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Plant-parasitic nematodes (PPNs), including root-knot nematodes (Meloidogyne 
spp.), cyst nematodes (Heterodera and Globodera spp.), and other economically 
significant nematode species, pose severe threats to global agriculture. These 
nematodes employ diverse survival strategies, such as dormancy in cysts or robust 
infective juvenile stages. Consequently, their management is challenging. Traditional 
control methods, such as the use of chemical nematicides, are increasingly 
scrutinized because of environmental and health concerns. This review focuses 
on the specific mechanisms employed by Bacillus spp., including nematicidal 
compound production, systemic resistance induction, and cuticle degradation, 
to target root-knot and cyst nematodes. These mechanisms offer sustainable 
solutions for managing nematodes and promoting soil health by enhancing microbial 
diversity and nutrient cycling. An integrated approach leveraging Bacillus-based 
biocontrol is proposed to maximize efficacy and agricultural sustainability.
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Introduction

Overview of nematode infestations in crops and their 
impact on agriculture

Nematode infestations significantly threaten global agriculture, causing substantial 
economic losses of over USD 80 billion annually (Nicol et al., 2011; Abd-Elgawad, 2024). 
Plant-parasitic nematodes (PPNs) are highly diverse and include various species, such as root-
knot nematodes (Meloidogyne spp.), cyst nematodes (Heterodera and Globodera spp.), lesion 
nematodes (Pratylenchus spp.), and reniform nematodes (Rotylenchulus reniformis). These 
nematodes exhibit unique parasitic mechanisms. Hence, their management in agricultural 
systems is challenging.

Root-knot nematodes invade root tissues and induce the formation of specialized feeding 
structures called giant cells, diverting host resources and stunting plant growth. Bacillus subtilis 
produces nematicidal enzymes, such as proteases, which degrade nematode cuticles, reducing 
mobility and infectivity. Secondary metabolites, such as fengycin and surfactin, exhibit potent 
activity by disrupting nematode cell membranes, causing cell lysis and death (Jiang et al., 
2021). Moreover, these metabolites inhibit egg hatching and juvenile development, effectively 
suppressing the nematode life cycle. On the other hand, cyst nematodes form syncytia in root 
tissues, resulting in long-term nutrient extraction. Lesion nematodes produce migratory 
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lesions that compromise root integrity and increase susceptibility to 
secondary infections (Gupta et al., 2023). These adaptations result in 
yield losses, with root-knot nematodes alone accounting for an 
estimated loss of over 5% globally. Their adaptability and multiple life 
cycles in warm climates exacerbate this damage (Subbotin et al., 2021). 
Similarly, cyst nematodes survive under unfavorable conditions by 
forming resilient cysts containing eggs, enabling extended dormancy 
in the soil (Moens et al., 2018). B. amyloliquefaciens plays a crucial role 
in managing cyst nematodes by inducing systemic resistance in plants, 
thereby suppressing the formation of syncytia within root tissues. This 
bacterium also produces chitinases to degrade cyst shells, preventing 
hatching and subsequent infestations (Ngalimat et al., 2021). Given 
these functions of Bacillus spp. and their role in improving plant vigor, 
they are effective against cyst nematodes in diverse agricultural systems.

The survival strategies of nematodes demand tailored 
management approaches that account for the distinct biological traits 
of each group. For instance, root-knot nematodes secrete effector 
proteins that suppress key host plant defense pathways, such as those 
mediated by jasmonic acid (JA) and salicylic acid (SA), while cyst 
nematodes release effector proteins that alter root architecture to 
facilitate syncytium formation (Ahmad et al., 2021). Moreover, lesion 
nematodes disrupt cell walls enzymatically, contributing to extensive 
root decay. Understanding these intricate molecular interactions is 
crucial for devising effective and sustainable management strategies.

Traditional control methods, such as crop rotation, the use of 
resistant cultivars, and the use of chemical nematicides, are limited by 
the biological versatility of nematodes and the environmental 
concerns associated with chemical usage. The ability of root-knot 
nematodes to overcome resistant cultivars further complicates 
breeding efforts (Pradhan et al., 2023). Moreover, although chemical 
nematicides are initially effective, they pose risks to nontarget 
organisms and contribute to environmental degradation (Kumar et al., 
2017). These limitations underscore the need for safer, 
eco-friendly alternatives.

Recent advances in biocontrol have demonstrated the potential of 
Bacillus spp. in combating specific PPNs. Bacillus spp. employ various 
mechanisms, such as the production of nematicidal metabolites (e.g., 
lipopeptides and proteases), the induction of systemic resistance in 
plants, and competition with nematodes for resources (Patil et al., 
2019; Jiang et al., 2021). For instance, B. subtilis produces fengycin and 
surfactin lipopeptides, which disrupt root-knot nematode cuticles, 
while B. amyloliquefaciens induces systemic resistance in plants, 
enhancing defenses against cyst nematodes (Lin et  al., 2020). 
Understanding the mechanisms underlying these distinct interactions 
is crucial for optimizing their applications in nematode management 
programs and ensuring that they also contribute positively to soil 
health. This review emphasizes the targeted use of Bacillus spp. against 
root-knot and cyst nematodes, detailing their distinct survival 
strategies and biocontrol mechanisms.

Given the diversity of PPNs and the limitations of conventional 
management strategies, this review focuses on Bacillus spp. as 
biocontrol agents, discussing their mechanisms, efficacy, and potential 
for integration into sustainable nematode management programs. The 
discussion covers multiple PPNs, focusing on crop nematodes, 
especially root-knot, cyst, lesion, and reniform nematodes. The 
literature is sourced from reputable databases, including Elsevier, 
Springer, and MDPI, ensuring the inclusion of high-quality and 
relevant studies.

Major phytopathogenic nematodes in 
global agriculture

Phytopathogenic nematodes pose a significant threat to global 
agriculture. They impact a wide range of crops by feeding on plant 
roots, disrupting nutrient uptake, and serving as vectors for other 
pathogens. The most harmful genera include Meloidogyne, 
Heterodera, Globodera, Pratylenchus, Radopholus, Rotylenchulus, 
Ditylenchus, and Bursaphelenchus, each exhibiting unique life 
cycles, modes of action, and seasonal habitats that contribute to 
pathogenicity (Mesa-Valle et  al., 2020; Palomares-Rius 
et al., 2020).

Root-knot nematodes (Meloidogyne spp.), including M. incognita, 
M. javanica, and M. arenaria, are particularly damaging. Their life 
cycles progress from eggs to infective juveniles and adults, with 
juveniles primarily causing damage by penetrating plant roots. These 
nematodes thrive in warm climates and cause peak damage during 
spring and summer, contributing to significant yield losses in various 
crops, such as tomatoes, soybeans, and cotton in Brazil, China, and 
other regions (Blouin et  al., 1998; Subbotin et  al., 2021). Cyst 
nematodes (Heterodera and Globodera spp.) pose unique challenges 
because of their ability to form cysts containing eggs. Consequently, 
they can survive for long durations under adverse conditions. The 
soybean cyst nematode H. glycines and the golden potato cyst 
nematode G. rostochiensis cause substantial crop losses, particularly in 
temperate regions. Their dormant cysts hatch under favorable 
environmental conditions, typically in spring, aligning with the 
planting season (He et al., 2022). Lesion nematodes (Pratylenchus 
spp.) are migratory endoparasites that create lesions in root tissues as 
they feed, significantly impairing plant health. These nematodes are 
active throughout the year in warm, moist environments, such as 
those in tropical agricultural regions, causing severe yield losses in 
various crops, such as banana, coffee, and soybean (Saikai and 
MacGuidwin, 2022; Riascos-Ortiz et al., 2022). Similarly, burrowing 
nematodes (Radopholus similis) and stem nematodes (Ditylenchus 
dipsaci) exhibit seasonal activity, with the former thriving in wet 
tropical climates and the latter affecting bulbous plants in cooler 
climates (Mathew and Opperman, 2019; Sturhan and Brzeski, 2020). 
The global burden of these nematodes is substantial. Hence, there is 
an urgent need for sustainable, effective management strategies to 
mitigate the impact of these nematodes on global food security.

Traditional methods of nematode control 
and their limitations

Traditional nematode management approaches, including cultural 
practices, biocontrol methods, and chemical treatments, have been 
widely implemented to mitigate the detrimental effects of nematodes 
and maintain crop health and productivity (Elango et  al., 2020). 
Cultural methods, such as crop rotation, soil solarization, and 
sanitation, aim to interrupt the life cycle of nematodes, thereby 
diminishing their populations in the soil (Oka, 2010). Biocontrol 
methods leverage natural predators and antagonistic plants to 
maintain the ecological balance of nematode populations (El-Saadony 
et al., 2021). Chemical treatments, which involve the application of 
nematicides, can directly target nematodes and rapidly reduce 
their populations.
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Despite their extensive use, these conventional methods have 
several limitations that undermine their long-term efficacy and 
sustainability (Sikora and Roberts, 2018). Although cultural practices, 
such as crop rotation, are theoretically effective, they require extensive 
knowledge and labor and can yield inconsistent results because of 
environmental variations (Grubišić et al., 2018). Biocontrol methods, 
including the use of antagonistic plants, such as marigold (Tagetes 
spp.) and neem (Azadirachta indica), offer environmentally friendly 
alternatives; however, they often fail to exhibit adequate suppressive 
effects and may require considerable time to be effective (Waller and 
Thamsborg, 2004). Moreover, the efficacy of biocontrol methods can 
significantly vary depending on the species involved and the 
environmental conditions.

Although chemical treatments provide rapid and effective 
nematode control, they pose significant risks to human health, 
nontarget organisms, and the environment. The persistent use of 
nematicides has led to the emergence of resistant nematode strains, 
thereby diminishing their long-term effectiveness (Timper, 2014). The 
regulatory restrictions posed on many effective nematicides because 
of their adverse environmental impacts have further limited their 
availability and use (Grubišić et al., 2018).

These inherent limitations of traditional nematode control 
methods highlight the need for innovative and sustainable approaches. 
Integrated pest management (IPM) strategies that combine traditional 
practices with modern technological advancements present a 
promising solution. These strategies aim to enhance the effectiveness 
of nematode control while minimizing the associated environmental 
and health risks.

Biocontrol strategies for nematodes with a 
focus on Bacillus spp

Biocontrol strategies are being recognized as sustainable and 
environmentally friendly alternatives to chemical nematicides for 
managing nematode infestations. Various microbial agents and 
botanical extracts have shown potential for reducing nematode 
populations. For instance, fungal strains, such as Auxarthron 
reticulatum DY-2, Verticillium saksenae A-1, Lecanicillium psalliotae 
A-1, and L. antillanum B-3, have been explored for their effectiveness 
in parasitizing and reducing nematode populations (Oh et al., 2014a,b; 
Nguyen et al., 2014). Additionally, extracts of Cinnamomum cassia 
bark and C. aromaticum have demonstrated enzyme-inhibitory and 
nematicidal properties, thereby serving as potential agents for 
botanical interventions (Nguyen et al., 2009, 2012; Nguyen and Jung, 
2014). Nguyen et al. (2011) demonstrated that treatment with C. cassia 
crude extracts significantly reduced gall formation and nematode 
growth in a dose-dependent manner in root-knot nematode-infested 
cucumber plants. This treatment also enhanced the activities of 
antioxidative enzymes, such as SOD, CAT, and APX, in cucumber 
leaves, indicating a strengthened defense response against the 
nematode. Furthermore, bark extracts of Terminalia nigrovenulosa 
and related compounds have been found to disrupt nematode life 
cycles (Seo et al., 2013).

In addition to fungi and botanical extracts, entomopathogenic 
nematodes (EPNs), such as Steinernema and Heterorhabditis spp., are 
known for their ability to release symbiotic bacteria (e.g., Xenorhabdus 
and Photorhabdus spp.) that produce toxins lethal to nematodes (El 

Aimani et  al., 2022). Furthermore, predatory fungi, such as 
Paecilomyces and Arthrobotrys spp., can trap and digest nematodes, 
while endophytic fungi, such as Trichoderma spp., can colonize plant 
roots and produce enzymes and metabolites that can inhibit nematode 
activity and enhance plant resistance (Singh et  al., 2019). The 
incorporation of organic amendments, such as compost and green 
manure, into the soil can also boost the populations of beneficial 
microbes that compete with or directly antagonize nematodes. These 
biocontrol strategies can not only reduce the reliance on chemical 
nematicides but also promote sustainable agricultural practices by 
enhancing soil health and biodiversity. The schematic representation 
of comparison of chemical pesticide-based nematode management 
with Bacillus-based biocontrol approaches, showcasing differences in 
mode of action, scalability, production costs, environmental impacts, 
non-target species effects, soil health, economic value, and 
sustainability was displayed (Figure 1).

