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Introduction: The mortality rate associated with Mycobacterium tuberculosis

(MTB) has seen a significant rise in regions heavily affected by the disease over

the past few decades. The traditional methods for diagnosing and differentiating

tuberculosis (TB) remain thorny issues, particularly in areas with a high TB

epidemic and inadequate resources. Processing numerous images can be time-

consuming and tedious. Therefore, there is a need for automatic segmentation

and classification technologies based on lung computed tomography (CT) scans

to expedite and enhance the diagnosis of TB, enabling the rapid and secure

identification of the condition. Deep learning (DL) offers a promising solution

for automatically segmenting and classifying lung CT scans, expediting and

enhancing TB diagnosis.

Methods: This review evaluates the diagnostic accuracy of DL modalities for

diagnosing pulmonary tuberculosis (PTB) after searching the PubMed and Web

of Science databases using the preferred reporting items for systematic reviews

and meta-analyses (PRISMA) guidelines.

Results: Seven articles were found and included in the review. While DL has been

widely used and achieved great success in CT-based PTB diagnosis, there are

still challenges to be addressed and opportunities to be explored, including data

scarcity, model generalization, interpretability, and ethical concerns. Addressing

these challenges requires data augmentation, interpretable models, moral

frameworks, and clinical validation.

Conclusion: Further research should focus on developing robust and

generalizable DL models, enhancing model interpretability, establishing ethical

guidelines, and conducting clinical validation studies. DL holds great promise for

transforming PTB diagnosis and improving patient outcomes.
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1 Introduction

Tuberculosis (TB) is caused by the Mycobacterium tuberculosis
(MTB), which predominantly targets the lungs, resulting in
pulmonary tuberculosis (PTB). TB has coexisted with humans for
a thousand years and approximately 1.3 million people died from
TB in 2022, according to a recent report by the World Health
Organization (WHO) in 2023 (Kaufmann, 2016; Ruiz-Tagle et al.,
2024). There have been reports of TB across all age categories
and in all nations, making it the second leading infectious killer
globally, behind corona virus disease 2019 (COVID-19) (Qi et al.,
2024). Furthermore, the WHO has estimated that 10.6 million
individuals, including 5.8 million men, 3.5 million women, and
1.3 million children, have been diagnosed with confirmed TB
infections globally (WHO, 2022). The progression of TB infection
can be divided into four stages: innate immune response, immune
balance, TB reactivation, and transmission. The development of
effective preventative and treatment methods for this disease
depends on the capacity to understand its underlying mechanisms
and patterns of progression (Ernst, 2012).

PTB involves multiple pathological processes, including
inflammatory exudation, granuloma formation, necrosis
absorption, fibrosis, and calcification (Xu et al., 2015). TB’s
pathogenesis involves transmitting MTB by releasing aerosols
containing the bacteria, which occurs when an infected individual
coughs or sneezes (Figure 1). These aerosols can be inhaled
by another individual, leading to infection. Upon entering the
pulmonary system, MTB is phagocytosed by macrophages.
Recognition of MTB components by pattern recognition receptors
on macrophages, such as Toll-like receptors, initiates an immune
response. Macrophages then secrete cytokines that activate T cells
and promote the activation and proliferation of macrophages.
The aggregation of MTB and immune cells results in granulomas
forming, which confine bacterial dissemination. However,
compromised immunity can lead to the breakdown of these
granulomas, facilitating the recurrence and transmission of TB
(Borah et al., 2021).

Artificial intelligence (AI) offers a faster and more convenient
technology for predicting the effectiveness of TB treatments,
especially in the detection of PTB. AI can improve the precision

Abbreviations: TB, tuberculosis; MTB, Mycobacterium tuberculosis; PTB,
pulmonary tuberculosis; WHO, World Health Organization; COVID-19,
corona virus disease 2019; CT, computed tomography; AI, artificial
intelligence; ML, machine learning; DL, deep learning; CNN, convolutional
neural network; AUC, area under the receiver operating characteristic
curve; PRISMA, preferred reporting items for systematic reviews and
meta-analyses; CAP, community-acquired pneumonia; TST, tuberculin
skin test; IGRA, interferon-gamma release assay; QFT, QuantiFERON-TB
Gold; LAM, lipoglycan lipoarabinomannan; SPECT, single-photon emission
computed tomography; PCR, polymerase chain reaction; NAA, nucleic
acid amplification; LAMP, loop-mediated isothermal amplification; LPA,
line probe assay; CXR, chest X-ray; US, ultrasound; MLR, monocyte to
lymphocyte ratio; NGS, next-generation sequencing; LSTM, long short-
term memory; RNN, recurrent neural network; GAN, generative adversarial
network; ROI, region of interest; GMM, Gaussian mixture model; JI,
Jaccard index; DSC, Dice similarity coefficient; ROC, receiver operating
characteristic; ANN, artificial neural network; MLP, multi-layer perceptron;
MAResNet, multi-scale attention residual network; CBAM, Convolutional
Block Attention Module; NTM-LD, non-tuberculous mycobacterial lung
disease; mSv, millisievert; ULDCT, ultra-low-dose computed tomography;
MDR-PTB, multidrug-resistant PTB; Grad-CAM, gradient-weighted class
activation mapping.

of medical evaluations by screening, diagnosing, and predicting
outcomes with the help of imaging or clinical data (Zhan et al.,
2022). A crucial part of AI is machine learning (ML), which
works by training models with current data so that they can
accurately predict future outcomes given past knowledge (Hussain
and Junejo, 2019). Many fields of medical study have used ML,
including cancer research, pharmaceutical development, illness
detection, and structure of proteins prediction (Yang et al., 2022;
Zhu et al., 2024). ML and deep learning (DL) have substantially
contributed to computer-aided detection. Yet, DL, particularly
convolutional neural networks (CNNs), has risen to prominence
for detecting various pulmonary conditions, with a significant focus
on diagnosing PTB. In recent years, DL, a subset of ML, has been
widely adopted to develop automatic and semi-automatic systems.

DL methods are a type of hierarchical learning of
representations. They are better than regular ML because
they use many layers of computations to learn patterns that are
not linear and have a lot of dimensions. CNNs are a type of
DL design that is translation invariant. This means that once
a pattern is learned, it can find it anywhere in an image, no
matter where it is or how it is oriented. CNNs are often used
in DL, a well-known field. These networks have many layers:
input, convolutional, pooling, fully connected, and output. They
can make specific predictions from digital inputs like images,
sounds, genetic sequences, and clinical data (LeCun et al., 2015).
Identifying PTB through imaging and ML faces several challenges,
including the diverse and sometimes subtle presentations of PTB
in imaging, making it difficult for ML algorithms to distinguish it
from other lung conditions. ML models may overfit the training
data, performing well on the data they were trained on but poorly
on unseen data. As new data and knowledge about PTB become
available, ML models must be updated and retrained to maintain
their accuracy and relevance. Several strategies can address those
challenges: employ regularization techniques to mitigate overfitting
and enhance model efficacy on novel data. Utilize transfer learning
methodologies in which a model initially trained on an extensive
dataset is refined on a smaller, more specialized dataset to enhance
performance. Extensive testing must be conducted to ensure that
ML models are robust against various types of input data and can
handle different imaging conditions.

This review examines seven studies about applying DL
techniques in identifying PTB (Ma et al., 2020; Zhang et al., 2020,
2024; Li X. K. et al., 2021; Haq et al., 2022; Lu et al., 2022;
Huang et al., 2023). The primary focus of the study is to assess
the performance of various DL algorithms in diagnosing PTB.
Utilize metrics such as precision, recall, F1-score, and area under
the receiver operating characteristic curve (AUC) to evaluate and
compare the diagnostic accuracy of different DL models. Explore
strategies for integrating DL tools into clinical practice and identify
the critical areas for future enhancement of the methodologies
above. The outline of the review is as follows: section 2 describes
the main methods of this review. Section 3 describes the traditional
detection methods for PTB. Section 4 presents the DL diagnosis
process for TB. Section 5 depicts the applications of DL in CT-based
PTB detection. Section 6 discusses the future directions. Finally,
section 7 summarizes the conclusions drawn from the review.
Prior studies have not yet offered an integrated, comprehensive
analysis of detecting PTB using DL alongside imaging modalities
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FIGURE 1

Pathogenesis and typical symptoms of TB. Created in BioRender. Zhang (2024a).

datasets. This study examines the methodologies, procedures, and
techniques of DL and imaging modalities.

