entity of significance is Bartonella machadoae. Bartonella 
species have been associated with compromised liver function (Vander 
Heyden et al., 2012). Lastly, the presence of the phytopathogenic fungus 
Sporisorium graminicola in cardiac tissue presents an intriguing finding. 
S. graminicola has also been isolated from human fecal samples (Natalia 
et al., 2023). Despite the apparent peculiarity of a phytopathogenic 
fungus inhabiting cardiac tissue, its consistent identification as a 
significant feature in both the GTEx dataset containing samples from 
United States and the independent test dataset from Swedish Biobank 
renders the possibility of mere contamination or chance occurrence 
highly unlikely. The ability of machine learning models to discriminate 
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distinct microbial signatures across these three tissues in separate 
datasets suggests that these microorganisms are likely indigenous 
inhabitants of their respective tissues.

In the majority of tissues (20 out of 28 tissues), a distinct tissue-
specific microbial signature was not detected. However, the absence of 
such a signature does not necessarily imply tissue sterility. These tissues 
are more likely to harbor distinct microbial signatures in species that may 
not have been successfully detected, possibly due to limitations imposed 
by the poly-A protocol or the lack of reference genomes. Indeed, the 
methodologies employed by GTEx protocols unequivocally revealed 
only a fraction of the microbial load present inside these tissues. Another 
plausible explanation for the absence of tissues’ microbial signatures is 
that the models for these tissues may not have performed optimally, as 
these tissues may exhibit a more versatile microbiome without a clearly 
defined tissue-specific signature. Lastly, for the three tissues that did not 
perform well in living tissues, it is conceivable that these tissues undergo 
a significant shift in their microbiome after death, or there may 
be notable differences attributable to geographical variations, as the living 
subjects were from a different continent than GTEx subjects.

Significantly, beyond the considerations of the poly-A sequencing 
protocol, metagenomics and metatranscriptomics necessitates tailored 
laboratory procedures for efficient DNA or RNA isolation from both 
gram-positive and gram-negative microorganisms. As these 
considerations were not initially integrated into the GTEx pipeline, it 
is evident that the analytical procedure failed to unveil the full 
spectrum of microorganisms present in the tissues. Moreover, aside 
from the critical role of laboratory protocols, the bioinformatics 
analysis protocols also play a pivotal role in discriminating and 
accurately describing tissue microbiomes. Two metatranscriptomics 
tools, Kaiju and AGAMEMNON, each employing distinct approaches 
for read classification, yielded different taxonomic profiles and 
exhibited variations in performance on the models. To advance 
microbiome research, it is paramount to develop specific guidelines 
for both laboratory and in silico analysis of microbiome data. This step 
is crucial for ensuring comprehensive and accurate insights into the 
diversity and composition of microbial communities within tissues.

It is crucial to consider that, in the majority of the identified 
microbiomes, the reads classified as belonging to these microbiomes 
were relatively scarce. RNA transcripts of these microbiomes were 
present within the tissues; however, these transcripts did not adequately 
cover a substantial portion of the genetic material of these microbiomes. 
This limitation is likely attributable to constraints imposed by the 
poly-A protocol. The limitations of the poly-A protocol highlight the 
necessity for additional investigations to validate the existence of 
microbiomes within tissues, rather than merely isolated microbial RNA 
transcripts. Another strength and limitation of the study is its focus on 
28 tissues, providing substantial coverage but not fully representing the 
complete diversity of human internal tissues. While the exclusion of 
certain tissues may limit the generalizability of the findings to the entire 
human body, the breadth of tissues analyzed offers valuable insights 
into tissue-specific microbial signatures. Additionally, while the 
samples predominantly represent specific demographic groups, this 
provides a focused perspective but may limit the generalizability of the 
findings to more diverse populations. However, the successful 
application of our models to data from the Swedish Biobank, which 
includes individuals from a different demographic background, 
suggests that the findings have a degree of generalizability and broader 
applicability. Expanding the demographic range in future studies could 

further strengthen this aspect. It is pertinent to acknowledge that 
bioinformatic analyzes in scenarios such as the present study are 
subject to probabilistic constraints and, on their own, are insufficient 
to prove the existence of microbiomes definitively. However, they can 
serve as valuable tools to guide subsequent investigations, indicating 
tissues and organisms that warrant further scrutiny.

5 Conclusion

Collectively, a growing body of evidence substantiates the 
existence of microbial interactions with human cells in anatomical 
sites traditionally considered sterile. The identification of encoded 
signatures specific to certain tissues within normal human tissues 
suggests that these tissues harbor a low-biomass microbiome. This 
exploration signifies a paradigmatic shift, heralding an era in which 
we acknowledge that our bodies are not solitary entities but rather 
collaborative ecosystems housing diverse microbial species. 
We anticipate that our study will serve as a foundational resource, 
providing crucial guidance for future investigations and facilitating 
targeted laboratory validations aimed at confirming the presence of 
microbial communities within internal tissues.
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