Bacterial antagonists are among the most promising biocontrol 
agents. They suppress PPNs through multiple mechanisms, including 
the production of nematicidal lipopeptides, such as surfactin and 
fengycin, which disrupt nematode cuticles and membranes. Bacillus 
spp. produce various enzymes, such as chitinases and proteases, which 
degrade nematode eggshells and cuticles, effectively reducing juvenile 
development and reproduction (Yang et  al., 2013). In particular, 
B. subtilis triggers systemic resistance in plants by activating JA and 
SA signaling pathways, thereby enhancing the natural defenses of 
plants against nematode attacks (Chowdhury et  al., 2015). The 
antagonistic effects of Paenibacillus elgii HOA73 and P. illinoisensis 
KJA-424 were evaluated through in  vitro nematicidal assays and 
greenhouse experiments. Key methodologies included assessing 
nematode motility and mortality using bacterial supernatants and 
evaluating the activity of enzymes, such as chitinases and proteases. 
Greenhouse trials confirmed reductions in nematode gall formation 
and reproduction in infested tomato plants (Jung et al., 2002; Nguyen 
et al., 2013). Bacillus spp., in particular, are a diverse group of gram-
positive, rod-shaped, endospore-forming bacteria commonly found 
in soil and plant environments. They can produce various bioactive 
compounds, including enzymes, antibiotics, and toxins, which 
enhance their effectiveness in controlling plant pathogens and 
promoting plant health (El Aimani et al., 2022). Some Bacillus spp. are 
notably effective against nematodes and other plant pathogens, 
making them valuable for sustainable agricultural practices.

Bacillus spp. produce various nematicidal compounds, including 
lipopeptides, proteases, and chitinases, which target nematodes at 
various life stages (Tran et  al., 2019). These soil-dwelling bacteria 
produce spores that can endure extreme environmental conditions, 
making them ideal candidates for sustainable nematode management 
(Singh et  al., 2019). They can directly antagonize nematodes by 
producing toxins, enzymes, and other bioactive compounds that 
impact nematode mobility, development, and reproduction 
(Migunova and Sasanelli, 2021). Bacillus spp., such as B. thuringiensis 
(Bt) and B. firmus, have been extensively studied for their nematicidal 
activities (Zuckerman et al., 1993). For instance, Bt produces crystal 
(Cry) proteins that are toxic to a broad range of nematodes and can 
cause cell lysis and death upon ingestion (Forghani and Hajihassani, 
2020). Similarly, B. firmus produces enzymes and secondary 
metabolites that degrade the nematode cuticle and interfere with 
physiological processes. The use of Bacillus spp. not only reduces the 
reliance on chemical nematicides, thereby mitigating environmental 
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impacts, but also promotes soil health by maintaining beneficial 
microbial populations (Tran et al., 2019).

Bacillus spp. can effectively manage PPN infestations through 
various biocontrol strategies (Tian et al., 2007; Gamalero and Glick, 
2020; Diyapoglu et al., 2022). The nematicidal activity of B. subtilis was 
assessed through in vitro bioassays focusing on lipopeptides, such as 
surfactin and fengycin, which can cause significant disruption of 
nematode cell membranes, resulting in mortality (El Aimani et al., 
2022). Similarly, studies on B. amyloliquefaciens have revealed its 
efficacy in IPM programs. By producing antifungal and antibacterial 
metabolites, the bacterium could exhibit dual efficacy against PPNs 
and secondary infections in plants under controlled and field 
conditions (Cetintas et  al., 2018). These strategies highlight the 
versatility of Bacillus spp. as biocontrol agents through multiple 
mechanisms, including direct toxicity, the inhibition of nematode 
development, and the enhancement of plant resistance. These bacteria 
also induce systemic resistance in plants, enhancing their defensive 
capabilities against nematode attacks (Yang et al., 2022). They produce 
chitinase and other enzymes that can degrade nematode eggshells, 
thereby reducing hatching rates and subsequent infection levels. Field 
trials have also revealed that formulations containing Bacillus spp. can 
significantly reduce root galling and improve plant health, 
demonstrating their practical applicability in agricultural settings 
(Forghani and Hajihassani, 2020).

In summary, Bacillus spp. employ various proteins and secondary 
metabolites to exhibit nematicidal effects. The key proteins include 
Cry proteins from Bt, which act by forming pores in the gut cells of 

nematodes, causing cell lysis and death (Forghani and Hajihassani, 
2020; Diyapoglu et al., 2022). B. firmus produces chitinase, an enzyme 
that breaks down chitin in nematode eggshells, thereby preventing 
hatching and reducing nematode populations (Tran et  al., 2019). 
Additionally, B. subtilis produces lipopeptides, such as surfactin and 
fengycin, which disrupt nematode cell membranes, causing the loss of 
cell integrity and cell death (El Aimani et al., 2022). B. amyloliquefaciens 
produces proteases, which degrade nematode cuticles and interfere 
with their physiological processes, resulting in reduced viability and 
reproduction (Cetintas et al., 2018). The primary modes of action 
through which Bacillus spp. target nematodes include direct toxicity 
by producing toxins and enzymes, the inhibition of egg hatching and 
juvenile development, the induction of systemic resistance in plants, 
and the disruption of physiological processes by degrading structural 
components (e.g., cuticles) and interfering with metabolic pathways 
essential for nematode survival (Shafi et  al., 2017). The detailed 
mechanisms of action underlying the efficacy of Bacillus spp. against 
PPNs are presented in Figure 2.

Historical perspective on the use of 
Bacillus spp. as biocontrol agents

The historical development of Bacillus spp. as biocontrol agents 
against plant pathogens, particularly nematodes, highlights significant 
advancements in scientific understanding and practical applications. 
Bacillus spp. were first identified by Ferdinand Cohn in the late 19th 

FIGURE 1

Schematic representation of comparison of conventional and Bacillus-based nematode management strategies.
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century. Early research highlighted their roles in improving soil health 
and promoting plant growth through the production of nematicidal 
compounds, such as enzymes and secondary metabolites (Brzezinska 
et al., 2020).

The mid-20th century marked a pivotal advancement with the 
discovery of Bt and its insecticidal Cry proteins, forming the 
foundation for experimental biocontrol applications (Sanahuja et al., 
2011). A timeline highlighting significant milestones in the 
development of Bacillus species as biocontrol agents, from their initial 
discovery to advancements in genetic engineering and sustainable 
agricultural practices, emphasizing their expanding role in integrated 
pest management, is presented (Figure 3). Initial studies on nematode 
management focused on nematicidal compounds, such as chitinases 
and proteases, (Bacon et al., 2006). By the 1970s and 1980s, researchers 
identified specific toxins and enzymes produced by Bacillus spp., 
revealing their targeted actions against nematodes (Van 
Frankenhuyzen, 2009, 2013). Field trials in the 1990s evaluated the 
efficacy of Bacillus-based biocontrol agents under various 
environmental and agronomic conditions. These studies highlighted 
the importance of application methods, soil properties, and microbial 
interactions in achieving consistent nematode suppression (Etesami 
et  al., 2023; Serrão et  al., 2024). With advancements in genomic 
technologies, researchers unraveled genes and regulatory pathways 
responsible for the biocontrol properties of Bacillus spp. in the early 
21st century. This enabled the development of genetically enhanced 
strains with improved efficacy and environmental resilience 

(Carmona-Hernandez et al., 2019). Given the commercial success of 
Bacillus-based products, these biocontrol agents were further 
integrated into IPM systems, offering sustainable alternatives to 
chemical nematicides (Castillo et  al., 2013). Current research 
underscores the role of Bacillus spp. in promoting soil biodiversity and 
enhancing plant microbiomes, which contribute to long-term 
nematode suppression (Calvo et al., 2010). Biotechnological advances, 
including CRISPR and synthetic biology, have further expanded the 
potential of Bacillus spp., enhancing their stability, specificity, and 
ability to produce nematicidal compounds (Baptista et al., 2022). Key 
Bacillus spp., including Bt, B. subtilis, and B. cereus, are crucial because 
they produce diverse nematicidal compounds, such as Cry proteins, 
chitinases, and lipopeptides, which exhibit broad-spectrum activity 
against nematodes (Jouzani et al., 2017; Saxena et al., 2020; Ahmad 
et  al., 2021). Comparative studies have demonstrated the unique 
strengths of Bacillus spp., providing insights into their compatibility 
with specific crops and soil environments. For example, B. subtilis 
induces systemic resistance in plants, Bt acts through direct toxin-
mediated gut disruption, and B. cereus enhances soil health through 
microbial synergism (Diyapoglu et al., 2022; Tran et al., 2019). This 
historical trajectory highlights the evolution of Bacillus spp. from their 
initial discovery to becoming cornerstones of sustainable agriculture. 
The roles of Bacillus spp. in nematode biocontrol highlight their 
potential as integral components of IPM strategies, addressing key 
challenges in plant health management (Sanahuja et  al., 2011; 
Raymond and Federici, 2017).

FIGURE 2

Mode of action of Bacillus spp. against plant-parasitic nematodes. The figure illustrates the sequential mechanisms of Bacillus species, including the 
entry of spores into the nematode body via ingestion or adhesion to the cuticle, enzymatic degradation of structural components (such as cuticles and 
eggshells), and disruption of intestinal cells through Cry and Cyt toxin-induced pore formation. The figure also highlights the inhibition of nematode 
reproduction, the disruption of cellular metabolism, and systemic physiological collapse, ultimately resulting in nematode mortality.
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Key Bacillus spp. and their efficacy against 
nematodes Bt

Bt is widely recognized for its potent nematicidal activity, 
primarily mediated by the production of insecticidal Cry and cytolytic 
(Cyt) proteins. These proteins, synthesized as protoxins during 
sporulation, exhibit significant efficacy against various PPNs, 
including Meloidogyne and Heterodera spp. (Verduzco-Rosas et al., 
2021; Kahn et al., 2021). Experimental studies on the efficacy of Bt 
toxins generally utilize nematode bioassays, in which second-stage 
juveniles (J2) of Meloidogyne spp. are exposed to varying 
concentrations of Cry and Cyt proteins under controlled 
environmental conditions. Mortality, hatching inhibition, and 
mobility reduction are the commonly measured endpoints in such 
studies. Upon ingestion, the alkaline gut environment of nematodes 
solubilizes these protoxins, which are then activated by specific gut 
proteases. The activated Cry proteins bind to gut epithelial receptors, 
such as cadherin-like proteins, aminopeptidases, and alkaline 
phosphatases, inducing structural changes that facilitate membrane 
insertion and pore formation (Griffitts et al., 2005; Schnepf et al., 
1998). This pore formation disrupts osmotic balance, causing cell lysis, 
gut paralysis, and eventual nematode death due to starvation or 

secondary infections (Bravo et al., 2007). Cyt proteins complement 
Cry proteins by targeting the lipid components of nematode cell 
membranes, thereby inducing cell lysis through distinct pore-forming 
mechanisms (Gill et al., 1992; Wei et al., 2003). In laboratory assays, 
Cry5B has been found to interact with glycosylphosphatidylinositol-
anchored proteins in the gut cells of M. incognita, causing cell swelling 
and epithelial rupture. Cry6A specifically targets aspartyl protease and 
alkaline phosphatase receptors, initiating apoptosis and disrupting gut 
integrity (Barros dos Santos et  al., 2022; Shi et  al., 2020). These 
experiments typically involve histological analysis of nematode 
midgut tissues and the use of advanced imaging techniques to confirm 
receptor interactions and cellular damage. The specificity and 
effectiveness of Bt toxins vary among nematode species because of 
differences in gut receptor structures and proteolytic activation. 
Nematodes can use innate defenses, such as enzyme detoxification and 
pH modulation, to mitigate Bt toxicity, highlighting the complexity of 
host–pathogen interactions (Zhang et al., 2012). These interactions 
underscore the versatility and adaptability of Bt in managing diverse 
nematode infestations. Advances in molecular biology have facilitated 
the engineering of transgenic crops expressing Cry proteins, 
conferring continuous protection against nematodes. For example, in 
field trials, transgenic rice expressing Cry6A exhibited significant 