2 Materials and methods

This systematic review aimed to assess the role of DL in
diagnosing PTB based on CT imaging. The preferred reporting
items for systematic reviews and meta-analyses (PRISMA)
guidelines were used in conducting this research (Page et al.,
2021). These guidelines were instrumental in structuring the
study selection, offering a standardized framework to streamline
and document articles’ identification, screening, eligibility, and
inclusion. A thorough search was conducted among PubMed and
Web of Science databases. The search query was formulated using
the PICO strategy and included the terms “tuberculosis,” “artificial
intelligence,” “machine learning,” “deep learning,” “neural network,”
and “natural language processing” (Cacciamani et al., 2023). In
this study, the inclusion criteria were developed by the research
question: in individuals undergoing diagnosis for PTB using CT
scans, how effective are diagnostic models utilizing DL techniques
for image analysis? This question was formulated using the PICO
strategy. The population (P) comprised individuals undergoing
diagnosis for PTB using CT scans, with the intervention (I) being
the application of DL techniques for image analysis, and while

there was no direct comparison group (C), comparisons were made
with traditional diagnostic methods; the outcomes (O) focused
on quantitative data regarding the performance of DL models,
including primary outcomes such as accuracy, specificity, and
sensitivity in diagnosing PTB. The exclusion criteria were non-
English articles, letters, and reviews. Studies not related to PTB or
not using CT scans for diagnosis. Studies lack a clear description of
the DL methodology (studies without original data or not providing
performance metrics).

Fei Zhang and Maomao Li screened the titles and abstracts
of the identified studies, and full texts were retrieved for further
analysis. Any discrepancies were resolved through consensus and
by consulting Jiahe Wang. Data were extracted using a predefined
form to collect details on the author’s name, paper publication
year, journal, country of the dataset, number of patients (with
male/female distribution), study purpose, type of DL algorithm,
dataset source, validation methods, reference standard, and the
reported performance. The research search yielded 1,643 records;
following the title and abstract screening, 120 records underwent
full-text evaluation, including six publications in the review.
Moreover, following citation analysis of pertinent documents, an
additional article was incorporated, increasing the total number of
included articles to seven. A PRISMA flow diagram was created
to depict the article selection process, specifying the number of
records obtained from all sources and the explanation for exclusion
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(Figure 2). The QUADAS-2 instrument was utilized to appraise the
potential for bias within the studies under consideration (Table A1).
This framework assesses bias across four principal areas (Whiting
et al., 2011). Figure 3 illustrates the yearly number of publications
on AI in TB from 2005 to 2024, there was a rapid increase in the
publication of studies.

3 Traditional detection methods
for PTB

3.1 Clinical symptoms and physical
examination diagnosis

Acute PTB often presents with acute respiratory symptoms,
including dry cough, fever, and chest pain (Moreira et al.,
2011). Symptom duration generally surpasses 2 weeks before
hospitalization. The clinical appearance is comparable to non-
tuberculous community-acquired pneumonia (CAP), but patients
with PTB experience less intense pleural unease, toxemia, and
fatigue than those with non-tuberculous bacterial pneumonia
(Sharma and Mohan, 2004). Acute PTB is more likely to
cause weight loss than non-tuberculous CAP, while hemoptysis
is relatively rare (Morena et al., 2023). The typical symptoms
of TB are vividly shown in Figure 1. Generally speaking, the
diagnosis of PTB is made using a combination of conventional
and contemporary techniques. This diagnosis depends primarily
on the patient’s medical symptoms and findings from the physical
examination, complemented by various diagnostic test results.
These include bacteriological tests, the tuberculin skin test (TST),
imaging studies such as X-ray or CT scans, histopathological
evaluations, T-SPOT test, and the reaction to the therapy
plan of antituberculosis medications (Kang et al., 2021). The
distribution of mycobacterium TB in the human body is shown in
Figure 4.

3.2 Etiologic diagnosis

The WHO regards TB culture as the “gold standard” for
diagnosing TB; nonetheless, conventional solid and liquid culture
media exhibit several drawbacks, such as impracticality, bacterial
cross-contamination, and extended culture durations. Sputum
smear microscopy is a diagnostic technique for TB that is widely
acknowledged as effective (Kessel et al., 2023, pp. 2013–2017).
Due to its affordability and relative simplicity compared to other
advanced diagnostic methods, sputum smear microscopy remains
a critical diagnostic instrument for PTB, particularly in nations
with low incomes. In this process, sputum samples are coughed
up by patients exhibiting symptoms and are treated with chemicals
and applied to plain glass microscope slides. Yet the inconsistent
clinical performance of this method, combined with the challenges
in sputum collection from patients and accessibility to healthcare
services, constitutes one of the main reasons for TB being
undiagnosed. Subsequently, these slides are subjected to laboratory
analysis to detect the presence of TB. The resulting images from
a sputum smear test are typically viewed using fluorescence or

light microscopy. The resolution and size of these images are
determined by the level of magnification employed. For laryngeal
swabs, the pooled sensitivity was 57.8% (95% CI: 50.5–65.0),
and the specificity was 93.8% (88.4–96.8). For nasopharyngeal
aspirates, the sensitivity was 65.2% (95% CI: 52.0–76.4), and the
specificity was 97.9% (95% CI: 96.0–99.0). For oral swabs, the
sensitivity was 56.7% (95% CI: 44.3–68.2), and the specificity was
91.3% (95% CI: 81.0–96.3) (Savage et al., 2023). Fluorescence
microscopy offers advantages such as labor reduction and enhanced
productivity. Nevertheless, the potential drawback of this technique
is the danger of false-positive results, which is a result of the
fluorochrome dyes’ non-specific binding (Steingart et al., 2006).
The non-invasive collection process and its association with TB
transmission have long been why breath has been regarded as an
appealing diagnostic specimen for TB (Ghosh et al., 2021; Pham
and Beauchamp, 2021). Electronic nose tests reportedly have an
estimated sensitivity of 92% (95% CI: 82–97%) (Saktiawati et al.,
2019).

3.3 Immunological diagnosis

Serological assays frequently demonstrate inadequate
sensitivity and specificity, relying on a humoral immune reaction
to detect antibodies against TB antigens (Steingart et al., 2011).
A strategy attracting increased attention is the identification
of host responses indicative of TB infection. In this regard,
interferon-gamma release assays (IGRAs), such as T-Spot (Oxford
Immunotec) and QuantiFERON (Qiagen), have limited use in
detecting acute infections but are effective in detecting latent TB.
However, IGRAs are affected by diseases such as diabetes, and the
high cost also limits its application in underdeveloped regions
(Takasaki et al., 2018). Currently, the T-SPOT test is extensively
utilized for diagnosing infections caused by TB (Sollai et al., 2014).
Despite its importance in identifying Mtb infections, a significant
drawback of the T-SPOT test is that it cannot differentiate between
active TB and latent TB infection (Ling et al., 2013).

The benefits and constraints of the QuantiFERON-TB Gold
(QFT) test parallel those of the T-SPOT test. The QFT test
offers a more straightforward operational process than T-SPOT,
eliminating the need to separate peripheral blood mononuclear
cells and opting to use whole blood instead (Lalvani and
Pareek, 2010). Only a handful of antigenic biomarkers have been
identified for TB. Lipoglycan lipoarabinomannan (LAM) is the
most extensively investigated, most promising, and accessible from
a simple sample such as urine (MacLean et al., 2019). The FujiLAM
is a lateral flow urine test that finds LAM antigens. In adults with
TB, it has a sensitivity of 70% and a specificity of 93% (Li Z.
et al., 2021). The TST is a traditional diagnostic technique that
uses a pure protein derivative of tuberculin to identify delayed-
type hypersensitivity responses. Individuals infected with TB can
generate sensitized T cells that recognize MTB antigens. Upon
re-stimulation by MTB antigens, these sensitized T cells secrete
different soluble lymphokines that enhance permeability, local
erythema, and induration (Kowalewicz-Kulbat et al., 2018). The
TST method finds the average diameter of the induration 72 h after
an injection of a pure protein derivative tuberculin. An induration
diameter <5 mm or no reaction is negative; ≥5 mm is positive
(Abubakar et al., 2018).
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FIGURE 2

PRISMA study flow diagram.

