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Aim: The current study aims to delineate subcutaneous adipose tissue (SAT), 
visceral adipose tissue (VAT), the sacrospinalis muscle, and all abdominal 
musculature at the L3–L5 vertebral level from non-contrast computed 
tomography (CT) imagery using deep learning algorithms. Subsequently, 
radiomic features are collected from these segmented images and subjected to 
medical interpretation.

Materials and methods: This retrospective analysis includes a cohort of 315 
patients diagnosed with acute necrotizing pancreatitis (ANP) who had undergone 
comprehensive whole-abdomen CT scans. The no new net (nnU-Net) 
architecture was adopted for the imagery segmentation, while Python scripts 
were employed to derive radiomic features from the segmented non-contrast 
CT images. In light of the intrinsic medical relevance of specific features, two 
categories were selected for analysis: first-order statistics and morphological 
characteristics. A correlation analysis was conducted, and statistically significant 
features were subjected to medical scrutiny.

Results: With respect to VAT, skewness (p = 0.004) and uniformity (p = 0.036) 
emerged as statistically significant; for SAT, significant features included 
skewness (p = 0.023), maximum two-dimensional (2D) diameter slice 
(p = 0.020), and maximum three-dimensional (3D) diameter (p = 0.044); for the 
abdominal muscles, statistically significant metrics were the interquartile range 
(IQR; p = 0.023), mean absolute deviation (p = 0.039), robust mean absolute 
deviation (p = 0.015), elongation (p = 0.025), sphericity (p = 0.010), and 
surface volume ratio (p = 0.014); and for the sacrospinalis muscle, significant 
indices comprised the IQR (p = 0.018), mean absolute deviation (p = 0.049), 
robust mean absolute deviation (p = 0.025), skewness (p = 0.008), maximum 
2D diameter slice (p = 0.008), maximum 3D diameter (p = 0.005), sphericity 
(p = 0.011), and surface volume ratio (p = 0.005).

Conclusion: Diminished localized deposition of VAT and SAT, homogeneity 
in the VAT and SAT density, augmented SAT volume, and a dispersed and 
heterogeneous distribution of abdominal muscle density are identified as risk 
factors for infectious pancreatic necrosis (IPN).
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1 Introduction

Acute necrotizing pancreatitis (ANP), a grave complication of 
acute pancreatitis (AP), arises from the aberrant activation of 
pancreatic digestive enzymes, resulting in tissue necrosis. This necrotic 
tissue creates an environment conducive to bacterial proliferation, 
which frequently precipitates infectious pancreatic necrosis (IPN), 
occurring in approximately 30% of ANP patients and manifesting a 
mortality rate as high as 30%. Consequently, the early and precise 
diagnosis and treatment of IPN are of paramount importance. Given 
the intimate connection between the pathophysiology of ANP and 
systemic metabolism, recent research has focused on the roles of 
muscle and adipose tissue in ANP and its complications (Yee et al., 
2021; Zhang X. et al., 2024).

In unraveling the intricate pathogenesis of IPN, it is essential to 
consider the potential contributions of body composition, particularly 
with respect to muscle and fat. Skeletal muscle, a fundamental 
component of the human body, not only underpins essential motor 
functions but is also intimately associated with an individual’s 
metabolic state, inflammatory responses, and long-term clinical 
outcomes. Adipose tissue, especially visceral fat, is recognized as a 
“metabolically active” entity that secretes various bioactive molecules 
involved in regulating energy metabolism, inflammatory reactions, 
and immune functions. Recent evidence suggests that alterations in 
muscle and fat content and distribution may exert direct or indirect 
influences on the progression and outcomes of AP (Fu et al., 2023; 
Dawra et al., 2023). Nonetheless, a comprehensive understanding of 
the specific roles these changes play in the development of IPN 
remains elusive. This study seeks to bridge this gap by examining the 
distinctive alterations in muscle and fat among IPN patients, thereby 
offering a novel perspective on the multifaceted disease trajectory of 
IPN. While the previous studies have acknowledged the significance 
of assessing body composition, they have been mainly confined to 
macroscopic observations and correlative analyses, with a limited 
exploration of the precise mechanisms by which muscle and fat impact 
IPN. Hence, this study will utilize CT scans to meticulously evaluate 
the distribution of muscle and fat in IPN patients. This methodological 
approach is anticipated to elucidate the intrinsic correlation between 
muscle and fat status and the pathophysiological underpinnings of 
IPN, providing a scientific foundation for early diagnosis, therapeutic 
strategy development, and prognostic enhancement. The objective is 
to furnish new theoretical insights and practical guidance for precision 
medicine and IPN management.