FIGURE 3

Timeline of Bacillus species development as biocontrol agents. This timeline highlights significant milestones in the development of Bacillus species as 
biocontrol agents, from their initial discovery to advancements in genetic engineering and sustainable agricultural practices.
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resistance to M. graminicola, with the nematode populations 
decreasing by 80% and yield improving by 30% (Lilley et al., 2011; 
Berlitz et al., 2014). Such experiments typically involve randomized 
field plots, and the efficacy of treatments is compared with those of 
chemical nematicides and untreated controls. Nematode population 
dynamics and yield data are analyzed to assess efficacy. The integration 
of Bt formulations with organic amendments, such as chitin or neem 
extracts, can further enhance their efficacy through synergistic effects 
(Chen et  al., 2000; Radwan, 2007). Field applications of Bt-based 
biopesticides can be  evaluated using standardized protocols. For 
instance, Cry55A-containing formulations have shown notable 
efficacy in reducing M. incognita populations under greenhouse and 
field conditions, with Cry55A-treated soil exhibiting 70% lower 
nematode gall formation than untreated controls. These findings 
highlight the potential of Cry55A as a soil inoculant (Manivannan 
et al., 2019; Ramalakshmi et al., 2020). Innovative delivery systems, 
such as seed treatments and soil inoculants, ensure early and sustained 
activity throughout the growing season (Etesami et al., 2023). These 
advancements align with sustainable agricultural practices, offering 
an eco-friendly alternative to chemical nematicides (Hui et al., 2012; 
Chen et al., 2024). Given its robust mechanisms of action, adaptability 
to various nematode species, and compatibility with sustainable 
practices, Bt plays a crucial role in modern nematode management 
frameworks. Comparative insights across species and delivery systems 
underscore its effectiveness as a cornerstone of nematode 
biocontrol strategies.

B. subtilis

B. subtilis, a versatile PGPR, exhibits remarkable efficacy against 
PPNs through diverse mechanisms. This bacterium produces 
lipopeptides, such as surfactins, fengycins, and iturins, which disrupt 
nematode cell membranes, causing cell lysis and death (Heerklotz 
and Seelig, 2007; Henry et al., 2011). In vitro studies can confirm 
these effects by exposing Meloidogyne juveniles to purified 
lipopeptides and assessing mortality through microscopic 
observations and viability staining. Additionally, B. subtilis secretes 
hydrolytic enzymes, such as chitinases and proteases, which degrade 
nematode eggshells and cuticles, thereby inhibiting juvenile 
emergence and reproduction (Hu et al., 2007; Huang et al., 2008). 
Enzymatic activity is often assessed using substrate degradation 
assays, in which enzymatic activity is correlated with nematode 
population decline. B. subtilis also induces systemic resistance in 
plants by activating JA and SA pathways, thereby enhancing the 
production of phenolics and defense proteins that limit nematode 
penetration (Adiwena et al., 2023). In greenhouse studies, RT-qPCR 
and phenolic quantification assays can be  used to validate these 
responses. Volatile organic compounds (VOCs), such as 
2,3-butanediol and acetoin, further suppress nematode motility and 
reproduction while promoting rhizosphere health (Henry et  al., 
2011). These VOCs can be identified through GC–MS analysis, and 
their inhibitory effects can be confirmed by performing bioassays. 
The applications of B. subtilis include seed treatments, soil drenching, 
and foliar sprays. Seed treatments ensure early root colonization, 
while soil drenching targets root zones for sustained nematode 
suppression. Foliar sprays activate induced systemic resistance (ISR) 
pathways, indirectly reducing nematode infestations (Barnawal et al., 

2017; Basiouny and Abo-Zaid, 2018). In field trials, these methods 
can be assessed through randomized designs to monitor nematode 
levels and yield improvements. When integrated into IPM 
frameworks, B. subtilis performs synergistically with organic 
amendments and other biocontrol agents, enhancing efficacy and 
promoting soil health (Cavalcanti et  al., 2024). These combined 
strategies can maximize nematicidal potential and support 
sustainable agriculture. The multifaceted actions of B. subtilis 
highlight its pivotal role in reducing nematode infestations and 
promoting eco-friendly pest management practices.

B. cereus

B. cereus exhibits robust nematicidal activity against PPNs 
through diverse mechanisms. It secretes metalloproteinases, such as 
neutral protease (Npr) and bacillolysin (BlyA), which degrade 
nematode cuticle proteins, thereby causing structural collapse and 
death (Yin et al., 2021a,b; Kulkova et al., 2023). Enzyme assays have 
confirmed the degradation of nematode cuticles, correlating 
enzymatic activity with nematode mortality. Lipopeptides, such as 
surfactin and fengycin, disrupt nematode cell membranes via pore 
formation, causing cell leakage and lysis (Tong-Jian et al., 2013; Hu 
et  al., 2020). Fluorescent dyes have been used to validate 
membrane disruption.

B. cereus also produces siderophores, such as bacillibactin, which 
can chelate iron, thereby depriving nematodes of essential nutrients 
(Köhl et al., 2019). Furthermore, they produce bacteriocins, such as 
cerein, which can act as antibiotics and target nematode cellular 
processes. Bioassays have confirmed nutrient depletion and reduced 
viability in treated nematodes. Nano-bioformulations have further 
improved the stability and bioavailability of these bioactive 
compounds, ensuring prolonged nematode suppression in diverse 
soils (Kumar et al., 2021). Field trials have highlighted their extended 
activity and reduced application frequencies. Optimized delivery 
methods include soil drenching, seed treatments, and foliar sprays. 
Soil drenching ensures uniform root-zone colonization, while seed 
treatments enable early protection during crucial growth stages 
(Ahmed et al., 2019). Randomized trials have revealed significant 
reductions in M. incognita populations and improvements in yield. 
When combined with mycorrhizal fungi, B. cereus exhibits synergistic 
effects, enhancing soil microbial diversity and plant resilience (Hu 
et al., 2017). Genetic engineering approaches, including CRISPR, are 
being used to enhance the production of bioactive compounds and 
target-specific nematicidal properties (Mohamed et  al., 2021). 
Through its diverse mechanisms of action, including enzyme 
secretion, nutrient competition, and direct nematode disruption, 
B. cereus offers a sustainable biocontrol option for PPN management. 
Its integration into IPM strategies and compatibility with sustainable 
agriculture highlight its crucial role in reducing chemical nematicide 
usage while improving crop health and productivity.

B. megaterium

B. megaterium is a robust biocontrol agent that has been proven 
to be  effective against PPNs by producing various bioactive 
compounds and enzymes. It secretes proteases, such as neutral and 
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serine proteases, which degrade structural proteins in nematode 
cuticles, causing severe damage and death (Padgham and Sikora, 
2007). Lipopeptides, such as surfactin and iturin, disrupt nematode 
cell membranes through pore formation, causing cell leakage and lysis 
(Pueyo et  al., 2009). Additionally, B. megaterium synthesizes 
siderophores, such as bacillibactin, which can chelate iron in the 
rhizosphere, thereby depriving nematodes of vital nutrients and 
suppressing their populations while promoting a balanced microbial 
community. These processes have been validated through enzyme 
assays, correlating siderophore activity with nematode suppression 
(Huang et al., 2010). Nano-bioformulations have further enhanced the 
stability and bioavailability of B. megaterium metabolites, ensuring 
prolonged nematode suppression and reduced application frequency 
(Kumar et al., 2021). Various application techniques, including soil 
drenching and seed treatments, have been optimized for efficient 
delivery. Soil drenching ensures deep root penetration, while seed 
treatments facilitate early root colonization, offering sustained 
protection during crucial growth stages (Padgham and Sikora, 2007; 
Raza et al., 2024). These strategies have been effective against root-
knot nematodes, such as M. incognita, significantly improving plant 
health and yields in field trials (Mostafa et  al., 2018). Genetic 
engineering approaches, such as the overexpression of genes 
responsible for lipopeptide synthesis and VOC production, have been 
employed to enhance nematicidal efficacy. These efforts have shown 
promise in increasing activity against nematodes while maintaining 
environmental safety (Grage et al., 2017; Hartz et al., 2021). Through 
its multifaceted nematicidal mechanisms, B. megaterium serves as an 
eco-friendly alternative to chemical nematicides. Its adaptability and 
integration into IPM strategies make it a cornerstone of sustainable 
pest management. It can support agricultural productivity while 
minimizing environmental impacts.

B. pumilus

B. pumilus employs diverse nematicidal mechanisms, making it a 
powerful biocontrol agent against PPNs. It acts by secreting proteolytic 
enzymes, such as subtilisin, which can degrade nematode cuticle 
proteins, causing osmotic imbalance and eventual death (Ramezani 
Moghaddam et  al., 2014). Lipopeptides, such as pumilacidin and 
bacilysin, disrupt nematode cell membranes and induce pore 
formation, ion leakage, and cytoplasmic efflux, thereby causing rapid 
cell lysis (Dobrzyński et  al., 2023). B. pumilus also synthesizes 
siderophores, such as bacillibactin, which can chelate iron and other 
essential nutrients, depriving nematodes of crucial resources and 
fostering beneficial microbial competition in the rhizosphere (Lee 
et  al., 2016). Additionally, B. pumilus produces antimicrobial 
compounds, including bacteriocins, which disrupt nematode 
metabolic pathways. A guanidine compound from B. pumilus strain 
LYMC-3 exhibited potent activity against Bursaphelenchus xylophilus; 
the LC50 values were 113.5 and 62.5 mg/L after 24 and 48 h, 
respectively, highlighting its targeted efficacy (Li et al., 2018). Nano-
bioformulations have improved the stability and bioavailability of 
B. pumilus metabolites, ensuring consistent nematode suppression in 
different agricultural conditions (Mahmoud et al., 2016). B. pumilus 
differentiates itself by integrating siderophore-mediated nutrient 
deprivation with enzymatic and antimicrobial strategies, unlike Bt 
(which relies on Cry proteins) or B. cereus (which relies on 

lipopeptides). Its compatibility with agronomic practices, such as seed 
treatments and soil drenching, facilitates early root colonization and 
uniform metabolite distribution, enhancing field performance. 
Furthermore, its synergy with mycorrhizal fungi and other beneficial 
microbes enhances nutrient cycling and plant resilience, creating a 
holistic defense against nematodes (Carriel and Soto, 2022). Through 
its multifaceted actions and adaptability, B. pumilus exhibits significant 
potential for integration into IPM strategies. Further research on 
genetic optimization, delivery systems, and formulations is warranted 
to sustainably maximize its agricultural impact.

B. licheniformis

B. licheniformis employs diverse mechanisms, including enzymatic 
degradation, antimicrobial activity, and soil microbiome modulation, 
to manage PPNs. Its nematicidal activity is attributed to the secretion 
of hydrolytic enzymes, such as proteases and chitinases, which target 
the cuticles and eggshells of nematodes, impairing their mobility, 
reproduction, and viability (Park et al., 2015). For example, strain 
MH48 effectively degrades nematode structures, particularly in 
B. xylophilus (Jeong et  al., 2015). Additionally, B. licheniformis 
produces lipopeptides, such as bacillomycin and fengycin, which 
disrupt nematode and fungal cell membranes, causing ion leakage and 
cytoplasmic loss. Thus, it exhibits dual functionality as a biocontrol 
agent (Stoica et al., 2019). B. licheniformis strains, such as strain XF32, 
have exhibited enhanced production of fengycin through genetic 
modifications, highlighting their potential for agricultural and 
industrial applications (Zhaojian et al., 2021). Furthermore, strain 
JF-22 was found to reduce M. incognita populations and enrich 
beneficial microbial communities in tomato rhizospheres, promoting 
soil health and plant resilience (Du et al., 2022). Unlike Bt, which relies 
on Cry proteins, or B. pumilus, which relies on nutrient deprivation, 
B. licheniformis integrates enzymatic lysis with microbiome 
enhancement to suppress nematodes. It also supports plant defenses 
indirectly. Studies have indicated its ability to bolster the resistance of 
C. elegans to bacterial infections through hormonal signaling 
pathways, such as those involving serotonin, suggesting its potential 
for inducing systemic resistance in plants (Yun et al., 2014). Advances 
in genetic engineering, such as promoter and ribosome binding site 
engineering, have increased the capacity of B. licheniformis to produce 
antimicrobial compounds and enzymes, enhancing its biocontrol 
potential (Xiao et al., 2024). Field trials have highlighted its dual role 
in managing nematodes and promoting plant growth. For instance, 
strain MH48 was found to reduce fungal infections and improve 
nutrient availability in pine seedlings (Won et al., 2018). The synergy 
of B. licheniformis with other biocontrol agents further enhances its 
effectiveness in IPM strategies.