FIGURE 3

Annual number of publications of AI in TB from 2005 to 2024.
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FIGURE 4

Distribution of MTB in the human body. Created in BioRender. Zhang (2024b).

3.4 Molecular techniques

Molecular imaging, which integrates molecular biology with
medical imaging, is increasingly being explored to enhance our
understanding of PTB. This high-tech imaging method allows
biological processes at the molecular and cellular levels inside
live things to be witnessed and measured. Techniques such as
single-photon emission computed tomography (SPECT) are being
investigated for their potential to offer detailed molecular-level
data. SPECT’s high sensitivity and resolution make it a promising
tool for identifying and tracking disease processes associated with
PTB (Dimastromatteo et al., 2018). Along with smear microscopy,
the Centers for Disease Control and Prevention suggests that
each individual who might have PTB should also have at least
one nucleic acid amplification (NAA) test, like polymerase chain
reaction (PCR) (Parrish and Carroll, 2011). The high guanine
and cytosine in the TB genome make it harder to conduct PCR
studies. As a result, when dealing with MTB, it is essential to
meticulously consider the methods for sample collection, bacterial
cell disruption, nucleic acid isolation, and PCR assay design. The
“Xpert MTB/RIF assay” is a rapid NAA test capable of detecting
TB and determining resistance to rifampicin (Naidoo et al., 2023).
The sensitivity of Xpert MTB/RIF Ultra when applied to oral swabs
varied between 45% and 77.8%, in contrast to an approximate
sensitivity of 90% for sputum samples (Mesman et al., 2019; Lima
et al., 2020; Andama et al., 2022). Identifying bacterial RNA allows
for the pinpointing of active TB. The quantification of bacterial
quantity in sputum samples can be achieved using the detection
of 16S ribosomal RNA, providing a sensitivity comparable to
that of solid culture techniques (Honeyborne et al., 2014). Loop-
mediated isothermal amplification (LAMP) is a PCR method
that functions at a uniform temperature. The TB-LAMP method

exhibits a sensitivity marginally lower than the Xpert MTB/RIF
assay, yet both tests maintain similar specificity (Phetsuksiri et al.,
2020). The WHO advocates TB-LAMP as a superior alternative
to smear microscopy because of its improved diagnostic efficacy
(Huang et al., 2022). A line probe test (LPA) is a quick, accurate,
and flexible way to determine if someone has TB. It can detect
TB in various clinical specimens, including sputum, pleural, and
cerebrospinal fluid. The LPA can identify resistance to first-line TB
medications such as isoniazid. Different commercial LPA kits are
available, including the GenoType MTBDRplus 1.0 assay from Hain
Lifescience and the INNO-LiPA Rif TB kit offered by Innogenetics
(Rossau et al., 1997; Crudu et al., 2012). LPA is crucial for the
management of multidrug-resistant TB. Truenat MTB, Truenat
MTB Plus, and Truenat MTB-Rif Dx assays are quick molecular
real-time PCR tests that can find TB. Results are usually ready in an
hour (Nikam et al., 2013; Georghiou et al., 2021).

3.5 Imaging techniques

Most individuals with PTB exhibit abnormal chest X-ray (CXR)
findings, which indicate a PTB diagnosis (Nachiappan et al.,
2017). Given the relative accessibility of CXR and its utility in
identifying these signs, the WHO advises using chest radiography
for TB screening in populations at high risk for the disease
(Liang et al., 2022). Different TB lesions appear differently on
X-rays; exudative lesions appear as cloud-like or patchy shadows,
proliferative lesions as nodular shadows, and caseous lesions
as high-density and uneven shadows. The advantages of CT
scanning include its relatively low cost, enhanced capability to
differentiate between tissue types, rapid image acquisition, and
broader accessibility. Compared to X-ray chest films, CT scans
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provide more explicit sectional images of the lungs, avoiding the
issue of overlapping pictures and displaying the delicate structures
and lesion details of lung tissue. Various pathological changes
of TB, such as exudation, proliferation, caseation, fibrosis, and
calcification, can be well displayed on CT scans. CT can detect early
small lesions, bronchial dissemination foci, and mediastinal lymph
node enlargement, aiding in a definitive diagnosis. It is also useful
in diagnosing suspected TB cases that are atypical or negative on
X-ray chest films. Additionally, CT has an extra role in assisting
with fluid aspiration, biopsy confirmation, and guiding therapeutic
interventional procedures, such as fluid drainage. PET/CT, which
utilizes the cellular uptake of 18F-fluorodeoxyglucose to assess
pulmonary inflammation, is highly sensitive for the early detection
of TB (Ankrah et al., 2018). X-ray chests are the initial step in
investigating PTB, followed by ultrasound (US), CT, and magnetic
MRI for further evaluation. Additional imaging modalities, such
as intravenous urography and barium studies, may also be
helpful.

3.6 Other techniques

Innovative techniques are being developed to evaluate, track,
and quantify PTB conditions at the point of care. Techniques such
as lung ultrasonography and electrical impedance tomography are
becoming more popular as they complement traditional diagnostic
methods. These methods are being extensively researched for
their potential to supplement standard procedures and, in
certain respiratory conditions, to serve as an alternative due
to the absence of ionizing radiation and their simplicity (Ball
et al., 2017). A meta-analysis has revealed that chest US,
when used for diagnosing pediatrics PTB, has a sensitivity of
84% and a specificity of 38% (Muljadi et al., 2024). Many
molecular biomarkers can also be used to diagnose PTB. The
combined sensitivity and specificity of monocyte to lymphocyte
ratio (MLR) in detecting TB are 79.5% (95% CI: 68.5–87.3)
and 80.2% (95% CI: 67.3–88.9), respectively (Adane et al.,
2022).

Non-sputum biomarker tests for TB could have a market value
of between $56 million and $84 million in countries with a high
incidence of TB, like South Africa, Brazil, China, and India. It is
thought that 14 million tests will be done (Tb Diagnostics Market
Analysis Consortium, 2014, 2015; Maheshwari et al., 2016; Zhao
et al., 2016). Dai et al. (2019) made a model for predicting TB
by testing three iron-related biomarkers in blood serum, which
can recognize TB. There is optimism that this approach could
be broadened to enhance the diagnostic techniques for PTB.
Next-generation sequencing is considered a revolutionary method
for medication susceptibility testing of TB, providing data much
faster than conventional clinical culture-based methods (Walker
et al., 2015). Mass spectrometry technology can accurately detect
biomarkers, which helps with the early diagnosis of TB. Chen
et al. (2020) utilized Matrix-Assisted Laser Desorption/Ionization
Time-of-Flight Mass Spectrometry and Liquid Chromatography-
Tandem Mass Spectrometry to identify a TB-specific serum peptide
signature, thereby creating diagnostic models for swift and accurate
TB detection. More details can be found in Table 1, which compares
various TB diagnostic methods.

4 DL diagnosis process for TB

4.1 Overview of DL architectures

Deep learning neural networks, a category of computational
models, can learn complex feature hierarchies by deriving advanced
features from simpler ones. Fukushima introduced this concept
in 1980, inspired by the mechanisms of human vision based on
biological principles (Yoon and Kim, 2020). DL emulates the
human brain’s process of information filtering to facilitate accurate
decision-making. DL instructs a computational model to handle
inputs through a series of layers, analogous to the human brain’s
approach, to bolster data prediction and categorization. Each layer
feeds its output to the subsequent layer, akin to the progressive
filtering mechanisms employed by neural networks within the
brain. The iterative feedback process continues until the production
remains consistent with the previous iteration. Weights are first
allocated to each layer to produce the desired output, and these
weights are further refined during the training process to attain the
exact result (Lalmuanawma et al., 2020).