Computed tomography (CT), as a prevalent imaging technique, 
offers distinct advantages in assessing body composition. It not only 
delineates the distribution of muscles and fats with clarity but also 
quantitatively analyzes critical parameters, such as muscle area and 
fat content, through precise measurement tools, thereby affording 
clinicians a wealth of morphological and functional information 
(Zhang R. et  al., 2023; Vogele et  al., 2023). In the evaluation of 
pancreatitis, CT accurately portrays pancreatic morphological 
alterations, necrotic regions, and the spread of inflammation, playing 
a pivotal role in diagnosing ANP and monitoring disease progression 
(Balthazar et al., 1990). Moreover, CT has proven to be particularly 
adept at assessing muscle and fat, enabling the exact measurement 
of their distribution and proportions, which is instrumental in 
evaluating patients’ nutritional status, inflammatory responses, and 
disease prognoses (Hou et  al., 2024). The advent of artificial 

intelligence technology, particularly the extensive application of 
deep learning algorithms in medical image processing, has 
introduced a novel perspective and set of tools for exploring the 
complex pathological mechanisms of AP (Zhang C. et al., 2024; Yin 
et al., 2024). By leveraging deep learning algorithms, we can uncover 
the profound features embedded within the vast repository of CT 
image data (Zhang R. et al., 2023), which may be intimately linked 
to the pathological changes of IPN, thereby facilitating early 
prediction and precise treatment of the condition. Despite the 
limitations of non-enhanced CT in the traditional visual diagnosis 
of pancreatic diseases due to the lack of contrast, its amalgamation 
with radiomics technology has yielded promising diagnostic 
outcomes (Koç and Taydaş, 2020; Janisch et  al., 2022; Cao 
et al., 2023).

This study explores the utility of body composition assessment 
based on non-contrast CT in ANP patients and harnesses deep 
learning and radiomics techniques to delve into the potential 
connections between body components and the onset of 
IPN. Additionally, we aspire to provide novel insights and strategies 
for the early detection and personalized treatment of the disease by 
examining the interplay with body composition.

2 Materials and methods

2.1 Patients

This study was conducted in accordance with the Declaration of 
Helsinki and received ethical approval from the Ethics Committee of 
Shengjing Hospital at China Medical University, with a waiver of 
informed consent for participants (ethical approval number: 
2024PS1480K). As depicted in Figure 1, we conducted a retrospective 
analysis of data from patients who were diagnosed with ANP and 
admitted to our institution between March 2019 and August 2024 and 
underwent CT scans within a week of symptom onset. Inclusion criteria 
included CT scans performed within 1 week of admission. Exclusion 
criteria included: (1) pregnancy; (2) age below 18 years; (3) concurrent 
malignancy; and (4) non-whole-abdomen CT scans, poor image quality, 
or incomplete clinical data that could compromise the accuracy and 
reliability of the assessment outcomes.

Clinical data collected included age, sex, IPN status, diabetes, 
hypertension, hyperlipidemia, hypoxemia, coronary heart disease, 
gallstone pancreatitis, mechanical ventilation, and hospital stay duration.

2.2 CT image acquisition

Patients were subjected to whole-abdomen CT imaging within 
1 week following admission. All scans were performed with the patients 
in a supine position during inhalation using a (1) Philips Brilliance ICT 
256-slice spiral CT scanner (Philips Healthcare). (2) Python package 
PyRadiomics version 3.0.1 (Python Software Foundation). (3) Statistical 
Package for the Social Sciences (SPSS) version 26.0 (IBM Corp). The 
scanning field extended from the diaphragmatic dome to the pubic 
symphysis. Scan parameters were set as follows: tube voltage at 120 kV, 
tube current adjusted to automatic milliamperage, matrix size of 
512 × 512, a pitch of 1, with routine images at a slice thickness of 3.0 mm, 
and thin-section images at 1.0 mm intervals.
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2.3 Data annotations