B. firmus

B. firmus exhibits remarkable versatility in suppressing nematode 
populations and enhancing plant growth. As an alkaliphilic, 
endospore-forming bacterium, it thrives in various soil environments, 
making it suitable for diverse agricultural systems (Settu et al., 2024). 
It is distinguished from other Bacillus spp. by its ability to colonize 
plant roots and induce systemic resistance, exhibiting both direct 
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nematicidal effects and indirect plant-protective effects (Huang et al., 
2021). A primary mode of action of B. firmus involves the production 
of lytic enzymes, such as chitinases and proteases. These enzymes 
target the structural integrity of nematode eggshells and cuticles, 
resulting in the degradation and reduced viability of eggs and 
juveniles. Genomic studies on B. firmus strains, such as strain TNAU1, 
have identified genes like chiA and chiB, which are involved in the 
synthesis of chitinase, an enzyme crucial for breaking down the 
chitinous components of nematode structures (Settu et al., 2024). This 
enzymatic degradation not only disrupts nematode development but 
also facilitates nutrient recycling in the rhizosphere, indirectly 
benefiting plant health. Moreover, B. firmus produces antimicrobial 
peptides, including surfactin and fengycin, which disrupt nematode 
cell membranes. These lipopeptides interact with membrane lipids, 
forming pores that cause ion imbalance, cytoplasmic leakage, and 
eventual nematode death (Daulagala, 2021). For example, strain 
YBf-10 can significantly reduce M. incognita populations by 
producing these bioactive compounds, effectively suppressing 
nematode-induced damage, such as gall formation and egg mass 
production (Xiong et al., 2015). Among Bacillus spp., B. firmus is 
distinguished by its efficacy in reducing nematode reproductive 
potential. Strain I-1582, widely studied for its nematicidal efficacy, can 
suppress egg hatching and juvenile viability by producing proteases 
and secondary metabolites. These metabolites interfere with nematode 
signaling pathways essential for reproduction and development, 
offering a comprehensive mechanism for population control (Huang 
et  al., 2021). Furthermore, B. firmus promotes plant growth by 
enhancing nutrient uptake and root colonization, thereby effectively 
mitigating the damage caused by nematode infestations. Comparative 
analyses have revealed that B. firmus differentiates itself from other 
Bacillus spp. through its robust adaptability to diverse soil pH levels 
and its ability to induce systemic resistance. Unlike Bt, which relies on 
Cry proteins for specific gut receptor targeting, or B. subtilis, which is 
known for its VOC-mediated effects, B. firmus integrates multiple 
mechanisms, including enzymatic degradation, lipopeptide 
production, and systemic resistance induction, to combat nematodes 
and support plant health. The dual role of B. firmus in nematode 
suppression and plant growth promotion highlights its suitability for 
sustainable agricultural practices. Recent advancements in genomic 
studies have further elucidated the biocontrol potential of B. firmus. 
For instance, strain TNAU1 harbors genes encoding nematode-
virulent proteases and other antimicrobial compounds, which can 
enhance its specificity and efficacy against PPNs. Additionally, 
B. firmus YBf-10 can modulate microbial communities in the 
rhizosphere, enriching beneficial microbes and suppressing harmful 
pathogens. Thus, it can play a role in IPM strategies (Marin-Bruzos 
et al., 2021). Field applications of B. firmus include soil drenching and 
seed treatments, which ensure effective delivery of bioactive 
compounds to nematode hotspots. Pot experiments using soil-
drenched YBf-10 revealed substantial reductions in nematode 
populations and an increase in overall plant growth, showcasing its 
practical applicability in real-world agricultural systems (Xiong et al., 
2015). B. firmus employs a multifaceted approach involving enzymatic 
lysis, antimicrobial activity, and systemic resistance induction for 
managing nematodes. Its ability to thrive in diverse soil environments, 
its biocontrol efficacy, and its plant growth-promoting properties 
underscore its potential as a key agent in sustainable nematode 
management and IPM strategies.

B. nematocida

B. nematocida is a spore-forming bacterium with distinct 
nematicidal properties. Thus, it is a pivotal agent for managing 
PPNs. This bacterium is predominantly found in soil and plant 
rhizospheres. It utilizes a multifaceted approach involving enzymatic, 
biochemical, and molecular strategies, which collectively contribute 
to its efficacy (Huang et al., 2005). Its nematicidal action is attributed 
to its ability to secrete lytic enzymes, such as chitinases and 
proteases, which are encoded by genes like chiA, chiB, aprE, and 
nprB. These enzymes target and damage the structural integrity of 
nematode eggshells and cuticles, directly impairing nematode 
survival and reproduction. The breakdown of these protective 
structures not only suppresses nematode populations but also 
releases essential nutrients, thereby enhancing soil fertility (Sun 
et  al., 2024). Moreover, B. nematocida produces antimicrobial 
lipopeptides, such as fengycin, surfactin, and bacillomycin. These 
bioactive metabolites disrupt nematode cell membranes by 
interfering with lipid bilayers, resulting in pore formation, ion 
leakage, and eventual mortality (Niu et al., 2006; Niu et al., 2011; Niu 
et  al., 2016; Bo et  al., 2022). This biochemical disruption 
demonstrates the potent antagonistic effects of the bacterium on 
nematode physiology. A unique aspect of the mode of action of 
B. nematocida is the synthesis of 2-heptanone, a volatile compound 
that acts as a nematode attractant. These chemical lures nematodes 
toward the bacterium, enhancing its ability to target and infect 
nematodes with high precision. This mechanism exemplifies an 
evolutionary adaptation for host–pathogen interactions, as 
highlighted by Zhu et al. (2019). Such attractant-based pathogenicity 
differentiates B. nematocida from other Bacillus spp., adding a layer 
of specificity to its biocontrol efficacy. Recent studies have identified 
adaptive molecular responses in B. nematocida under stress 
conditions. For example, Sun et  al. (2018) reported that protein 
acetylation modulates the enzymatic activity of the bacterium, 
enhancing its nematicidal efficacy. This adaptive regulation reflects 
a dynamic interaction between B. nematocida and its nematode 
targets, showcasing the ability of the bacterium to respond to 
environmental stimuli. Comparative analyses have revealed that 
B. nematocida utilizes a highly specialized approach compared with 
other Bacillus spp. Unlike B. subtilis, which primarily induces 
systemic resistance in plants and produces VOCs, or Bt, which relies 
on Cry proteins for gut-specific toxicity, B. nematocida integrates 
enzymatic degradation, membrane disruption, and chemical 
attraction to exhibit nematicidal effects. This multipronged strategy 
underscores its effectiveness in managing PPNs while minimizing 
collateral effects on nontarget organisms. The practical application 
of B. nematocida has shown promising results in field trials, with its 
soil drench formulations and seed treatments effectively reducing 
nematode populations and enhancing plant growth. The specificity 
of B. nematocida for nematodes reduces the ecological risks often 
associated with broad-spectrum chemical nematicides. Furthermore, 
its potential for integration into IPM strategies highlights its role in 
promoting sustainable agriculture. B. nematocida is an advanced 
biocontrol agent characterized by enzymatic degradation, 
biochemical toxicity, and adaptive molecular interactions. Its unique 
mechanisms of action and its specificity for nematodes make it a 
promising alternative to chemical nematicides, contributing to 
environmentally sustainable agricultural practices.
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B. amyloliquefaciens

B. amyloliquefaciens exhibits robust nematicidal activity. It is 
distinct from other Bacillus spp. because of the production of diverse 
enzymes and bioactive secondary metabolites. Its efficacy is mainly 
attributed to its ability to synthesize lipopeptides, such as fengycin and 
iturin, which disrupt nematode cell membranes. These lipopeptides 
interact with lipid bilayers and cause pore formation and subsequent 
cell lysis, resulting in nematode mortality (Ngalimat et  al., 2021). 
Moreover, B. amyloliquefaciens secretes hydrolytic enzymes, such as 
chitinases and proteases, which enzymatically degrade nematode 
cuticles and eggshells, thereby inhibiting juvenile development and 
reducing nematode reproduction rates (Migunova and Sasanelli, 
2021). Genomic studies have highlighted the roles of various genes, 
such as fenA and ituD, in the biosynthesis of these lipopeptides, 
underscoring the genetic adaptability of the bacterium for biocontrol 
applications (Luo et  al., 2022). In addition to exhibiting direct 
nematicidal effects, B. amyloliquefaciens significantly contributes to 
soil health and plant growth. It stimulates plant development by 
producing phytohormones and promotes nutrient availability by 
altering the soil microbiome. For instance, VOCs produced by 
B. amyloliquefaciens not only suppress pathogens but also enhance 
root growth and nutrient uptake, reinforcing its dual role as a 
biocontrol agent and a growth promoter (Chowdhury et al., 2015). 
Strain FZB42 exhibits these attributes by inducing systemic resistance 
in plants. ISR is achieved through the activation of JA and ethylene 
(ET) signaling pathways, resulting in the increased production of 
defense-related enzymes and antimicrobial compounds that protect 
plants from nematodes and other pathogens (Chowdhury et al., 2015). 
The genetic manipulation of B. amyloliquefaciens has further enhanced 
its efficacy. For example, the fusion of B. amyloliquefaciens SA5 with 
Lysinibacillus sphaericus created a hybrid strain (Bas8) with elevated 
chitinase production. This strain exhibited significant nematicidal 
effects against M. incognita in controlled trials (Abdel-Salam et al., 
2018). Similarly, Liu et al. (2013) demonstrated that the deletion of the 
gene RBAM_007470, responsible for the synthesis of plantazolicin, 
reduced the nematicidal efficacy of strain FZB42, highlighting the 
importance of specific metabolites in biocontrol strategies. Field and 
greenhouse trials have substantiated the biocontrol potential of 
B. amyloliquefaciens. For example, applications of this bacterium at 
varying concentrations (50–200%) effectively suppressed M. javanica 
in common beans by inhibiting juvenile hatching and reducing 
motility. These effects were observed both in  vitro and in  vivo, 
showcasing its adaptability across different environmental conditions 
(Messa et al., 2019). Furthermore, the spiral nematode Helicotylenchus 
dihystera was effectively controlled in soybean fields treated with 
B. amyloliquefaciens-based formulations, with the nematicidal effects 
being comparable to those of chemical nematicides, such as 
abamectin. Improvements were also noted in soybean yield and soil 
health (Camatti et  al., 2023). Compared with other Bacillus spp., 
B. amyloliquefaciens uniquely combines potent direct nematicidal 
mechanisms with plant growth-promoting traits. While Bt primarily 
relies on Cry proteins for nematode control and B. subtilis relies on 
systemic resistance induction, B. amyloliquefaciens integrates 
membrane disruption, enzymatic degradation, and systemic resistance 
induction, making it a versatile and holistic agent for nematode 
management. Its ability to modulate the soil microbiome and enhance 
nutrient cycling further distinguishes it as an indispensable 

component of sustainable agricultural practices. Overall, 
B. amyloliquefaciens employs a synergistic blend of biochemical, 
enzymatic, and ecological strategies to control PPNs and enhance 
plant health. Continued research on its genetic pathways, interaction 
mechanisms, and field applications can further enhance its role in 
IPM and sustainable agriculture (Table 1).