In the fields of CT-based disease diagnosis, multiple DL models
are frequently utilized for tasks. CNNs like VGGNet, Google Net,
ResNet, and DenseNet are essential for image categorization and
feature extraction (Pavithra et al., 2023). U-Net, V-Net, SegNet, and
DeepLab are commonly employed for segmentation jobs because of
their proficiency in accurately delineating regions of interest (ROIs)
(Yuan et al., 2022). Detection and classification jobs frequently
employ models such as YOLO, SSD, and the R-CNN series, which
are proficient in recognizing and categorizing objects in photos
(Vilcapoma et al., 2024). GANs and their derivatives, such as
DCGAN, cGAN, CycleGAN, and Pix2Pix, are utilized for data
augmentation, picture reconstruction, and style transfer, improving
training data’s diversity and quality (Simion et al., 2024). Three-
dimensional (3D) CNNs and their variants, including 3D U-Net,
are explicitly engineered for volumetric data, which is essential
for examining 3D structures in CT scans (Wen et al., 2023).
Furthermore, sophisticated models such as Dual-Path Networks
and those developed by neural architecture search are reviewed to
enhance performance in CT image processing, guaranteeing that
the models are efficient and precise (Min et al., 2024).

Deep learning comprises three fundamental methodologies:
supervised, semi-supervised, and unsupervised (Liporaci et al.,
2024). For medical image analysis tasks, including disease detection
and classification, CNNs have grown into the predominant DL
architecture (Odimayo et al., 2024). A schematic representation of
a typical CNN architecture is shown in Figure 5. Widely utilized
during the diagnosis of numerous illnesses, CNNs specialize in
extracting pertinent information from medical pictures, including
X-rays, CT scans, and MRI scans. While CNNs excel at processing
spatial information in medical images, recurrent neural networks
(RNNs) and their variants, such as long short-term memory,
have proven effective in handling sequential data, which is often
encountered in healthcare settings (Chae et al., 2024). Generative
adversarial networks (GANs) have emerged as a powerful tool
to address the limited availability of labeled data by generating
synthetic medical data that can be used to augment the training
datasets (Su et al., 2023). Among these techniques, GANs stand
out for their unique capabilities in data augmentation and image
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TABLE 1 Comparison of TB methods.

Detection method Methodology Interpretation Shortcomings

X-ray A chest X-ray is taken to visualize the lungs and chest
cavity.

Detects lung shadows, cavities, and
calcifications.

Difficulty in distinguishing
between active and latent TB,
limited value for diagnosing
extrapulmonary TB.

CT A CT scan of the chest is performed to obtain detailed
images of the lungs.

Detects lung inflammation, nodules,
and cavities with precise localization.

Higher cost, radiation exposure,
misinterpretations.

MRI MRI scan of the chest is performed to visualize the
lungs and chest cavity.

Detects lung inflammation, nodules,
cavities, and soft tissue lesions.

Higher cost, less effective in
detecting calcifications and bony
lesions compared to X-ray.

Ultrasound Ultrasound scan of the chest is performed to visualize
the lungs and chest cavity.

Detects lung effusions, consolidations,
and pleural effusions.

Requires skillful operator, lower
specificity for diagnosing TB.

Bronchoscopy A bronchoscope is used to visualize the bronchi and
lung tissue, and samples are collected.

Direct visualization of lung lesions
and pathological examination.

Invasive procedure with associated
risks.

Tissue biopsy Tissue samples are collected from the lungs or lymph
nodes for pathological examination.

Confirms TB diagnosis and performs
drug susceptibility testing.

Invasive procedure with associated
risks.

Tuberculin skin test Tuberculin is injected under the skin, and the skin
reaction is observed.

Detects the immune response to
Mycobacterium tuberculosis to
determine past infection.

Cannot distinguish between active
and latent TB, limited value in
vaccinated populations.

Sputum smear test Sputum is stained and examined under a microscope
for the presence of Mycobacterium tuberculosis.

Rapid detection of active TB, low cost. Lower sensitivity, requires
multiple tests.

Fluorescent microscopy Sputum is stained with a fluorescent dye and examined
under a fluorescent microscope for the presence of
Mycobacterium tuberculosis.

Improves the sensitivity of sputum
smear test.

Higher cost, requires specialized
equipment.

Culturing bacteria Sputum or tissue samples are cultured on selective
media to grow Mycobacterium tuberculosis.

Confirms TB diagnosis and performs
drug susceptibility testing.

Higher cost, requires longer time.

Xpert MTB/RIF Molecular diagnostic technique that detects
Mycobacterium tuberculosis DNA in sputum and
determines drug resistance.

Rapid, accurate, simultaneous
detection of drug resistance.

Higher cost, requires specialized
equipment.

LAMP Rapid diagnostic technique based on nucleic acid
amplification that amplifies Mycobacterium
tuberculosis DNA within a short time.

Rapid, easy to operate. Slightly lower specificity than
Xpert MTB/RIF.

LPA Molecular diagnostic technique based on DNA probes
that detects drug resistance genes of Mycobacterium
tuberculosis.

Rapid, accurate detection of drug
resistance.

Requires specialized equipment,
more complex operation.

Micro real-time PCR Rapid diagnostic method based on real-time
fluorescent quantitative PCR that amplifies and detects
Mycobacterium tuberculosis DNA within a brief time.

Rapid, accurate, detection of drug
resistance.

Requires specialized equipment,
higher cost.

Next-generation sequencing Molecular diagnostic method based on
high-throughput sequencing that comprehensively
analyzes the genetic information of Mycobacterium
tuberculosis.

Detection of drug resistance and
identification of new resistance genes.

Very high cost, requires
specialized bioinformatics
analysis.

Mass spectrometry Molecular diagnostic method based on mass
spectrometry that detects proteins or metabolites of
Mycobacterium tuberculosis.

Detection of drug resistance,
identification of new resistance
mechanisms.

Very high cost, requires
specialized mass spectrometry
analysis.

IGRAs Detects the level of interferon-γ in the blood to
determine Mycobacterium tuberculosis infection.

Detection of latent TB infection. Requires laboratory conditions,
cannot distinguish between active
and latent TB.

Antibody detection Detects Mycobacterium tuberculosis-specific antibodies
in the blood.

Assists in the diagnosis of TB. Lower specificity, easily affected by
other factors.

LAMP, loop-mediated isothermal amplification; LPA, line probe assay; IGRAs, interferon-gamma release assays.

quality enhancement. GANs consist of two neural networks, a
generator and a discriminator, that engage in a competitive training
process. While the discriminator assesses their veracity against
actual data samples, the generator generates new data instances.
The generator learns to create more realistic data because of this

adversarial process, which is especially useful in medical imaging
where class imbalance and data scarcity are frequent problems.
GANs can produce synthetic CT images of PTB that resemble
actual TB lesions, increasing the data available for DL model
training. This improves the model’s generalization across various
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patient populations and imaging settings and reduces overfitting.
Semi-supervised learning methods, which leverage labeled and
unlabeled data, have shown promising results in tasks like medical
image segmentation and disease classification (Tseng et al., 2024).
These techniques can help improve model performance when
the labeled data is limited. Furthermore, unsupervised learning
approaches, such as clustering and anomaly detection, have been
utilized to identify novel disease subtypes, detect rare diseases, and
uncover hidden patterns in medical data (Thabtah et al., 2022).
These methodologies can yield essential insights for physicians and
scientists, potentially facilitating the identification of novel disease
biomarkers and enhanced patient screening.

4.2 Overview of the pipeline for PTB
detection based on CT

4.2.1 Data acquisition and pre-processing
The lack of CT data might lead to data overfitting and affect

the efficiency of the imaging model. Studies by Li X. K. et al.
(2021) increased the number of training samples through random
cropping and left-right flipping (Wu et al., 2019). A workflow
for PTB diagnosis using DL based on a CT pipeline is shown
in Figure 6. The initial phase of image preparation entails
transforming the unprocessed images into a suitable format for
subsequent analysis. Medical imaging data from various equipment
exhibit dimensions, layer thickness, and scan count differences.
Collectively, these variables result in a diverse array of imaging
datasets, causing inconsistencies among the data sets. For accurate
classification of medical images, the preprocessing phase should
significantly minimize noise without compromising the integrity
of vital image elements. Consequently, the preprocessing phase
consists of resizing, normalizing, and occasionally converting color
images from RGB to grayscale. Additionally, images are enhanced
using techniques such as Gaussian blurring, median filtering,
morphological smoothing, and various other methods for image
adjustment.