The present study utilized a stringent data annotation protocol 
to guarantee precision and consistency. To ensure the model’s 
generalizability and to reduce the interference of pancreatitis on the 
delineation of visceral fat, we employed CT images from a distinct 
cohort of individuals without pancreatitis for region of interest 
(ROI) annotation. Two experienced radiologists, each with over 
5 years of expertise in diagnostic imaging and unaware of the study’s 
aims, initially demarcated the subcutaneous fat (SAT), visceral fat 
(VAT), sacrospinalis, and all abdominal muscles at the L1–S1 
vertebral level (Figure 2). To further bolster the reliability of the data 
annotation, a seasoned diagnostic radiologist with over 15 years of 
experience, also unfamiliar with the study’s objectives, was brought 
in to scrutinize the ROIs. This senior radiologist, well-versed in 
medical imaging and rich in clinical diagnostic acumen, 
meticulously reviewed and corrected the annotations made by the 
junior physicians; during the review, the senior radiologist engaged 
in profound discussions with the junior physicians regarding 

controversial or unclear areas. However, these discussions were 
restricted to technical matters and excluded any discourse on the 
patient’s clinical conditions or the study’s hypotheses. Consensus 
was achieved through negotiation to ensure that each ROI 
annotation was exact and precise. This blinded data annotation 
process helped minimize the influence of subjective bias on the 
study’s outcomes.

2.4 Segmentation network

For the segmentation model, we adopted a 5-fold cross-validation 
approach with a data partition ratio of 5:1. Specifically, the dataset was 
initially randomly divided into five subsets, with four subsets (80%) 
serving as the training set and the remaining subset (20%) as the 
validation set. This procedure was replicated 5 times to ensure that 
each data point was used as a validation set exactly once. This ensures 
that we can maximize data utilization while more accurately evaluating 
the model’s generalization ability.

FIGURE 1

Patients’ enrollment and exclusion process in the infectious pancreatic necrosis (IPN) database.

FIGURE 2

(A) Non-pancreatitis crowd image; (B) Delineated subcutaneous adipose tissue (SAT) (green), visceral adipose tissue (VAT) (yellow), sacrospinalis (blue), 
and abdominal muscles (blue and purple).
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A neural network architecture was employed for accurate image 
segmentation. The process began with the segmentation of the L3–L5 
vertebrae. For ROI regions with smaller initial segmented areas and 
errors, erosion processing was applied to enhance their accuracy. 
Following this, connected component analysis was conducted, revealing 
that the segmentation accuracy of the L4 vertebra was the highest. 
Using this information, we  expanded one connected component 
upward and one downward to accurately identify the L3–L5 vertebral 
region. Subsequently, the muscles and fat within this region 
were delineated.

Our segmentation network was constructed based on the 
nnU-Net architecture (Isensee et  al., 2021). nnUNet can 
automatically perform preprocessing based on the characteristics of 
the dataset. Additionally, it offers various architectures that handle 
3D matrices effectively, making it highly suitable for CT images. Our 
segmentation network exclusively used non-enhanced CT images as 
a data source.

2.5 Evaluation of ANP and IPN

For the assessment of ANP (Figures 3A–C), all case evaluations were 
conducted by two radiologists specializing in imaging diagnostics, each 
with over 8 years of diagnostic experience, who reviewed all imaging 
studies performed during the inpatient stay of the enrolled patients, 
devoid of any clinical information and adverse outcomes. Regarding the 
assessment of IPN (Figures 3D–F), an abdominal CT specialist with over 
a decade of diagnostic experience evaluated the cases by synthesizing 
clinical data, imaging findings, and laboratory test results. It is pertinent 
to note that IPN was defined as the initial percutaneous catheter drainage 
or surgical retrieval, yielding a positive culture or the observation of 
extraluminal gas on CT scans. Pancreatic necrosis refers to areas within 

the pancreatic parenchyma that exhibit hypoattenuation or lack of 
enhancement on CT imaging. Peripancreatic necrosis is characterized by 
collections containing varying amounts of fluid and necrotic tissue 
associated with necrotizing pancreatitis, and it can be diagnosed when 
non-liquid components of non-enhancing areas are visualized on 
CT scans.

2.6 Radiomics feature selection

Utilizing the Python package PyRadiomics version 3.0.1, 
we conducted the extraction of radiomic features from non-contrast CT 
images that had been segmented automatically. In recognition of the 
intrinsic clinical relevance of specific attributes, we narrowed our focus to 
two principal categories: first-order and shape characteristics. The first-
order features encapsulate the distribution patterns of pixel intensities 
within the images (refer to Table  1, items 1–18), whereas the shape 
features concentrate on delineating the geometric attributes of the imaged 
structures (refer to Table 1, items 19–32).