B. velezensis

B. velezensis, a species closely related to B. amyloliquefaciens, 
exhibits substantial nematicidal activity by producing diverse bioactive 
compounds, making it a key player in sustainable agriculture. Its 
effects are mainly attributed to the production of lipopeptides 
(surfactin, fengycin, and iturin), polyketides, and siderophores, which 
collectively target PPNs and other phytopathogens (Rabbee et al., 
2019, 2023). These compounds act by disrupting cell membranes, 
interfering with metabolic pathways, and creating a hostile 
environment for pathogens. Moreover, B. velezensis contributes to soil 
health by promoting beneficial microbial communities and enhancing 
nutrient cycling, making it a multifunctional agent in IPM systems. 
The nematicidal efficacy of B. velezensis has been well documented in 
controlled environments (Wu et al., 2023). For instance, strain YS-AT-
DS1 was found to significantly reduce M. incognita infection rates in 
tomato plants by affecting water and solute transport mediated by TIP 
genes, without activating the JA or SA pathway (Hu et al., 2022). This 
finding highlights the unique mode of action of the strain compared 
with other Bacillus spp., which often rely heavily on ISR through JA/
SA pathway activation. Another prominent strain, GB03, has been 
extensively studied for its ability to enhance plant growth and 
immunity by producing VOCs that prime plant defenses by inducing 
systemic resistance (Jang et al., 2023). Strain GB03 is recognized for 
its practical applications. It has also been validated by the U.S. EPA as 
an eco-friendly alternative to synthetic pesticides. Its ability to 
suppress nematodes, fungi, and bacteria while concurrently promoting 
plant health underscores its versatility. Genome sequencing of 
B. velezensis strains, such as strains Ag109 and FZB42, has provided a 
robust genetic basis for secondary metabolite production. The genome 
of these strains has been found to contain 13 gene clusters responsible 
for the synthesis of antimicrobial compounds (Borriss et al., 2019). 
These metabolites, including surfactin, bacillomycin, and fengycin, 
not only inhibit nematode activity but also suppress fungal pathogens, 
providing a comprehensive biocontrol solution. In one study, strain 
Ag109 was found to reduce M. javanica and P. brachyurus populations 
by 69 and 45%, respectively, while exhibiting notable antifungal 
properties (Mian et al., 2024). Greenhouse studies further validated 
the nematicidal potential of B. velezensis. Strains BMH and INV 
caused over 90% reductions in M. incognita gall formation and egg 
masses while concurrently enhancing tomato growth (Cruz‐
Magalhães et al., 2022). However, combining these strains did not 
enhance efficacy, suggesting that competitive interactions among 
strains limit their synergistic potential. A novel approach combining 
B. velezensis with T. harzianum and gamma radiation-induced 
mutants caused significant reductions in M. javanica egg hatching 
(16–45%) and juvenile mortality (30–46%). This synergistic approach, 
when supplemented with chitosan, led to a 94% reduction in 
nematode reproduction factors under greenhouse conditions 
(Rostami et al., 2021, 2024). While B. velezensis has gained widespread 
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TABLE 1 Mode of actions of different isolates or proteins from Bacillus species against major pytopathogenic nematodes.

S. no. Bacillus species Isolates/protein name Target species Actions References

1 B. velezensis BMH INV M. incognita Reduction in the number of galls and eggs in tomato roots Cruz‐Magalhães et al. (2022)

2 B. subtilis AP-3 Meloidogyne spp.

Pratylenchus spp.

Effective nematode control when applied post-emergence in sugarcane crops Mazzuchelli et al. (2020)

3 B. paralicheniformi

B. subtilis

FMCH001

FMCH002

Meloidogyne spp. Decreased egg hatching and juvenile survival Díaz-Manzano et al. (2023)

4 B. thuringiensis

B. velezensis

KYC

CE 100

Meloidogyne incognita Structural damage to nematode eggs and second-stage juveniles Choi et al. (2020)

5 B. cereus 09B18 Heterodera filipjevi High mortality of second-stage juvenile nematodes and reduced egg hatchability Zhang et al. (2016)

6 B. subtilis

B. amyloliquefaciens

OKB105

FZB42

Aphelenchoides besseyi

Ditylenchus destructor

Bursaphelenchus xylophilus

M. javanica

Significant inhibition of growth and increased mortality percentage Xia et al. (2011)

7 B. subtilis Bbv 57 M. incognita Reduction in egg hatching capacity and increased juvenile mortality Ramyabharathi et al. (2020)

8 Bacillus cereus

B. subtilis

137JC

18JC

M. exigua High mortality of second-stage juvenile nematodes Oliveira et al. (2014)

9 B. velezensis BZR 86 M. incognita Decreased egg hatchability and number of root galls in tomato and cucumber 

plants

Migunova et al. (2021)

10 B.thuringiensis (crystal proteins) Cry55Aa, Cry6Aa, Cry5Ba M. hapla Midgut toxicity in second-stage juveniles Zhang et al. (2012)

11 B. thuringiensis YBT-1518 M. hapla Toxic to second-stage juveniles Guo et al. (2008)

12 B.thuringiensis (crystal proteins) Cry6A M. hapla Toxicity to second-stage juveniles, reduced galling index, and egg masses Yu et al. (2015)

13 B.thuringiensis (crystal proteins) Cry5Ca1 Cry5Da1 M. incognita Negative effects on nematode lifespan, fertility, and survival Geng et al. (2017)

14 B. megaterium YMF3.25 M. incognita Decreased egg hatchability and reduced nematode infections by producing 

nematicidal volatile compounds

Huang et al. (2010)

15 B. cereus Bc-cm103 M. incognita Over 90% mortality rate in second-stage juveniles (J2) Yin et al. (2021a)

16 B. altitudinis AMCC 1040 M. incognita Volatile compounds block nematode growth Ye et al. (2022)

17 B. velezensis BZR 86

BZR 277

M. incognita High nematicidal activity with improved cucumber plant growth under 

greenhouse conditions

Asaturova et al. (2022)

18 B. firmus I-1582 H. schachtii Negative impact on nematode reproduction, pathogenicity, and development of the 

next generation

Huang et al. (2021)

19 B. amyloliquefaciens

B. firmus

B. licheniformis

B. subtilis

BV03, PTA4838

MBI600

Bf-I1582

FMC001

FMC002

Helicotylenchus dihystera Bacillus filtrates reduce nematode growth and survival Camatti et al. (2023)

(Continued)
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TABLE 1 (Continued)

S. no. Bacillus species Isolates/protein name Target species Actions References

20 B. firmus I-1582 M. incognita Degrades eggshells, colonizes eggs, and improves systematic resistance in tomato 

plants

Ghahremani et al. (2020)

21 B. cereus

B. proteolyticus

IBCBb130

IBCBb116

M. incognita High mortality rates (>68%) in second-stage juveniles (J2) Amorim et al. (2024)

22 B. velezensis YS-AT-DS1 M. incognita Reduced infection rate of second-stage juveniles (J2) and the number of galls and 

egg masses on tomato roots

Hu et al. (2022)

23 B. velezensis Pt-RP9 Bursaphelenchus xylophilus Over 90% mortality rate and lower reproduction rate Sun et al. (2024)

24 B. cereus,

B. megaterium,

B. subtilis

B. thuringiensis

Bacillus sp. mixture filtrate M. arenaria

M. incognita

M. javanica

M. enterolobii

85–90% immobility of Meloidogyne spp. (J2) after 96 h Engelbrecht et al. (2022)

25 Bacillus Sp. Bacterial volatiles M. graminicola Lethal to second-stage juveniles (J2) and significantly reduced infection of 

susceptible rice

Bui et al. (2020)

26 B. velezensis Bv-25 M. incognita Achieved 100% J2 mortality, decreased expression of ord-1, mpk-1, and flp-18 

genes in M. incognita, and elevated expression of defense genes (pr1, pr3, and lox1) 

in cucumber plants

Tian et al. (2022)

27 B. halotolerans

B. kochii

B. oceanisediminis

B. pumilus

B. toyonensis

B. cereus

B. pseudomycoides

DDWA

DDWB

DDWC

DDWD

DDWNEI

DDWWAI

JNC

M. incognita Suppressed M. incognita up to 69.96% under greenhouse conditions and increased 

tomato yield

Liu et al. (2020)

28 B. altitudinis AMCC1040 M. incognita Reduced root-knot nematode damage to ginger Wang et al. (2021a)

29 B. cereus AMA3

AA3

YW4

Bursaphelenchus xylophilus Reduced survival, fecundity, and host adaptability Yuan et al. (2023)

30 B. cereus

B. megaterium

KMT-5

KMT-8

M. javanica Declined egg hatchability (96%) and 89% second-stage juvenile (J2) mortality Antil et al. (2022a)

31 B. subtilis MTCC441 M. incognita Egg mortality of 85% at 35 ppm dosage and maximum ovicidal activity (83%) Nadeem et al. (2021)

32 B. megaterium GIUBAM-2020 M. incognita Volatile organic compounds induced oxidative stress leading to mortality Maqsood et al. (2024)

33 B. cereus NJSZ-13 B. xylophilus Protease isolated from B. cereus causes cuticle degradation Li et al. (2023)

(Continued)
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TABLE 1 (Continued)

S. no. Bacillus species Isolates/protein name Target species Actions References

34 B. cereus

B. mycoides

B. subtilis

Bacillus sp.

RBI2AB2.1

RBI2AB2.2

RBIKDA2.2

IR.1.3.4

RBI1IBPL2.3

RBIKDA1.2

RZ21AP1

RZ22AG2

Meloidogyne Sp. Decreased the number of eggs and second-stage juveniles (J2) Habazar et al. (2021)

35 B. aryabhattai KMT-4 M. javanica 73% reduction in eggs and 80% reduction in galls in plant roots (S. lycopersicum) Antil et al. (2021)

36 B. subtilis Culture filtrate M. incognita Eggs were infected up to 48% Singh et al. (2021)

37 B. subtilis AP-3 M. incognita Promoted reduction of nematode reproduction factor and gall index in the roots Bavaresco et al. (2021)

38 B. velezensis AP03

S2527

S2545

M. incognita Increased second-stage juvenile (J2) mortality and inhibited egg hatchability Pacifico et al. (2021)

39 B. paralicheniformis TB197 M. incognita Showed >95% of nematicidal activity under in vitro and in vivo conditions Chavarria-Quicaño et al. 

(2023a,b)

40 B. velezensis FC37 M. hapla Reduced plant disease severity, crown incidence and severity, and petiole 

colonization

Camacho et al. (2023)

41 B. simplex Sneb545 H. glycines Improved disease resistance in soybean roots Kang et al. (2020)

42 B. megaterium Sneb207 H. glycines Reduced the number of cysts, SCN juveniles, and eggs and promoted soybean 

growth

Zhou et al. (2021)

43 B. cereus Bc-cm103 M. incognita Volatile compounds delivered fumigation activity and higher mortality rates 

(97.2%) of j2.

Yin et al. (2021b)

44 B. flexus

B. pumilus

B. cereus

B. megaterium

B. subtilis

DK-Sa-A1

KB-Se-A2

KT-Se-A2

PB-Sa-A2

SRJ-Sa-A1

G. rostochiensis ≥50% cyst and egg mortality Widianto et al. (2021)

45 B. subtilis MCC 0067 M. javanica Decreased the nematode numbers (36%) in combination with Glomus mosseae and 

Trichoderma harzianum

Sohrabi et al. (2020)

46 B. velezensis VB7 M. incognita Increased juvenile mortality by 87.9% and Induced MAMP-triggered nematode 

immunity increasing the expression of defense genes WRKY, LOX, PAL, MYB, and 

PR

Kamalanathan et al. (2023)

(Continued)

https://doi.org/10.3389/fmicb.2024.1510036
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


V
asan

th
a-Srin

ivasan
 et al. 