4.2.2 Feature extraction and classification
The process of transforming images into features that reflect

various image attributes is called feature extraction. The success
of DL models in CT-based diagnosis is heavily dependent on the
quality of annotated data used for training and validation. In
this systematic review, CT scans were annotated by experienced
radiologists or pulmonary disease specialist following standardized
clinical guidelines (Ma et al., 2020; Zhang et al., 2020, 2024;
Li X. K. et al., 2021; Haq et al., 2022; Lu et al., 2022; Huang
et al., 2023). Image segmentation is indeed a pivotal step in image
processing. It involves partitioning images into distinct sections
or ROIs to isolate and analyze specific features or objects within
the image (Shahzad et al., 2024). Several types of features are
used in image analysis. These include texture, shape, contrast,
and brightness (Kaifi, 2023). Slices exhibiting PTB lesions and
regular slices devoid of pathological findings were individually
marked manually and employed as the benchmark dataset to
train the DL model. Some open-source tools, such as ITK-SNAP,
delineate bounding boxes around CT imaging lesions (Yan et al.,
2021b). This process entails identifying and segmenting the lesions

from the scans. Nevertheless, manual segmentation of the lung
region is a laborious, monotonous, and time-consuming endeavor
that significantly depends on the proficiency and experience of
radiologists. Feature extraction is a cornerstone of diagnostic
imaging, particularly when utilizing DL to analyze CT scans.

Gordaliza et al.’s (2019) study offers a glimpse into the
potential of unsupervised learning for lung image segmentation.
According to Wang et al. (2023), they created a GAN-based
design that can separate different lung lesions. GAN is an ML
model made up of a generator and a discriminator. It is often
used to create images and split them into groups. This model
can identify and segment multiple lesion areas present in CT
scans. In a GAN, the discriminator may experience “forgetting,”
which means losing the ability to recognize certain features during
training. They implement a method to mitigate this forgetting
phenomenon. It introduces a self-supervised rotation loss to
help address the issue of discriminator forgetting. Self-supervised
learning is free of data to be labeled by hand, and rotation
loss might include flipping pictures to aid the model in learning
better. The recommended approach achieved Dice coefficients of
68.5% on test datasets for multi-center PTB. The architecture
consists of a dual attention module and a cascaded context-
aware pyramid feature extraction method, making it possible
to understand the semantic dependencies linked to lung lesion
characteristics in space and time. This unified method makes the
model’s training more effective. The study by Gordaliza et al.
(2019) develops a methodology for the automated extraction of
a radiological biomarker from CT scans to assess the disease
burden of TB, which may also be modified for pneumonia
identification. The pipeline involves lung segmentation, tissue
type classification, and applying a Gaussian mixture model
(GMM) to differentiate between healthy and diseased tissue. The
process consists of using an adaptive thresholding method to
identify air-like organs in chest CT scans, such as healthy lungs,
the airway tree, and the stomach, by utilizing the topological
properties of the organs. Geodesic Active Contours are pivotal
in refining the lung boundaries by including lesions attached
to the pleura and discarding motion artifacts. Furthermore, the
GMM is employed to model the probability distribution of
voxel intensities within the segmented images. By assuming that
the tissue intensities follow a Gaussian mixture, the GMM, in
conjunction with the Expectation-Maximization algorithm, allows
for the automatic computation of thresholds that distinguish
different tissue types. This statistical approach provides a robust
framework for classifying lung tissue based on its intensity
values.

4.2.3 Performance evaluation
The effectiveness of the entire pipeline is measured using

evaluation metrics such as precision, accuracy, recall, specificity,
F1-score, and AUC, among others. The training subset is utilized to
generate a specific model. In contrast, the suitability of the training
process and the model is evaluated by simultaneously observing
overfitting or underfitting on the validation subset. Ultimately,
the unseen testing subset is used to judge the performance to
which the created model works. Sensitivity is the ratio of accurate
positive results to the actual positive cases. Specificity refers to the
proportion of true negative cases that are accurately recognized
as such. The Jaccard index (JI) is a percentage that shows how
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FIGURE 5

Schematic representation of a typical CNN architecture. Created in BioRender. Zhang (2024c).

FIGURE 6

A workflow for PTB diagnosis using DL based on a CT pipeline. Created in BioRender. Zhang (2024d).

much the model’s predicted output and the accurate annotation
ground-truth mask match. The similarity index measures the
unity between the segmentation generated by the model and
the expert-annotated ground truth. It evaluates the extent to
which the model’s delineation of the PTB region aligns with
the input image’s actual PTB area. A Dice similarity coefficient
(DSC) of zero indicates no spatial overlap between the model’s
annotations and the actual PTB location, while a DSC of one
signifies perfect spatial overlap. The AUC summarizes the receiver
operating characteristic (ROC) curve. The ROC curve compares

the sensitivity to the false positive rate to see how well a classifier can
tell the difference between classes. Additional details can be found
in Table 2, which provides some standard performance metrics for
DL models.

4.2.4 DL-related concepts
Deep learning is a subset of ML that focuses on deep

artificial neural networks (ANNs). Common types of DL algorithms
encompass multi-layer perceptrons (MLPs), CNNs, RNNs, graph
neural networks, Transformers, and more. Overfitting is a
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FIGURE 7

The application of DL in TB management. Created in BioRender. Zhang (2024e)

TABLE 2 Common performance metrics for DL models.

Metric Description Formula

Accuracy The ratio of correctly predicted instances to the total instances Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision The ratio of true positive predictions to the total positive predictions Precision = TP / (TP + FP)

Recall The ratio of true positive predictions to the total actual positives Recall = TP / (TP + FN)

Specificity The ratio of true negative predictions to the total actual negatives Specificity = TN / (TN + FP)

Kappa A statistic that measures inter-rater agreement for categorical items Kappa = (Po − Pe) / (1 − Pe)1

F1-score The harmonic mean of precision and recall, balancing both metrics F1-score = 2 × precision × recall / (precision + recall)

Dice similarity coefficient A measure of overlap between two sets, often used in image
segmentation tasks

Dice = (2 × TP) / (2 × TP + FP + FN)

1Po is observed agreement, and Pe is expected agreement.

modeling error that arises when a model learns the random noise
and fluctuations in the training data to the extent that it negatively
impacts the model’s performance on new, unseen data. Essentially,
the model becomes too tailored to the training set and fails to
generalize well to independent data sets, such as those used for
testing. Cross-validation is a way to see if the outcomes of a
statistical test can be applied to a different data set. It is mainly
used when the goal is to make a prediction and figure out how
well a prediction model will work in real life. In k-fold cross-
validation, the original sample is split into k subsamples of the
same size. Only one k subsamples are kept as confirmation data
to test the model, and the other k − 1 subsamples are used as
training data. After that, this process is done k times, and each
k subsample is used only once as confirmation data. In leave-
one-out cross-validation, one observation from the sample is used
as the validation set, and the rest are used as the training set.

This is a type of k-fold cross-validation, where k is the total
number of data points. Because this is done repeatedly, each
measurement in the dataset is used as the validation set a single
time. The same dataset is used for training and validation in
cross-validation, so it is an internal validation method. External
validation, on the other hand, uses a different set of data that
was not used to train and test the model in the first place.
This could involve data from a different time, location, or group
of subjects. In the bootstrap validation technique, for every
iteration, a subset of the original dataset is selected randomly
with replacement to serve as the training dataset for the model.
The data points not included in the training subset, known
as the out-of-sample points, constitute the validation set. This
procedure is conducted n times consecutively, and the average
error rate from these n iterations is calculated to assess the model’s
predictive accuracy.
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5 Applications of DL in CT-based
PTB detection

Multiple DL algorithms have been widely applied to CT-
based PTB diagnosis, including 3D CNN, MLP, U-Net, DTE-SVM,
ICNN, and GNN. These algorithms have unique feature extraction
and classification capability characteristics suitable for different
datasets and diagnostic tasks. U-Net is often used for medical
image segmentation tasks and performs well in segmenting and
diagnosing PTB lesions. Ma et al. (2020) utilized U-Net to process
CT data from 337 ATB cases, 110 pneumonia cases, and 120 healthy
individuals. Utilizing an independent dataset for testing, they
achieved exceptional results, demonstrating a positive predictive
value of 0.971 and an AUC score of 0.980.