2.7 Statistical analysis

Statistical computations were executed utilizing Statistical Package for 
the Social Sciences (SPSS) version 26.0. Quantitative data were expressed 
in terms of mean deviation ( )x s±  and were subjected to comparison via 
t-tests. Qualitative data were represented in frequencies and were 
evaluated using the χ2/Fisher exact tests, as appropriate. In radiomic data, 
the t-tests were employed for data that exhibited a normal distribution. In 
contrast, the Mann–Whitney U test was utilized for data that did not 
conform to a normal distribution. p < 0.05 was deemed indicative of 
statistical significance.

FIGURE 3

(A–C) Female, 50-year-old, acute necrotizing pancreatitis (ANP), showing a slightly hypodense lesion without enhancement after contrast (C, arrow); 
(D–F) Female, 31-year-old, infectious pancreatic necrosis (IPN), with scattered gas within the necrosis (F, arrow).
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TABLE 1 Radiomics features and their mathematical explanations used in this study.

Number Feature Mathematical explanation

1 10 percentile The 10th percentile value of the voxel intensities within the region of interest (ROI). This is the value below which 

10% of the data falls.

2 90 percentile The 90th percentile value of the voxel intensities within the ROI. This is the value below which 90% of the data falls.

3 Energy A measure of the magnitude of voxel values in an image. It is the sum of the squares of the voxel values.

4 Entropy Specifies the uncertainty/randomness in the image values. It measures the average amount of information required to 

encode the image values.

5 IQR The difference between the 75th percentile (Q3) and the 25th percentile (Q1) of the voxel intensities within the ROI. 

It is a measure of the spread of the middle 50% of the data.

6 Kurtosis A measure of the “peakedness” of the distribution of voxel intensities within the ROI. A high kurtosis value indicates 

a sharp peak and heavy tails, while a low kurtosis value indicates a flat distribution.

7 Maximum The maximum voxel intensity value within the ROI.

8 Mean The average voxel intensity value within the ROI.

9 MAD The average of the absolute differences between the individual voxel intensities and the mean voxel intensity.

10 Median The middle value of the voxel intensities within the ROI, such that half of the data is above and half is below this 

value.

11 Minimum The minimum voxel intensity value within the ROI.

12 Range The difference between the maximum and minimum voxel intensity values within the ROI.

13 Robust MAD A measure of the spread of the data that is less sensitive to outliers than the MAD.

14 Root mean squared The square root of the mean of the squares of the differences between the individual voxel intensities and the mean 

voxel intensity.

15 Skewness A measure of the asymmetry of the distribution of voxel intensities within the ROI. A positive skewness indicates a 

tail on the right side of the distribution, while a negative skewness indicates a tail on the left side.

16 Total energy The energy feature scaled by the volume of the voxel in cubic mm. It takes into account both the magnitude of the 

voxel values and the size of the ROI.

17 Uniformity A measure of the homogeneity of the voxel intensities within the ROI. It is the sum of the squares of each voxel 

intensity value divided by the square of the sum of the voxel intensity values.

18 Variance The average of the squared differences between the individual voxel intensities and the mean voxel intensity. It 

measures the spread of the data around the mean.

19 Elongation The elongation of the ROI shape is a measure of the relationship between the two largest principal components of the 

ROI.

20 Flatness The flatness of the ROI shape is a measure of the relationship between the largest and smallest principal components 

of the ROI.

21 Least axis length The length of the smallest principal axis of the ROI.

22 Major axis length The length of the largest principal axis of the ROI.

23 Maximum 2D diameter 

column

The maximum 2D diameter of the ROI in the column direction (typically the y-axis in an image).

24 Maximum 2D diameter row The maximum 2D diameter of the ROI in the row direction (typically the x-axis in an image).

25 Maximum 2D diameter 

slice

The maximum 2D diameter of the ROI in the slice direction (typically the z-axis in a 3D image).

26 Maximum 3D diameter The maximum 3D diameter of the ROI is the largest Euclidean distance between any two points on the surface of the 

ROI.

27 Mesh volume The volume of the ROI is calculated from the triangular mesh that represents the surface of the ROI.

28 Minor axis length The length of the second-largest principal axis of the ROI

29 Sphericity A measure of how spherical the ROI is. It is the ratio of the surface area of a sphere with the same volume as the ROI 

to the actual surface area of the ROI.