10
.3

3
8

9
/fm

icb
.2

0
24

.1510
0

3
6

Fro
n

tie
rs in

 M
icro

b
io

lo
g

y
14

fro
n

tie
rsin

.o
rg

TABLE 1 (Continued)

S. no. Bacillus species Isolates/protein name Target species Actions References

47 B. altitudinis 123.en M. incognita Reduced the number of galls, egg masses, and juvenile populations in the soil, and 

increased expression of pathogenesis-related genes (PR-1 and PR-5) in treated kiwi 

fruit plants

Banihashemian et al. (2023)

48 B. subtilis - M. incognita Bacteria grown with MnCl2 and CuCl2 significantly increased juvenile mortality 

and suppressed their chemotaxis response to tomato roots

Adiwena et al. (2023)

49 B. atrophaeus GBSC56 M. incognita GBSC56 volatiles caused high juvenile mortality, induced oxidative stress, and 

enhanced defense gene expression in tomato plants

Ayaz et al. (2021)

50 B. amyloliquefaciens D747 M. enterolobii reduced nematode eggs and gall index on cucumber roots in combination with 

Purpureocillium lilacinum

de Paula et al. (2024)

51 B. cereus NRC12 M. incognita Protoplast fusion between B. cereus and B. thuringiensis produced a fusant strain 

that significantly increased nematode mortality and enhanced eggplant growth

Mohamed et al. (2021)

52 B. amyloliquefaciens SA5 M. javanica Fusant strains of B. amyloliquefaciens and Lysinibacillus sphaericus delivered 

significant inhibition of nematode

Osman et al. (2020)

53 B. altitudinis KMS-6 M. javanica reduced nematode infestations and enhanced eggplant growth compared to 

Carbofuran treatment

Antil et al. (2022b)

54 B. thuringiensis B7 Meloidogyne ssp. high inhibitory activity, killing up to 89.67% nematode eggs and 100% of J2 within 

10 h

Khanh (2020)

55 B. cereus BCM2 M. incognita BCM2 extracellular proteins caused 100% mortality by damaging the nematode 

cuticle and eggshell, leading to content leakage

Hu et al. (2020)

56 B. megaterium

B. safensis

C3

VW3

M. javanica Inhibition of Egg-hatchability (20–28%) Rostami et al. (2021)

57 B. subtilis SJ19 Meloidogyne spp. controlled 67.75% of tomato root-knot nematodes in combination with other 

biological compounds

Shu et al. (2021)

58 B. megaterium

B. subtilis

– M. incognita nematicidal potential and significant chitinolytic activity combination with Serratia 

marcescens

Abdellatif et al. (2021)

59 Bacillus Sp. GBSC56

SYST2

FZB42

Aphelenchoides besseyi Compounds of Bacillus sp. demonstrated high nematicidal activity against and 

enhanced growth and defense gene expression in rice seedlings

Ali et al. (2023)

60 B. amyloliquefaciens

B. firmus

QST713

I-1582

M. incognita Effectively manage nematode in cotton through direct antagonistic capabilities and 

systemic resistance involving JA and SA pathways

Gattoni et al. (2022)

61 B. subtilis MN252542.1 M. javanica Showed 100% mortality and hatching inhibition of nematodes in combination with 

P. fluorescens

Das et al. (2021)

62 Brevibacillus laterosporus F5 strain M. incognita over 90% mortality of juveniles Hamze and Ruiu (2022)

63 B. wiedmannii MW405861 M. incognita significantly reduced nematode galls and egg masses in tomatoes in combination 

with S. liquefaciens

Moslehi et al. (2021)

(Continued)
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TABLE 1 (Continued)

S. no. Bacillus species Isolates/protein name Target species Actions References

64 B. pumilus

B. megaterium

B. subtilis

B. cereus

MZ675428

MZ675429

MZ675430

MZ675431

M. incognita Reduced nematode root galling and reproduction on tomatoes, enhancing plant 

defense gene expression and enzyme activity than chemical nematicide fluopyram

Devindrappa et al. (2023)

65 B. subtilis - M. incognita Lettuce roots treated with B. subtilis made root exudates repellent to J2 Cavalcanti et al. (2024)

66 B. pumilus S1-10 M. incognita Volatile compound (2-(methylamino)-ethanol (2-ME)) reduced nematodes growth 

and eggs

Dai et al. (2023)

67 B. wiedmannii AzBw1 M. arenaria Siderophores, protease, and chitinase from Bacillus sp. with protease activity 

nematicidal effect reducing egg hatching by 34% and increasing juvenile mortality 

by 33.5%.

Fallahzadeh-Mamaghani et al. 

(2023)

68 Bacillus Sp. Soil filtrate M. incognita Reduced the growth and development of J2. Engelbrecht et al. (2020)

69 B. thuringiensis App6Aa2

Cry13Aa1 Cry12Aa1 Cry5Ba3 

Xpp55Aa1

Cyt8Aa1

B. xylophilus Toxic proteins delivered higher toxicity and severe intestinal damage to nematode Guo et al. (2022)

70 B. amyloliquefaciens

B. megaterium

B. thuringiensis

B. weihenstephanensis

B. frigoritolerans

FR203A

FB133M

FS213P

FB833T

FB25M

FB37BR

M. ethiopica

X. index

Reduced nematode index damage and reproductive indices in grapevine roots Aballay et al. (2020)

71 Bacillus Sp. 85 isolates M. incognita Twenty-three Bacillus isolates caused >75% mortality of juveniles, and 10 strains 

inhibited nematode development in pot experiments

Wang et al. (2021b)
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FIGURE 4

Major Bacillus species and their diverse array of proteins and secondary metabolites against the plant-parasitic nematodes. Information adapted from 
[1] Kahn et al. (2021), [2] Ghahremani et al. (2020), [3] Kulkova et al. (2023), [4] Niu et al. (2006), [5] Jamal et al. (2017), [6] Manju and Subramanian, 2017, 
and [7] Hu et al. (2022).

recognition for its biocontrol properties, its dual nature requires 
careful management. Reports of pathogenicity in various crops, such 
as peaches, onions, and potatoes, necessitate stringent application 
strategies to avoid unintended consequences (Rabbee et al., 2019). 
Hence, understanding strain-specific interactions and environmental 
conditions is crucial to optimize its use. Compared with other Bacillus 
spp., B. velezensis has unique strengths, including its genetic diversity, 
robust secondary metabolite production ability, and ability to 
influence plant physiology through nontraditional ISR pathways. For 
its integration into sustainable agriculture, further research should 
be  conducted on its ecological interactions and application 
methodologies to ensure that its potential is maximized and risks are 
minimized. The major Bacillus spp. and their diverse array of proteins 
and secondary metabolites against PPNs are schematically displayed 
in Figure 4.

Application methods and strategies

Various methods and strategies can be used for the application of 
Bacillus spp. to effectively manage phytopathogenic nematodes. A 
widely used approach is soil amendment, which involves mixing 
Bacillus inoculants with organic matter, such as compost or manure, 
to improve soil structure and health. This method indirectly 
suppresses nematode populations by fostering beneficial microbial 
communities and enhancing plant resilience (Fabiyi, 2024). Seed 
treatment is another effective strategy. It involves the coating of seeds 
with Bacillus spores before planting. This approach confers early 

protection to seedlings by colonizing the root zone and creating a 
hostile environment for nematodes. Additionally, foliar sprays with 
Bacillus formulations can induce systemic resistance in plants, thereby 
activating defense mechanisms that reduce nematode penetration and 
reproduction. Biofertilizers incorporating Bacillus strains can 
be directly applied to the soil or used for root drenching, thereby 
enhancing nutrient availability and promoting robust plant growth. 
This can help plants withstand nematode attacks.

In IPM programs, Bacillus strains are often combined with other 
biocontrol agents, chemical treatments, or cultural practices, 
providing a multifaceted approach for the management of nematodes. 
For instance, integrating B. subtilis with organic amendments and 
reducing the use of chemical nematicides have led to enhanced 
efficacy against root-knot nematodes, thereby lowering infestations 
and improving crop yields. Such synergistic approaches can reduce 
reliance on chemical inputs while maintaining nematode suppression. 
B. amyloliquefaciens formulations have exhibited notable efficacy in 
field trials by reducing cyst nematode populations and promoting 
plant health through the induction of systemic resistance. This 
approach reduces reliance on chemical nematicides and promotes 
sustainable agricultural practices. Bacillus strains are being 
increasingly recognized for their potential for managing PPNs because 
of their diverse modes of action and adaptability to different 
agricultural environments. They produce various secondary 
metabolites, such as lipopeptides, enzymes, and antibiotics, which 
directly inhibit nematodes through a process known as direct 
antagonism (Iftikhar et al., 2020). These metabolites disrupt nematode 
membranes, degrade their structural proteins, or interfere with their 
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signaling pathways, resulting in reduced nematode viability and 
infectivity (Bhat et al., 2023). The detailed mechanisms of the different 
application strategies of Bacillus spp. for managing nematodes are 
outlined below and presented in Figure 5.

ISR

Bacillus strains can trigger plant defense mechanisms, enhancing 
the ability of plants to resist nematode infections (Choudhary and 
Johri, 2009). ISR is achieved through the upregulation of plant 
defense-related genes, resulting in the production of pathogenesis-
related proteins and other defense-related compounds that inhibit 
nematode invasion and reproduction (Mahapatra et al., 2022). Bacillus 
strains produce specific elicitors, such as lipopeptides, VOCs, and 
secondary metabolites, which prime the plants to enhance defense 
responses. Upon nematode attacks, these primed plants exhibit 
accelerated production of pathogenesis-related proteins, oxidative 
enzymes, and secondary metabolites, thereby reducing nematode 
penetration, nematode reproduction, and overall damage. Adam et al. 
(2014) found that certain B. subtilis strains, known for their antifungal 
properties, can effectively reduce root-knot nematode infestations in 
tomatoes, primarily through ISR rather than direct antagonism. This 
demonstrates the potential of multipurpose bacteria for IPM in 
nematode–fungal disease complexes. Additionally, Xing et al. (2020) 
identified six ISR-active compounds from B. simplex Sneb545 that 

conferred resistance against the pathogen H. glycines in soybeans. 
Among these compounds, the cyclic dipeptide Val-Pro, tryptophan, 
and uracil were particularly effective in inducing defense-related gene 
expression in soybeans, offering potential novel agents for managing 
this destructive nematode.

Soil amendments and biofertilizers

The application of Bacillus strains as soil amendments alone or in 
combination with organic matter can significantly improve soil health 
and structure, creating an environment less conducive to nematode 
proliferation. Bacillus-based biofertilizers not only enhance plant 
growth but also foster beneficial microbial communities in the 
rhizosphere, in turn antagonizing nematodes (Fabiyi, 2024). For 
instance, Tong-Jian et al. (2013) demonstrated that the use of B. cereus 
strain X5  in combination with bio-organic fertilizers and 
biofumigation materials significantly improved plant biomass and 
reduced nematode infestation under greenhouse and field conditions. 
This suggests its potential for integrated nematode management in 
agricultural systems. Moreover, a consortium of three plant growth-
promoting rhizobacteria—B. cereus (AR156), B. subtilis (SM21), and 
Serratia sp. (XY21)—was found to reduce root-knot nematode disease 
severity in cucumbers by up to 72%. This consortium not only 
enhanced yield and fruit quality but also improved soil properties by 
increasing the abundance of disease-suppressive bacterial genera in 

FIGURE 5

Graphical representation of how the application of Bacillus strains as soil amendments alone or in combination with organic matter enhances soil 
health and structure and reduces nematode proliferation through several interrelated mechanisms.

https://doi.org/10.3389/fmicb.2024.1510036
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Vasantha-Srinivasan et al. 10.3389/fmicb.2024.1510036

Frontiers in Microbiology 18 frontiersin.org

the rhizosphere. The resulting changes in the microbial community 
positively correlated with improvements in soil chemical properties, 
contributing to nematode suppression and overall plant health (Zhang 
et  al., 2024). The several interrelated mechanisms through which 
Bacillus spp. improve soil health and reduce nematode proliferation 
when used as soil amendments alone or in combination with organic 
matter are illustrated in Figure 5.

Seed treatment

Treating seeds with Bacillus spores confers early protection to 
seedlings against nematodes. As the seeds germinate, Bacillus spp. 
colonize the root system, forming a protective barrier that hinders 
nematode penetration and colonization (Diyapoglu et al., 2022). Seeds 
are treated with Bacillus strains using different methods, such as dry 
coating, wet coating, or pelletization, to ensure even distribution and 
firm adherence of the bacteria to the seeds. After coating, the seeds are 
carefully dried and packaged to preserve bacterial viability. Upon 
planting, Bacillus spores germinate alongside the seeds. They colonize 
the root zone and confer protection against nematodes while 
promoting plant growth and soil health (Migunova and Sasanelli, 2021).