Three-dimensional CNNs can process 3D chest CT data, fully
exploiting spatial information for diagnosis. Li X. K. et al. (2021)
developed a 3D CNN to assist in diagnosing PTB, achieving
93.7% precision and 98.7% recall by learning from 501 PTB
patients and an equal number of standard samples. Most studies
employ cross-validation methods like 5-fold or 10-fold cross-
validation. For example, Zhang et al. (2024) used MAResNet
with 905 chest CT samples provided by Beijing Chest Hospital,
adopting fivefold cross-validation, achieving an accuracy of 94%
with sensitivity and specificity reaching 93.80% and 94.20%,
respectively. Haq et al. (2022) used an ANN-based classifier, MLP,
with 10-fold cross-validation, achieving an accuracy of 99% and a
very high Kappa coefficient (0.98). Some studies use independent
test data for model performance evaluation, such as in the study
by Li X. K. et al. (2021). Open data sharing can accelerate
the development and validation of CT-based PTB algorithms,
improving research validation capabilities. The study by Huang
et al. (2023) illustrates this value well; their research is based
on the data released by Zhang et al. (2020). They employed a
DTE-SVM algorithm, showing satisfactory results in terms of
accuracy and sensitivity. In conclusion, these research findings
demonstrate that as DL algorithms mature, their application in
CT-based PTB diagnosis is becoming increasingly widespread and
practical. Characteristics of the included studies are shown in
Table 3.

5.1 Detection and classification of TB
lesions

Conventional techniques for PTB detection frequently depend
on radiologists’ expertise, which may be subjective and protracted.
The integration of DL into this process has shown promising
advancements. The application of DL in TB management is
shown in Figure 7. Zhang et al. (2024) introduces a 3D
multi-scale attention residual network (MAResNet) to recognize
PTB utilizing CT images. MAResNet is the integration of the
Convolutional Block Attention Module (CBAM) alongside residual
modules. This dual mechanism enhances the distinguishability
of image features and allows for the efficient reuse of shallow
features. The accuracy of MAResNet in classifying PTB reaches
94%, which is essential for differential diagnosis and treatment
planning.

Another study by Yoon et al. (2023) a 3D neural network
model, nnU-Net, will be created to investigate the clinical
significance of CT cavity volume and evaluate the model’s efficacy in
cavity detection. The research retrospectively analyzed 392 patients
with mycobacterial pulmonary disease, including TB and non-
tuberculous pulmonary disease. The nnU-Net model demonstrated
high sensitivity in detecting cavities, with a mean DSC of 78.9. One
notable application is the cascading deep supervision U-Net model,
as highlighted in the study by Hu et al. (2022), which concentrates
on the diagnosis of pneumoconiosis complicated by PTB. The
CSNet model leverages the strengths of HRCT to provide high-
resolution imaging coupled with the DL framework to enhance the
segmentation and diagnosis of affected lung tissues. This approach
has shown superior performance over traditional U-Net models,
with an AUC value of 0.947.

5.2 Differentiation between TB and other
lung diseases

5.2.1 Distinguishing PTB and non-tuberculous
mycobacteria lung disease

Wang et al. (2021) retrospectively amassed chest CT images
from 301 patients with non-tuberculous mycobacterial lung disease
(NTM-LD) and 804 patients with PTB. The definitive diagnostic
criterion was pathogenic microbiological analysis. They utilized a
3D ResNet model, attaining AUC scores of 0.90, 0.88, and 0.86 for
the training, validation, and testing datasets. Additionally, when
assessed on an external dataset consisting of 40 cases of NTM-LD
and 40 cases of MTB-LD, the AUC was 0.78. The 3D-ResNet model
had a markedly enhanced capacity to distinguish between the two
circumstances relative to radiologists with 10 years of expertise, and
its diagnosis speed surpassed that of the radiologists by more than
1,000 times.

5.2.2 Distinguishing PTB and pneumonia
The advent of DL has revolutionized the field of medical

imaging, particularly in the differentiation between PTB and CAP.
Han et al. (2023) have used the power of 3D-CNNs to discern
PTB from CAP using chest CT images. Their model was trained
and validated using a dataset comprising 493 patients from two
imaging centers. The model achieved an accuracy of 0.989 in
the internal and 0.934 in the external test set, showcasing its
robustness in differentiating the two conditions. The ability of the
3D-CNN to directly extract abstract features from images without
the need for manual segmentation aligns with the growing trend in
radiomics, which relies on high-throughput feature analysis. This
method accelerates the diagnosis process and reduces the impact
of subjective interpretation prevalent in conventional radiological
evaluations.

5.2.3 Distinguishing PTB and lung cancer
Lung cancer can be categorized into three main groups.

Distinguishing PTB from lung cancer is challenging due to
their overlapping clinical and radiological features. Feng et al.
(2020) used a CNN method to extract features from CT images,
creating a DL signature to predict the likelihood of PTB or lung
adenocarcinoma. They also developed a DL nomogram combining
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TABLE 3 Characteristics of the included studies.

References Journal Country Number of
patients
(male/female)

Purpose Deep learn
algorithm
type

Dataset
source

Dataset Validation Reference
standard

Performances

Zhang et al.,
2024

Medical & Biological
Engineering &
Computing

China N/A Diagnosis of
PTB with 3D
neural network

MAResNet Beijing Chest
Hospital

905 chest CT
scans (500 PTB
vs. 405 normal)

Fivefold
cross-validation

Radiologist
annotation

Accuracy: 94%;
sensitivity: 93.80%;
specificity: 94.20%; AUC:
0.97

Haq et al., 2022 Symmetry Pakistan N/A Diagnosis of
PTB

ANN based
classifier MLP

Bahawal
Victoria
Hospital

200 chest CT
scans (100 PTB
vs. 100 normal)

10-fold
cross-validation

Pulmonary
disease
specialist label

Accuracy of 99%; kappa:
0.98

Ma et al., 2020 Journal of X-Ray
Science and
Technology

China 518/328 Diagnosis of
ATB

U-Net Hebei University
Affiliated
Hospital

337 ATB, 110
pneumonia, and
120 normal cases

Independent test
data containing
139 ATB, 40
pneumonia, and
100 normal cases

Sputum smear
for ATB
patients; CT
report result for
normal and
pneumonia
patients.

Accuracy: 0.968;
sensitivity: 0.964;
specificity: 0.971; positive
predictive value: 0.971;
negative predictive value:
0.964; AUC: 0.980

Huang et al.,
2023

IEEE/ACM
Transactions on
Computational
Biology and
Bioinformatics

N/A 88/46 Diagnosis of
PTB

DTE-SVM Hospital
database

288 CT images
(144 PTB, 144
normal)/68 PTB
and 66 normal

10-fold
cross-validation

Radiologist Accuracy: 94.62% ± 1.00;
F1-score: 94.62% ± 1.00;
precision: 95.30% ± 1.24;
sensitivity:
93.89% ± 1.96;
specificity:
95.35% ± 1.31; AUC:
0.9579

Zhang et al.,
2020

Journal of Ambient
Intelligence and
Humanized
Computing

N/A 88/46 Diagnosis of
secondary PTB

ICNN Hospital
database

144 CT imaging
datasets from 68
secondary PTB
and 144 CT
image datasets
from 66 normal
people

Independent test
data containing
29 secondary
PTB and 29
normal images

Radiologists Accuracy: 93.95%;
sensitivity: 94.19%;
specificity: 93.72%

Li X. K. et al.,
2021

Applied Intelligence China N/A Diagnosis of
PTB

3D CNN Affiliated
Hospital of
Zhejiang
University

501 CT imaging
datasets from
223 PTB and 501
CT image
datasets from
normal people

Five-folder
cross-validation
and independent
test data
(containing 75
PTB and 75
normal cases)