30 Surface area The surface area of the ROI.

31 Surface volume ratio The ratio of the surface area of the ROI to its volume. A lower value indicates a more compact, spherical shape.

32 Voxel volume The volume of a single voxel within the ROI.
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The overall study workflow is shown in Figure 4.

3 Results

3.1 Clinical characteristics

The present study enrolled a total of 315 patients. Table  2 
delineates the clinical attributes of the participants within the IPN and 
non-infected pancreatic necrosis (NPN) cohorts.

A comparative analysis of the clinical characteristics between the 
IPN (n = 101) and NPN (n = 214) groups revealed no significant 
disparities with respect to sex, diabetes, hypertension, hyperlipidemia, 
and coronary heart disease. However, patients in the IPN cohort were 
notably older (p = 0.038), exhibited a more significant requirement for 
mechanical ventilation (p < 0.001), and experienced significantly 
prolonged hospital admissions (p < 0.001) compared to their NPN 
counterparts. While a higher incidence of hypoxemia was observed 
among IPN patients, this discrepancy did not reach statistical 
significance. These observations proffer critical insights for subsequent 
inquiries into the pathophysiology and prognostic determinants of IPN.

3.2 Segmentation results

Following a comprehensive assessment across five validation 
datasets, utilizing a 5-fold cross-validation approach with each 
model undergoing 100 training epochs, the model exhibiting 
superior performance was designated as the definitive model 
(Figures 5–7). The optimal model achieved an accuracy of 0.91 in 
segmenting the L3–L5 vertebral region within the 
validation dataset.

Within the L3–L5 vertebral range, we executed segmentation of 
the SAT, VAT, sacrospinalis, and all abdominal musculature (Figure 8).

3.3 Correlation between body composition 
and infectious pancreatic necrosis

We conducted a detailed analysis of the first-order and shape 
characteristics of the segmented VAT, SAT, sacrospinalis, and all 
abdominal muscles. For the statistically significant features, 
we attempted to provide explanations and presented them in the form 
of box plots (Figure 9).

FIGURE 4

Study flowchart.
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3.3.1 VAT
As shown in Table 3, for the first-order VAT features, skewness 

(p = 0.004) and uniformity (p = 0.036) were statistically significant; 
the other features were not.

The skewness feature of VAT is correlated with the symmetry of 
VAT pixel distribution, with higher skewness values indicating 

excessive fat accumulation in certain areas and relatively less in others; 
within this set of features, skewness is 0.60 in the negative group, and 
lower in the positive group (0.48), suggesting that VAT in IPN patients 
exhibits less localized accumulation.

The uniformity feature pertains to whether VAT is 
evenly distributed within the ROI, with values closer to 1 

TABLE 2 Comparison of clinical characteristics between infectious pancreatic necrosis (IPN) and non-infected pancreatic necrosis (NPN) groups.

Clinical characteristics IPN (n = 101) NPN (n = 214) p

Sex (n) Male 70 (69.3%) 143 (66.8%) 0.66

Female 31 (30.7%) 71 (33.2%)

Age (years) 47.91 ± 15.45 44.14 ± 13.85 0.038

Diabetes mellitus (n) Yes 44 (43.6%) 98 (45.8%) 0.71

No 57 (56.4%) 116 (54.2%)

Hypertension (n) Yes 35 (34.7%) 61 (28.5%) 0.269

No 66 (65.3%) 153 (71.5%)

Hyperlipidemia (n) Yes 44 (43.6%) 108 (50.5%) 0.252

No 57 (56.4%) 106 (49.5%)

Coronary heart disease (n) Yes 5 (5.0%) 8 (3.7%) 0.762

No 96 (95.0%) 206 (96.3%)

Mechanical ventilation (n) Yes 32 (31.7%) 19 (8.9%) <0.001

No 69 (68.3%) 195 (91.1%)

Biliary pancreatitis (n) Yes 13 (12.9%) 26 (12.1%) 0.856

No 88 (87.1%) 188 (87.9%)

Concurrent hypoxemia (n) Yes 31 (30.7%) 49 (22.9%) 0.138

No 70 (69.3%) 165 (77.1%)

Length of hospital stay (days) 35.83 ± 33.06 19.71 ± 19.00 <0.001

FIGURE 5

L3–L5 segmentation results.
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FIGURE 6

Fat segmentation results.

FIGURE 7

Muscle segmentation results.