Seed treatment with Bacillus strains can improve soil health and 
reduce nematode proliferation through several key mechanisms, 

including the colonization of the rhizosphere, induction of systemic 
resistance, enhancement of soil microbial communities, production of 
antimicrobial compounds, improvement of soil structure, and reduction 
of phytopathogens (Figure 6). When seeds are treated with Bacillus 
strains, these beneficial bacteria colonize the root zone as the plant 
germinates and grows. This early colonization creates a protective 
microbial shield around the roots, i.e., the rhizosphere, which acts as the 
first line of defense against nematode invasion. Bacillus strains occupy 
key ecological niches in the soil and outcompete nematodes for space 
and nutrients, thereby reducing the likelihood of nematode attachment 
and penetration into plant roots (Hu et al., 2017). Moreover, Bacillus 
strains induce systemic resistance in plants through seed treatment, 
priming the immune system of plants to respond more robustly to 
nematode attacks by activating JA and ET pathways (Choudhary and 
Johri, 2009). The introduction of Bacillus strains via seed treatment 
enriches the soil microbiome. These beneficial bacteria promote the 
growth of other advantageous microorganisms, such as mycorrhizal 
fungi and nitrogen-fixing bacteria, collectively improving soil health and 
structure. A rich and diverse microbial community enhances nutrient 
cycling, organic matter decomposition, and soil aggregation, creating a 
more stable and fertile soil environment that can support healthy plant 
growth and reduce nematode populations (Chernov and Semenov, 
2021). Additionally, antimicrobial compounds produced by Bacillus 
strains can degrade nematode eggs, inhibit juvenile development, and 

FIGURE 6

Graphical representation of how seed treatment with Bacillus spp. enhances plant growth, improves soil health, and reduces nematode populations.
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reduce nematode motility, thereby limiting the ability of nematodes to 
infect plant roots. The persistence of these antimicrobial substances in 
the rhizosphere helps maintain a soil environment hostile to nematodes 
(Diyapoglu et al., 2022). Moreover, when applied to seeds, Bacillus strains 
colonize the rhizosphere—the area of soil directly affected by root 
exudates and associated soil microorganisms—and produce extracellular 
polymeric substances (EPS). These complex organic molecules are 
crucial for improving soil structure. EPS act as a natural adhesive and 
bind soil particles together to form stable aggregates, in turn enhancing 
soil porosity, promoting better air circulation, and improving water 
infiltration (O’Callaghan, 2016). Improved soil structure not only 
enhances root growth and plant vigor but also creates a less favorable 
environment for nematode movement and survival, as nematodes prefer 
compact, poorly aerated soils (Khan et al., 2022).

Overall, seed treatment with Bacillus strains represents a 
multifaceted approach for the management of nematodes by 
enhancing soil health, improving plant resilience, and directly 
suppressing nematode populations. Thus, it is a more sustainable and 
effective method of nematode control (Zhang et al., 2009; O’Callaghan, 
2016; Hsiao et al., 2023; Hayat et al., 2023).

Foliar application

Foliar application of Bacillus spp. is an effective biocontrol strategy 
for managing phytopathogenic nematodes (Shafi et al., 2017). This 
process involves culturing selected Bacillus strains and formulating 
them into a sprayable solution. Optimal timing is crucial for the 
success of this method, with applications typically performed during 
early plant growth stages under favorable environmental conditions 
to ensure effective colonization. Uniform application using sprayers 
ensures that the bacteria adhere well to plant surfaces, thereby 
inducing systemic resistance and protecting against nematode damage 
(Fu et al., 2020). This method has gained popularity in the U.S., China, 
India, Brazil, Spain, and South  Africa, particularly for high-value 
crops in areas with substantial nematode pressure (Chien and Huang, 
2020; Efthimiadou et al., 2020; Karačić et al., 2024). The effectiveness 
of foliar application is attributed to a combination of direct 
antagonism, ISR, and plant health enhancement, which collectively 
reduce nematode populations and improve crop growth and yield 
(Esitken et al., 2002; Ryu et al., 2011; El-Sawy et al., 2023).

However, the success of this approach hinges on optimizing the 
application techniques and timing and understanding the specific 
interactions between Bacillus spp., the host plant, and the target 
nematode species (Shafi et al., 2017). Despite the advantages, including 
reduced environmental impacts and improved plant vigor, various 
challenges need to be addressed; these include ensuring consistent 
root protection and managing environmental variables (Abd-Elgawad 
and Askary, 2020). Thus, continued research and field trials will 
be crucial for refining this strategy and integrating it into sustainable 
nematode management programs.

Soil health status after the application of 
Bacillus strains

The application of Bacillus spp. as biocontrol agents provides 
multifaceted benefits beyond nematode suppression. Bacillus spp. 

significantly affect overall soil health through biochemical, microbial, 
and ecological interactions (Vasques et al., 2024). They enhance soil 
microbial diversity and activity by producing various secondary 
metabolites, such as lipopeptides, antibiotics, and VOCs, which act as 
antagonists to soilborne pathogens. These bioactive compounds 
disrupt the growth of phytopathogenic fungi, bacteria, and nematodes, 
thereby fostering a healthier and more balanced soil microbiome 
(Miljaković et al., 2020). Moreover, the metabolites released by Bacillus 
spp. often serve as signaling molecules, promoting beneficial microbial 
symbiosis and microbial niche differentiation within the rhizosphere. 
A crucial mechanism through which Bacillus spp. influence soil health 
is the decomposition of organic matter by secreting hydrolytic 
enzymes, such as cellulases, proteases, and chitinases. These enzymes 
accelerate the breakdown of complex organic materials into simpler 
compounds, improving soil organic carbon content and nutrient 
availability (Riseh et al., 2024). Bacillus spp. produce chitinases that 
degrade chitin-containing structures, such as nematode eggshells and 
fungal cell walls, thereby facilitating the recycling of essential elements, 
such as nitrogen and carbon, within soil ecosystems. This degradation 
process releases N-acetylglucosamine monomers, which serve as 
nutrient sources for various soil microorganisms, thereby enhancing 
nutrient cycling and soil fertility. The breakdown of these structures by 
Bacillus-derived chitinases also suppresses soilborne pathogens and 
pests, contributing to a healthier soil microbiome (Gomaa, 2021). 
Moreover, Bacillus spp. play a vital role in nutrient cycling, particularly 
in nitrogen fixation and phosphate solubilization. Certain strains, such 
as B. subtilis and B. megaterium, possess the genetic and enzymatic 
machinery required for solubilizing insoluble phosphates in the soil. 
They produce organic acids (e.g., gluconic acid and citric acid) and 
phosphatases and convert insoluble phosphates into plant-accessible 
forms, such as dihydrogen phosphate (Saeid et  al., 2018). Several 
Bacillus spp., including Paenibacillus polymyxa and P. macerans, 
contain nitrogenase enzymes that enable them to fix atmospheric 
nitrogen into ammonia, thereby enhancing soil fertility and providing 
essential nutrients for plant growth. This biological nitrogen fixation 
facilitates sustainable agricultural practices by reducing the need for 
chemical nitrogen fertilizers. Studies have demonstrated the efficacy of 
these bacteria in promoting plant growth through nitrogen fixation (Li 
et al., 2022). Bacillus spp. can enhance soil structure by secreting EPS, 
which facilitate the aggregation of soil particles. This aggregation 
improves soil porosity, aeration, and water infiltration, thereby 
promoting plant root growth and nutrient uptake. Additionally, the 
production of EPS facilitates moisture retention and reduces soil 
erosion, thereby enhancing soil resilience under stress conditions. 
These benefits underscore the role of Bacillus spp. in sustainable soil 
management and plant health enhancement (Olagoke et al., 2022). 
Moreover, Bacillus spp. can induce systemic resistance in plants, 
indirectly influencing soil health by reducing pathogen pressure. 
Bacillus-treated plants exhibit enhanced production of antimicrobial 
compounds and defense-related enzymes through the activation of JA 
and SA pathways. This reduces the likelihood of pathogen colonization 
and minimizes disease-mediated disruptions to soil microbial 
dynamics (Kloepper et al., 2004). While Bacillus spp. offer numerous 
benefits as biocontrol agents, their application must be  carefully 
managed to maintain ecological balance within the soil microbiome. 
Overapplication or improper use can result in the overdominance of 
Bacillus strains, potentially suppressing other beneficial 
microorganisms and disrupting microbial community structures. This 
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imbalance may result in competition for resources, negatively 
impacting native microbial populations and overall soil health (Li et al., 
2022). Therefore, it is crucial to monitor and regulate the use of 
Bacillus-based biocontrol agents in order to preserve the diversity and 
functionality of soil microbial communities. Sustainable management 
practices, including the rotation of microbial inoculants, integrated use 
of organic amendments, and minimal use of chemical treatments, can 
mitigate these risks and optimize the long-term benefits of 
Bacillus applications.

IPM

Incorporating Bacillus strains into IPM strategies offers an 
effective and sustainable approach for the management of 
phytopathogenic nematodes. Bacillus spp., such as B. subtilis and Bt, 
employ multiple mechanisms to suppress nematodes (Gassmann 
et  al., 2008; Jaiswal et  al., 2022). These strains not only produce 
nematicidal compounds but also promote plant growth by producing 
phytohormones and enhancing nutrient availability. This dual action 
improves crop health and resilience, further mitigating the impact of 
nematode infestations (Abd-Elgawad and Askary, 2018).

Within an IPM framework, Bacillus strains are most effective 
when used in combination with other biocontrol agents, chemical 
nematicides, and cultural practices. For instance, the application of 
B. firmus strain 1–1,582 in combination with chemical nematicides 
and organic amendments significantly enhanced tomato yield and 
effectively suppressed M. incognita and P. lycopersici populations 
under greenhouse conditions, particularly when environmental 
conditions were less favorable for nematode development. These 
findings underscore the potential of B. firmus as a viable component 
of IPM strategies during tomato cultivation (d'Errico et al., 2019).

A recent review by Paradva and Kalla (2023) highlighted the 
potential of microbial biocontrol agents, particularly Bacillus-based 
nanoparticles, as sustainable and eco-friendly alternatives to chemical 
pesticides for plant disease and pest management. The synergistic use 
of Bacillus strains with nematophagous fungi or predatory nematodes 
can confer multilevel protection by targeting different stages of the 
nematode life cycle (Gassmann et al., 2008; d'Errico et al., 2019).

Native Bacillus strains, such as B. marisflavi CRB2 and B. subtilis 
CRB7, which harbor multiple antimicrobial peptide genes, have been 
proven to be effective against M. incognita in okra. Within an IPM 
framework, these strains have caused significant reductions in 
nematode incidence and improvements in crop yields in laboratory, 
pot, and field trials (Gurikar et al., 2022). When applied with reduced 
doses of chemical nematicides, Bacillus strains can help lower the use 
of chemical treatments and maintain effective nematode control, 
thereby minimizing the potential for resistance development and 
environmental impacts (Ruiu, 2015). Moreover, cultural practices, 
such as crop rotation, cover cropping, and the use of organic soil 
amendments, enhance the efficacy of Bacillus applications by creating 
less favorable conditions for nematode proliferation and supporting a 
healthier soil microbiome (Singh et  al., 2019). For instance, the 
integration of B. subtilis with cow manure resulted in a 54% reduction 
in PPN populations in common beans and preserved nematode 
biodiversity, thereby serving as a sustainable and effective pest 
management strategy (Wepuhkhulu et al., 2011). Furthermore, Rao 
et al. (2017) demonstrated that the application of B. subtilis IIHR BS-2 

as a seed treatment in combination with a vermicompost-enriched soil 
application significantly reduced nematode populations by 69.3% and 
disease incidence by 70.2%, resulting in a 28.8% increase in carrot 
yield. This integrated approach outperformed chemical treatments, 
highlighting the efficacy of B. subtilis IIHR BS-2  in managing the 
M. incognita–Pectobacterium carotovorum disease complex in carrots.