Radiologist
label

Precision = 93.7%,
recall = 98.7%

Lu et al., 2022 Computer Methods
and Programs in
Biomedicine

China N/A Diagnosis of
PTB

Graph neural
network

Fourth Hospital
of Huai’an

840 chest CT
scans (420 PTB
vs. 420 normal)

Fivefold
cross-validation

Radiologist Accuracy: 98.93%;
sensitivity: 100%;
specificity: 97.94%;
precision: 97.86%; F1
score: 98.91%

PTB, pulmonary tuberculosis; HC, healthy controls; MAResNet, multi-scale attention ResNet; ANN, artificial neural network; MLP, multi-layer perceptron; ATB, active tuberculosis; DTE-SVM, deep transferred efficientNet with SVM; CNN, convolutional neural
network; ICNN, improved convolutional neural network.
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the DL signature with clinical factors and CT-based findings. The
DL nomogram showed impressive AUCs of 0.889 in the training
set, 0.879 in the internal validation set, and 0.809 in the external
validation set. Tan et al. (2022) utilized a customized VGG16 model
trained with transfer learning and achieved an accuracy of 90.4%
in distinguishing between TB lung nodules and lung cancer. The
accurate differentiation between TB and pulmonary nodules in CT
images is crucial for effective diagnosis and treatment planning.
Conventional techniques frequently depend on the proficiency of
radiologists, which may be subjective and labor-intensive. The
advent of DL has introduced a paradigm shift in this domain,
offering automated and efficient solutions.

5.3 Quantitative analysis of PTB lesion
progression

In addition to identifying PTB, DP is adept at monitoring
changes in patients’ conditions following treatment and assessing
the severity of the disease.

The accurate quantification of lesion progression in PTB
from CT images is pivotal for disease monitoring and treatment
response evaluation. The integration of depth information in
the ResNet model allowed for capturing the 3D characteristics
of pulmonary lesions, providing a more comprehensive analysis
than traditional 2D image assessments. This approach underscores
the potential of DL in identifying the presence of disease and
quantifying its extent and severity. Gao et al. (2020) developed
a 3D ResNet incorporating depth information at each layer,
the suggested depth-ResNet model demonstrated remarkable
performance, with an average classification accuracy of 92.7% in
predicting severity scores. Wu et al. (2019) utilize DL to create a
diagnostic framework that detects PTB lesions and classifies them
into specific types, such as military and tuberculoma. Applying
a Noisy-Or Bayesian function to calculate an overall infection
probability enhances the diagnostic report with quantitative
analysis, offering clinicians a more thorough comprehension of
the infection’s scope and characteristics. The approach utilized
advanced 3D CNNs to examine CT imaging datasets from
233 patients with active PTB and 501 healthy controls. The
recall and precision for identifying PTB patients were 98.7%
and 93.7%, respectively. The classification accuracy of PTB was
90.9%.

5.4 Reducing CT radiation dose for
diagnosing PTB

Studies have shown that the effective radiation dose from
a single CT scan can range from a few millisieverts (mSv) to
over 8 mSv, which is significantly higher than the typical annual
background radiation exposure of around 3 mSv (Sharma and
Surani, 2020; McKenna and McMonagle, 2024). Using ionizing
radiation in CT scans has raised concerns about the potential
health risks. The mean radiation exposure for ultra-low-dose
computed tomography (ULDCT) ranges from 0.05 to 0.26 mSv,
representing a significant reduction when compared to the
radiation levels associated with standard-dose CT scans (Heltborg

et al., 2024). Yan et al. (2021a) demonstrates the application of
a CycleGAN model for denoising ultralow-dose CT images in
evaluating PTB. The optimized CycleGAN model improved the
peak signal-to-noise ratio by 2.0 dB and the structural similarity
index by 0.21, providing satisfactory image quality with lower
noise levels than hybrid and model-based iterative reconstruction
techniques. The optimized CycleGAN technology might enable
chest ULDCT to generate diagnostically acceptable images for TB
evaluation.

5.5 Further expansion of PTB diagnosis

5.5.1 Diagnosis of multidrug-resistant TB
Postprimary TB manifests in five distinct forms: infiltrative,

focal, tuberculoma, miliary, and fibrocavernous. Multidrug-
resistant PTB (MDR-PTB) often exhibits similar characteristics to
those of drug-susceptible TB. DL techniques have demonstrated
the potential to improve multidrug-resistant TB’s diagnostic
precision and efficacy (MDR-TB). Gao and Qian (2018) using
CT lung image data from a public dataset, a patch-based DL
approach was proposed to classify multidrug-resistant TB and
drug-sensitive TB. The CNN allied to the SVM classifier achieved
an accuracy of 91.11% with the patch-based DL technique.
This study overcame the challenge of a limited dataset of only
230 samples by using patches instead of full images, effectively
expanding the dataset from hundreds to thousands. Duwairi and
Melhem (2023) employed multi-channel models that incorporated
image frames, mask frames, and gender/age data as inputs,
utilizing transfer learning based on VGG19 and ResNet neural
networks for feature extraction from CT scans. Their study’s best-
performing model for MDR classification achieved an accuracy of
74.13% and an AUC of 64.2%. DeepTB is a DL system created
using CNN-ResNet to learn transfer learning. It can quickly
diagnose DR-TB and divide it into three main types: rifampicin-
RTB, MDR-TB, and extensively drug-RTB. Utilizing complex
network structures, DeepTB transforms input data into target
predictions, achieving high performance for DR-TB diagnosis
(AUC: 0.943). The model also attained an AUC of 0.880 for
RR-TB, 0.928 for MDR-TB, and 0.918 for XDR-TB. Integrating
class activation maps (CAMs) offers a visual explanation of the
decision-making process, addressing the “black-box” issue of CNNs
and boosting clinical trust in the system’s outputs (Liang et al.,
2024).

5.5.2 Diagnosing the infectiousness of PTB
The utilization of DL models in the analysis of CT images

has demonstrated considerable potential in differentiating the
infectivity of PTB patients. Gao et al. (2023) created a DL model
called TBINet, which employs a 2D projection-based CNNs to
assess the infectivity of PTB patients using CT images. The
algorithm was trained on a dataset of 925 individuals from
four sites, with infectivity classified according to several sputum
samples conducted within a month. The TBiNet model exhibited
enhanced performance, achieving an AUC of 0.753 on the external
test set, surpassing current DL methodologies. Gradient-weighted
class activation mapping (Grad-CAM) technology indicated that
CT scans exhibiting increased consolidation, voids, upper lobe
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involvement, and larger lymph nodes were more frequently
associated with patients suffering from highly infectious types of
PTB.

5.5.3 Diagnosing comorbidities of PTB
The diagnosis of comorbidities in patients with PTB is crucial

for effective management and treatment. Several studies have
highlighted the significance of identifying comorbidities such as
diabetes mellitus and HIV infection in recently diagnosed PTB
individuals (Sama et al., 2023). When diagnosing PTB, it is crucial
to take into account a variety of factors, including age, sex, previous
TB treatment history, and other comorbidities (Jiang et al., 2024).
Additional research and guidelines are required to improve the
diagnosis and management of comorbidities in PTB patients.