FIGURE 8

(A) Original image of a patient with pancreatitis. (B) A senior radiologist with over 15 years of experience manually delineates the ROI for assessing the 
effectiveness of segmenting human body components in patients with pancreatitis under human visualization (using a model not trained for 
pancreatitis). (C) Model-segmented ROI.
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indicating a more uniform texture and values farther from 1 
suggesting greater heterogeneity. The negative group exhibits 
slightly lower uniformity than the positive group (0.47 compared 
to 0.48), indicating that the VAT density in IPN patients is 
more uniform.

3.3.2 SAT
As shown in Table 4, for the first-order features of SAT, skewness 

(p = 0.023) showed statistical significance; among the shape features, 
maximum two-dimensional (2D) diameter slice (p = 0.020) and 
maximum three-dimensional (3D) diameter (p = 0.044) were 
statistically significant; the other features were not.

The skewness feature of SAT is higher in the negative group (1.14) 
compared to the positive group (0.96), indicating that SAT in IPN 
patients has less localized accumulation.

The maximum 2D diameter slice measures the maximum 
diameter of the SAT area in a 2D image, reflecting the extent of SAT 
expansion in the axial plane; the average maximum 2D diameter slice 
in the positive group (362.97) is greater than that in the negative group 
(350.19). The maximum 3D diameter reflects the overall size and 
shape of SAT in 3D space. Similarly, the maximum 3D diameter in the 
positive group (374.06) is larger than that in the negative group 
(358.72). Both features suggest that the volume of subcutaneous 
adipose tissue in IPN patients is larger relative to NPN patients.

3.3.3 Abdominal muscles
As shown in Table  5, for the abdominal muscles’ first-order 

features, interquartile range (p = 0.023), mean absolute deviation 
(p = 0.039), and robust mean absolute deviation (p = 0.015) were 
statistically significant; among the shape features, elongation 

(p = 0.025), sphericity (p = 0.010), and surface volume ratio 
(p = 0.014) were statistically significant; and the other features 
were not.

The interquartile range (IQR) of the abdominal muscles reflects 
their stability or variability under different conditions, describing the 
degree of dispersion in data distribution. It represents the range of 
the middle 50% of the data. The IQR in the negative group is less 
than that in the positive group (20.00 vs. 22.00). This may indicate 
that in patients who develop infectious pancreatic necrosis, the 
signal intensity distribution of the abdominal muscles is 
more dispersed.

Mean absolute deviation (MAD) is another statistical measure 
of data distribution dispersion, which quantifies the average 
distance of data points from the mean. The robust mean absolute 
deviation is a more robust version of MAD, insensitive to outliers. 
The findings of these two features are consistent, indicating that 
the signal intensity distribution of the abdominal muscles in 
patients who develop infectious pancreatic necrosis may 
be more uneven.

Elongation reflects the extent of longitudinal extension of muscle 
fibers or muscle blocks, with the elongation rate in the positive group 
being greater than that in the negative group (0.67 vs. 0.64). This may 
suggest that the shape of the abdominal muscles in patients who 
develop infectious pancreatic necrosis is more elongated in 
one direction.

Sphericity measures the similarity of the shape of an ideal sphere, 
reflecting the compactness and regularity of the shape of muscle fibers 
or muscle blocks; the sphericity in the negative group is greater than 
that in the positive group (0.48 vs. 0.44). This may imply that the shape 
of the abdominal muscles in patients who do not develop infectious 

FIGURE 9

Radiomic features with statistical significance in body composition.
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pancreatic necrosis is closer to spherical. In contrast, the shape of the 
abdominal muscles in patients who develop infectious pancreatic 
necrosis may become less regular due to inflammation or other 
pathological changes.

The surface volume ratio reflects the ratio of muscle surface 
area to volume, with the positive group having a higher surface 
volume ratio than the negative group (0.21 vs. 0.19). This may 
indicate that the abdominal muscles of patients who develop 

TABLE 3 Correlation between visceral adipose tissue (VAT) radiomic features and infectious pancreatic necrosis (IPN).