Thus, the strategic incorporation of Bacillus strains into IPM 
programs has several advantages, including sustainable nematode 
management, enhanced efficacy through synergistic effects, and 
improved resistance management (Wepuhkhulu et al., 2011). Regular 
monitoring of nematode populations and crop health is crucial for 
optimizing the timing and application of Bacillus treatments to ensure 
the highest efficacy in conjunction with other control measures 
(Chinheya et  al., 2017). By integrating Bacillus strains into a 
comprehensive IPM strategy, farmers can achieve long-term nematode 
suppression, reduce reliance on chemical pesticides, and ultimately 
improve crop productivity and sustainability in agricultural systems 
(Figure 7).

Scalability and cost-effectiveness of 
Bacillus applications

Bacillus spp. are recognized for their scalability as biocontrol 
agents, primarily because of their ability to form resilient spores that 
can be produced on a large scale through cost-effective industrial 
fermentation processes (Serrão et  al., 2024). These spore-based 
formulations exhibit extended shelf lives and require minimal storage 
conditions, thereby reducing logistical expenses for farmers, 
especially in resource-limited regions (Cho and Chung, 2020). 
Moreover, Bacillus formulations are compatible with existing 
agricultural practices, including seed treatments, soil amendments, 
and foliar sprays, facilitating their integration into IPM systems. 
Their synergistic interactions with organic amendments, such as 
compost, and microbial consortia further enhance their efficacy and 
cost-effectiveness (Asif et  al., 2024). Economic analyses have 
indicated that Bacillus-based products can significantly reduce 
reliance on chemical nematicides and fertilizers, resulting in 
substantial cost savings. For instance, the application of B. subtilis 
during tomato cultivation has been shown to reduce nematode-
induced losses by over 60%, resulting in notable yield improvements 
and financial benefits (Pontes et  al., 2024). Case studies from 
countries like Brazil and India have demonstrated the successful 
large-scale application of Bacillus spp. in soybean and rice production 
systems, respectively (Galbieri et  al., 2023; Pandey et  al., 2024). 
Moreover, smallholder farmers in Africa have adopted these 
formulations because of their affordability and effectiveness across 
various crops, including maize and vegetables (Vasques et al., 2024). 
Cost comparisons have revealed that Bacillus-based biopesticides are 
approximately 30–50% less expensive than chemical alternatives, 
enhancing their appeal in low-income regions (Hezakiel et al., 2024). 
In addition to economic advantages, these biopesticides offer 
significant environmental benefits by reducing pollution and health 
risks associated with chemical nematicides, thereby contributing to 
global sustainability goals (Köhl et  al., 2019). They also promote 
ecological balance by enhancing soil biodiversity and mitigating 
secondary pest outbreaks, further reinforcing their role in sustainable 
agriculture (Abd-Elgawad, 2024).
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Challenges and limitations

The application of Bacillus strains as biocontrol agents for 
managing nematodes in agricultural systems has several challenges 
and limitations. Environmental factors, such as soil type and 
climate, play crucial roles in determining the efficacy of these 
bacteria. Soil characteristics, including pH, organic matter content, 
and texture, can significantly influence the survival, colonization, 
and nematicidal activity of Bacillus strains. For instance, sandy 
soils may cause the bacteria to leach away, while heavy clay soils 
could limit bacterial distribution (Gurikar et  al., 2022). 
Additionally, climatic conditions, particularly temperature and 
moisture levels, can significantly influence the efficacy of Bacillus 
spp. (Ayaz et al., 2023). Extreme temperatures can inhibit bacterial 
activity, while optimal moisture levels are necessary for the 
germination and functioning of bacterial spores. Furthermore, 
interactions with other soil microorganisms can limit the 
establishment of Bacillus strains because of competition for 
resources or antagonistic effects.

In addition to environmental factors, regulatory and safety 
concerns pose substantial barriers to the widespread use of Bacillus 
strains as biocontrol agents. The approval process for these biocontrol 
agents involves rigorous testing to ensure their safety for humans, 
animals, and the environment. This process can be time-consuming 
and expensive, particularly for smaller companies, thereby delaying 
the introduction of effective biocontrol products.

The efficacy of Bacillus strains in nematode control is significantly 
influenced by soil type, climatic conditions, and interactions with 
other soil microorganisms (Shafi et  al., 2017; Singh et  al., 2023). 
Bacillus strains often perform more consistently in controlled 
environments, such as greenhouses, where conditions are more 
predictable and manageable. However, translating the obtained results 
to field conditions can be challenging because of the variability in 
environmental factors across different geographical locations and crop 
systems (Ayaz et al., 2023).

Despite the promising potential of Bacillus spp. in managing 
PPNs, several challenges need to be overcome to ensure consistent 
efficacy under field conditions. Environmental factors, such as soil 
type, temperature, moisture level, and pH, can significantly impact the 
survival, colonization, and biocontrol activity of Bacillus strains (Shafi 
et al., 2017). Additionally, the presence of native soil microbiota can 
necessitate competitive interactions that may suppress the 
establishment and function of introduced Bacillus spp. Native 
microorganisms compete with introduced Bacillus strains for essential 
nutrients and ecological niches. This competition can limit the growth 
and activity of the biocontrol agents, thereby reducing their 
effectiveness against PPNs. For instance, indigenous soil bacteria may 
outcompete introduced Bacillus strains for carbon sources, thereby 
inhibiting their proliferation (Mawarda et al., 2022). Moreover, native 
microorganisms can form biofilms on root surfaces, creating physical 
barriers that can prevent Bacillus spp. from accessing plant roots and 
exhibiting their biocontrol effects. These biofilms can effectively 

FIGURE 7

Graphical representation of integrated pest management strategies using Bacillus strains for nematode control.
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exclude introduced bacteria from key interaction sites. For instance, 
biofilms formed by indigenous Pseudomonas spp. can inhibit the root 
colonization of introduced Bacillus strains (Steinberg et al., 2020). 
Additionally, field variability significantly influences the efficacy of 
Bacillus spp. as biocontrol agents, with the outcomes in controlled 
environments often differing from those in diverse agricultural 
settings. Environmental factors, such as soil type, pH, moisture level, 
temperature, and organic matter content, play crucial roles in the 
survival, colonization, and activity of introduced Bacillus strains 
(Serrão et al., 2024). To overcome these challenges, comprehensive 
field studies need to be  conducted. Moreover, robust Bacillus 
formulations that can withstand environmental fluctuations and can 
be effectively integrated into existing soil microbial communities need 
to be developed.

For the commercialization and large-scale application of Bacillus 
strains, significant hurdles related to formulation, storage, and 
regulatory approval need to be overcome (Montesinos, 2003; Butu 
et  al., 2022). The stability and shelf life of Bacillus products can 
be  affected by formulation methods, storage environments, and 
shipment conditions. To ensure the success of Bacillus spp. as 
biocontrol agents, it is essential to enhance formulation technologies, 
extend product shelf life, and reduce production costs (Ortiz and 
Sansinenea, 2023). Ongoing efforts by researchers and industry 
partners are focused on optimizing microbial strains for large-scale 
applications, in addition to ensuring that these products meet rigorous 
environmental and human health safety standards (Hossain 
et al., 2023).

These challenges underscore the need for continued research and 
collaboration to effectively integrate Bacillus strains into sustainable 
agricultural practices. Safety evaluations must also ensure that Bacillus 
strains do not pose risks to nontarget organisms or the environment 
and do not have unintended ecological impacts, such as the disruption 
of soil microbial communities or induction of resistance in pest 
populations (Ayaz et al., 2023). Public perception and acceptance of 
microbial biocontrol agents further complicate their application, 
highlighting the need for better education and communication about 
their safety and benefits. Addressing these challenges is essential to 
fully harness the potential of Bacillus strains for sustainable nematode 
management (Hossain et al., 2023).

Recent advances and innovations

Targeted genome editing, particularly CRISPR/Cas9 technology, 
has revolutionized plant pathology by enabling precise genetic 
modifications to enhance disease resistance in crops. This technology 
is preferred for its simplicity, cost-effectiveness, and adaptability, 
offering a promising approach for the development of pest- and 
disease-resistant plants (Das et  al., 2023; Yin et  al., 2024). These 
genetic modifications often aim to increase the production of 
antimicrobial compounds, such as lipopeptides, enzymes, and VOCs, 
which are crucial for suppressing various plant pathogens (Rocha and 
Duggal, 2023; Maqsood et al., 2024). Additionally, genetic engineering 
has facilitated the introduction of novel traits, such as enhanced root 
colonization and rhizosphere persistence, ensuring that engineered 
Bacillus strains are more effective and resilient under diverse 
environmental conditions (Ramírez-Pool et al., 2024). A recent review 
by Khan et al. (2023) highlighted that advanced molecular strategies, 

including transcriptomics, RNA interference, and CRISPR/Cas9, are 
increasing our understanding of plant–nematode interactions and 
boosting plant resistance to root-knot nematodes. Engineered Bacillus 
strains exhibit improved activity against nematodes, offering a broad-
spectrum biocontrol solution that is highly specific to target pests 
(Danilova et al., 2023).

Although genetic engineering has significant potential for 
enhancing the nematicidal efficacy of Bacillus strains, its use is 
associated with several biosafety concerns. Unintended ecological 
impacts, such as the disruption of native microbial communities or 
off-target effects on nontarget organisms, must be carefully evaluated 
(Samal et al., 2024). Horizontal gene transfer poses additional risks, 
potentially resulting in the spread of engineered traits to unintended 
microbial populations. Regulatory hurdles, including stringent testing 
for environmental and public health safety, also pose significant 
challenges. For example, the process of obtaining approval for 
genetically modified Bacillus strains varies across jurisdictions, with 
extensive environmental impact assessments required to ensure 
compliance with biosafety standards (Rozas et al., 2024).

Formulation improvements have been a major focus in the 
advancement of Bacillus-based biocontrol products (Tong-Jian et al., 
2013; Umamaheswari et al., 2020). Innovations in this area include the 
development of more stable and effective formulations to maximize 
the viability and efficacy of Bacillus derivatives (Chavarria-Quicaño 
et al., 2023a,b). A significant advancement is microencapsulation. In 
this process, spores are enclosed within a protective matrix to shield 
them from environmental stressors while enabling controlled release 
(Gao et al., 2024). This technique has been crucial for maintaining the 
viability of spores over extended periods, thereby enhancing the shelf 
life and effectiveness of the product (Khullar et al., 2024).

Researchers are also exploring synergistic combinations of 
Bacillus strains with other biocontrol agents or biostimulants in order 
to create multifunctional formulations that can confer comprehensive 
plant protection and promote plant growth. Advances in delivery 
systems and increases in shelf life have further revolutionized the 
application of Bacillus-based biocontrol agents (Karačić et al., 2024). 
Novel delivery systems, such as nano-bioformulations and polymer-
based carriers, are being developed to optimize the precision and 
efficacy of Bacillus applications (Behl et al., 2024). These systems are 
designed to optimize the release of active agents at the site of infection, 
thereby reducing the need for frequent applications and lowering the 
overall costs (Kumar et al., 2021). Moreover, improvements in storage 
technology, including the development of temperature-stable 
formulations and vacuum packaging techniques, have significantly 
extended the shelf life of Bacillus products (Gotor-Vila et al., 2019). 
These innovations not only ensure the long-term viability of biocontrol 
agents but also enhance their accessibility on a global scale, particularly 
in regions with challenging storage and transportation conditions.

Conclusion

Bacillus spp. have emerged as potent biocontrol agents against 
PPNs, offering a promising and sustainable alternative to traditional 
chemical treatments. Their effectiveness is attributed to their 
multifaceted mechanisms, including the production of nematicidal 
compounds, enhancement of plant resistance, and improvement of 
soil health. Thus, they play invaluable roles in IPM strategies. Recent 
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advances in genetic engineering and formulation technologies have 
significantly bolstered the efficacy and reliability of Bacillus strains for 
agricultural applications. However, various challenges, such as 
environmental variability, regulatory hurdles, and the need for 
optimized application methods, persist. Overcoming these challenges 
is essential for maximizing the efficacy of Bacillus spp. in sustainable 
nematode management and ensuring global food security.
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