5.6 Integration with clinical decision
support systems

While the initial validation results are impressive, further
prospective validation studies are necessary within actual clinical
settings. Once these commercial AI systems have been thoroughly
tested, they could offer physicians globally convenient, efficient, and
precise diagnostic tools, thereby aiding clinical decision-making in
the foreseeable future. Integrating clinical decision support systems
is a key challenge in applying DL to CT-based PTB diagnosis.
This requires seamlessly integrating AI models with existing
healthcare systems to ensure that diagnostic results are effectively
communicated to physicians and influence clinical decision-
making. Specifically, it requires addressing several challenges: First,
integrating the output of AI models with data from existing systems
like electronic medical records and PACS to ensure diagnostic
results are associated with the patient’s other clinical information.
This requires addressing issues around data formats and security.
Second, ensuring AI-assisted diagnosis can seamlessly integrate
into the physician’s clinical workflow without adding extra steps or
disrupting the normal diagnostic process. This requires optimizing
and redesigning existing workflows. Finally, physicians must
understand the rationale and logic behind the AI model’s diagnoses
to evaluate the results and perform secondary confirmations. This
requires improving the interpretability of the AI model so that
physicians can gain insights into its inner workings. Interpretability
remains a critical challenge in the domain of CT-based pneumonia
and PTB diagnosis, as DL models used for image analysis are often
regarded as “black boxes” due to their high-dimensional and non-
linear nature. Providing clear and actionable explanations can help
physicians and DL models jointly improve diagnostic accuracy,
reducing the risk of misdiagnosis of PTB. One effective approach
involves using Grad-CAM to visualize the regions of the lungs that
the model focuses on during the diagnosis of PTB, such as lesions or
areas of consolidation (Jegatheeswaran et al., 2024). Additionally,
Shapley additive explanations or local interpretable model-agnostic
explanations can be applied to identify the most significant features
contributing to the model’s predictions, such as pixel intensities or
specific ROIs (Chung et al., 2024; Peng et al., 2024). Interactive
tools like heatmaps can further enhance interpretability by allowing
physicians to explore the model’s behavior and examine specific
predictions in detail (Liu et al., 2020). It is also important to
evaluate interpretability methods with physicians to ensure that

the explanations are comprehensible and clinically relevant. Finally,
ensuring compliance with regulatory standards and incorporating
feedback from medical professionals will further support the safe
and effective deployment of these systems in actual clinical settings.

6 Discussion

Data scarcity is a significant challenge in medical imaging,
particularly for diseases like PTB, where annotated CT scans are
limited. One potential solution is to employ a GAN framework to
create synthetic CT images like real-world data features. Current
research indicates that models trained on synthetic data can
perform comparable to those trained on real data alone (Ali
et al., 2024). Various geometric transformations, such as rotations,
scaling, and flipping, help the model learn invariant features
crucial for accurate diagnosis across different patient presentations.
These transformations enhance the model’s ability to recognize
disease patterns despite patient positioning and imaging technique
variations (Mastouri et al., 2024). Transfer learning represents
another promising strategy to address data scarcity (Wajgi et al.,
2024). Researchers can initialize the network weights and fine-tune
the model on the PTB CT data by leveraging pre-trained models
on large-scale medical imaging datasets or even non-medical image
datasets. For instance, models pre-trained in general lung disease
detection tasks may have learned useful low-level and mid-level
features such as lung structure identification and texture analysis.
These pre-trained features can be transferred and further adapted
to the specific task of TB diagnosis, thereby enhancing the model’s
performance on limited datasets. To prevent overfitting and reduce
model complexity, regularization techniques such as dropout and
weight decay improve the model’s ability to generalize to new
data by discouraging the model from relying too heavily on any
training example. Future studies could focus on developing more
advanced data augmentation techniques that mimic real-world
variations in imaging data. Additionally, exploring hybrid transfer
learning methods that combine multiple pre-trained models could
optimize generalization for PTB diagnosis. Such approaches may
lead to more robust and accurate diagnostic models, even in limited
training data.

The application of DL in clinical settings has revolutionized
healthcare, offering promising advancements in diagnostics.
However, this technological leap also presents many ethical
concerns that require careful consideration and resolution.

First, using DL in healthcare often involves processing sensitive
patient data, raising concerns about privacy and security. To
address this, robust encryption, anonymization, and secure data-
sharing protocols are proposed to protect patient data (Mirzaei
et al., 2024). Additionally, federated learning techniques are being
explored to train models on decentralized data, which can help
preserve privacy while allowing for practical model training
(Mukund et al., 2024). Second, DL models can be affected by
biases in the training data, which can cause doctors to make bad
decisions. To fix this problem, researchers use data augmentation,
data balance, and fairness-aware training to ensure that models
accurately represent diverse groups of people and do not make
differences worse. This method is essential for ensuring that DL
systems are trustworthy in clinical settings. Third, the intricacy of
DL models, frequently called “black boxes,” makes it challenging
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to understand and interpret how they make decisions fully.
In clinical settings, the lack of transparency in the predictions
made by algorithms can lead to skepticism among medical
professionals regarding the model’s reliability (Rajpurkar et al.,
2022). Scientists are creating explainable AI methods like saliency
maps and attention processes to improve explainability (Cerekci
et al., 2024). These offer insights into model predictions and
support the development of transparency and confidence in clinical
decision-making. Finally, the algorithms fail to complete accuracy,
and the accountability for any detrimental outcomes resulting
from erroneous predictions remains ambiguous. This engenders
uncertainty among physicians and patients. The imprecise accuracy
of AI systems presents significant responsibility concerns related to
harm (Morin-Martel, 2023). This requires careful evaluation of DL’s
diagnostic accuracy and its impact on clinical workflows, ensuring
the technology is practical and ethically integrated into healthcare
practices.

The accuracy of DL models in TB diagnosis is essential,
as misdiagnoses can have severe consequences. Rigorous testing
and validation of DL models against gold standards are required
to guarantee accuracy. Consistently enhance the models to
accommodate the evolving clinical landscape and emerging
scientific findings. Innovative models must be evaluated in real-
world medical settings and integrated smoothly into the standard
operational procedures, particularly in nations with a high TB
burden and limited access to sophisticated medical technology and
specialized medical personnel to guide clinical practice effectively.
Additionally, improving patient comprehension of the diagnostic
procedure and clinician trust are benefits of developing explainable
AI approaches for DL models used in TB diagnosis. These
factors are critical for properly implementing these technologies in
clinical settings.

Two frameworks were recommended to ensure the ethical
application of DL in diagnosing PTB. The Principles of Biomedical
Ethics serve as a foundational guide, emphasizing four central
bioethical principles: autonomy, beneficence, non-maleficence, and
justice (Mirzaei et al., 2024). These principles are crucial for
evaluating the ethical implications of DL applications in the
diagnosis of PTB, ensuring that they benefit patients without
causing harm, respecting patient autonomy, and promoting
equitable access to care. Furthermore, the Trustworthy AI
Framework provides a comprehensive set of criteria for AI systems
(Schwabe et al., 2024). It highlights the importance of human
agency and oversight, diversity, non-discrimination, and fairness,
underscoring the necessity for DL systems to be designed and
deployed trustworthy to respect human rights.

7 Conclusion

Artificial intelligence-based techniques, such as DL and
other traditional ML algorithms, when applied to PTB, offer
an autonomous, convenient, and efficient approach to enhance
diagnostic precision and speed, often surpassing the capabilities
of radiologists. This study underscores the complexity involved
in diagnosing PTB. It emphasizes the significant role of
sophisticated DL and imaging diagnostic methods. The main
goal of medical image processing is to use algorithms to

get accurate and valuable information out of images with
as little mistake as possible. The segmenting, classifying, and
diagnosing PTB utilizing CT data generally comprises four
essential stages: data acquisition and preprocessing, feature
extraction, and classification. Furthermore, it is imperative
to prioritize the interpretability of DL models when they
are implemented in clinical decision-making processes. The
research may be improved by examining the integration of
multi-modal datasets and deploying real-time DL solutions in
healthcare environments. Therefore, DL tools can be considered
a promising diagnostic resource for PTB and various other life-
threatening diseases.
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APPENDIX

APPENDIX TABLE A1 Evaluation of bias risk and applicability in selected studies.

Study Risk of bias Applicability concerns

Patient
selection

Index test Reference
standard

Flow and
timing

Patient
selection

Index test Reference
standard

Zhang et al.,
2024

Unclear risk Low risk Low risk Unclear risk Unclear risk Low concern Low concern

Haq et al., 2022 Unclear risk Low risk Low risk Unclear risk Unclear risk Low concern Low concern

Ma et al., 2020 Low risk Low risk Low risk Unclear risk Low risk Low concern Low concern

Huang et al.,
2023

Low risk Low risk Low risk Unclear risk Low risk Low concern Low concern

Zhang et al.,
2020

Low risk Low risk Low risk Unclear risk Low risk Low concern Low concern

Li X. K. et al.,
2021

Unclear risk Low risk Low risk Unclear risk Unclear risk Low concern Low concern

Lu et al., 2022 Unclear risk Low risk Low risk Unclear risk Unclear risk Low concern Low concern
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