Feature Negative Positive Statistical 
methods

Statistic p

10 Percentile −113.00 (−118.00, −107.00) −112.27 Mann–Whitney U 9057.5 0.087

90 Percentile −50.00 (−58.00, −44.00) −50.75 Mann–Whitney U 9560.5 0.308

Energy 5559141605.50 

(3540920150.50, 

7802701555.75)

5517645106.00 

(3029784775.75, 

8244608979.00)

Mann–Whitney U 10,517 0.766

Entropy 1.26 (1.19, 1.32) 1.23 (1.17, 1.30) Mann–Whitney U 11,721 0.05

IQR 31.00 (28.00, 35.00) 31.73 Mann–Whitney U 10,240 0.935

Kurtosis 3.05 (2.65, 3.72) 2.85 (2.55, 3.43) Mann–Whitney U 11,718 0.051

Maximum 30.00 (16.00, 41.75) 21.50 (12.00, 41.25) Mann–Whitney U 11,696.5 0.054

Mean −84.93 −84.93 t-test 1.78111074 0.076

MAD 18.87 (17.33, 20.14) 18.47 (17.20, 20.04) Mann–Whitney U 10,971 0.356

Median −89.00 (−96.00, −82.00) −88.61 Mann–Whitney U 8,889 0.052

Minimum −233.00 (−301.50, −187.25) −220.50 (−282.00, −175.00) Mann–Whitney U 9,205 0.132

Range 268.00 (219.00, 337.25) 247.50 (202.75, 317.75) Mann–Whitney U 11,636 0.066

Robust MAD 13.40 (11.99, 14.55) 13.24 (11.79, 14.80) Mann–Whitney U 10,482 0.803

Root mean squared 88.78 (82.43, 94.47) 88.32 Mann–Whitney U 11,603 0.073

Skewness 0.6 0.48 (0.26, 0.72) Mann-–Whitney U 12,390 0.004

Total energy 12114180613.50 

(8090181675.25, 

17111404744.75)

12041332397.50 

(6156355601.50, 

18040494741.50)

Mann–Whitney U 10,499 0.785

Uniformity 0.47 (0.44, 0.51) 0.48 (0.46, 0.52) Mann–Whitney U 8,779 0.036

Variance 556.66 (488.00, 616.44) 527.72 (467.94, 606.80) Mann–Whitney U 11,270 0.182

Elongation 0.61 (0.54, 0.68) 0.61 (0.56, 0.67) Mann–Whitney U 9,754 0.452

Flatness 0.40 (0.35, 0.45) 0.40 (0.36, 0.47) Mann–Whitney U 9,526 0.287

Least axis length 110.84 (104.00, 121.47) 111.99 (105.00, 140.59) Mann–Whitney U 9,345 0.189

Major axis length 285.63 (264.87, 311.07) 291.49 (277.58, 313.18) Mann–Whitney U 9,020 0.078

Maximum 2D diameter 

column

288.81 (268.45, 308.03) 292.30 (275.25, 314.29) Mann–Whitney U 9,355 0.193

Maximum 2D diameter 

row

205.30 (182.48, 229.82) 208.38 (187.62, 233.90) Mann–Whitney U 9,794 0.486

Maximum 2D diameter 

slice

276.66 (257.45, 300.00) 284.43 (267.16, 301.85) Mann–Whitney U 9,070 0.09

Maximum 3D diameter 295.28 (272.07, 315.35) 296.97 (279.89, 326.37) Mann–Whitney U 9,335 0.184

Mesh volume 1594888.51 (1116303.11, 

2059782.88)

1565850.12 (994337.63, 

2122169.49)

Mann–Whitney U 10,245 0.94

Minor axis length 176.57 (154.86, 198.44) 177.83 (157.36, 205.76) Mann–Whitney U 9,538 0.294

Sphericity 0.19 (0.16, 0.21) 0.18 Mann–Whitney U 11,307 0.166

Surface area 348265.70 (276579.17, 

415143.35)

345724.42 (280669.46, 

450891.29)

Mann–Whitney U 9,911 0.593

Surface volume ratio 0.23 (0.19, 0.29) 0.24 (0.20, 0.31) Mann–Whitney U 9,719 0.424

Voxel volume 1595786.56 (1117477.57, 

2062007.94)

1577308.92 (998146.19, 

2124513.29)

Mann–Whitney U 10,240 0.935
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infectious pancreatic necrosis have a relatively larger surface area 
in proportion to volume, possibly reflecting tissue edema due to 
the inflammatory response.

3.3.4 Sacrospinalis
As shown in Table 6, for the first-order features of sacrospinalis, 

interquartile range (p = 0.018), mean absolute deviation 

TABLE 4 Correlation between subcutaneous adipose tissue (SAT) radiomic features and infectious pancreatic necrosis (IPN).

Feature Negative Positive Statistical 
methods

Statistic p

10 Percentile −116.00 (−121.00, −111.00) −116.00 (−120.00, −110.00) Mann–Whitney U 9,656 0.453

90 Percentile −61.00 (−72.00, −52.00) −60.59 Mann–Whitney U 9,035 0.107

Energy 7382051504.50 

(4423188997.75, 

10268867202.75)

7420446548.00 

(4086489735.00, 

10569815384.00)

Mann–Whitney U 10,304 0.883

Entropy 1.23 (1.13, 1.32) 1.23 Mann–Whitney U 9,958 0.741

IQR 25.00 (21.00, 31.00) 27.00 (22.00, 31.50) Mann-–Whitney U 8,953.5 0.084

Kurtosis 5.48 (4.11, 7.55) 5.12 (3.45, 6.55) Mann–Whitney U 11,508 0.069

Maximum 57.50 (35.25, 125.75) 48.00 (20.00, 104.00) Mann–Whitney U 11,139 0.192

Mean −93.04 (−98.62, −87.12) −92.63 (−97.19, −82.42) Mann–Whitney U 9,097 0.127

MAD 17.07 (14.82, 19.31) 17.39 Mann–Whitney U 9,674 0.469

Median −98.00 (−103.75, −92.25) −97.00 (−101.00, −87.00) Mann–Whitney U 8,987.5 0.093

Minimum −301.00 (−416.00, −195.50) −296.00 (−383.00, −203.50) Mann–Whitney U 9,966.5 0.75

Range 392.50 (243.25, 536.25) 350.00 (237.50, 511.00) Mann–Whitney U 10,705 0.482

Robust MAD 10.93 (9.08, 13.27) 11.4 Mann–Whitney U 9,067 0.117

Root mean squared 95.87 (90.82, 100.83) 95.92 (86.10, 99.67) Mann–Whitney U 11,329 0.117

Skewness 1.14 (0.67, 1.44) 0.96 (0.55, 1.27) Mann–Whitney U 11,835 0.023

Total energy 15276971006.50 

(10189081819.00, 

22145540431.25)

15458624133.00 

(10131235701.00, 

22930332683.00)

Mann–Whitney U 10,199 0.998

Uniformity 0.47 (0.45, 0.52) 0.47 (0.44, 0.50) Mann–Whitney U 10,760 0.435

Variance 508.17 (410.41, 646.90) 516.61 (397.99, 650.74) Mann–Whitney U 10,310 0.876

Elongation 0.78 (0.73, 0.83) 0.79 (0.72, 0.84) Mann–Whitney U 10,009 0.795

Flatness 0.26 (0.24, 0.30) 0.27 (0.24, 0.34) Mann–Whitney U 9,773 0.557

Least axis length 112.77 (105.52, 124.29) 113.79 (105.34, 146.02) Mann–Whitney U 9,525 0.352

Major axis length 433.34 (402.80, 460.00) 434.86 Mann–Whitney U 9,442 0.295

Maximum 2D diameter 

column

350.19 (334.44, 383.90) 362.97 (338.26, 397.18) Mann–Whitney U 8,978 0.091

Maximum 2D diameter 

row

283.24 (263.04, 305.95) 286.41 (261.52, 314.55) Mann–Whitney U 9,870 0.651

Maximum 2D diameter 

slice

342.91 (320.82, 366.55) 353.30 (334.67, 385.09) Mann–Whitney U 8,521 0.02

Maximum 3D diameter 358.72 (340.51, 392.78) 374.06 (345.72, 403.56) Mann–Whitney U 8,742 0.044

Mesh volume 1653557.96 (1235842.07, 

2195203.36)

1680448.40 (1204551.02, 

2591183.65)

Mann–Whitney U 9,960 0.743

Minor axis length 337.98 (312.61, 373.83) 338.29 Mann–Whitney U 9,658 0.455

Sphericity 0.25 0.25 t-test 1.448543564 0.148

Surface area 255759.30 (220992.29, 

311631.51)

267878.28 (219325.30, 

333155.36)

Mann–Whitney U 9,592 0.402

Surface volume ratio 0.16 (0.13, 0.21) 0.17 (0.12, 0.22) Mann–Whitney U 9,590 0.4

Voxel volume 1654703.97 (1238486.14, 

2195450.68)

1680171.98 (1205763.96, 

2590036.86)

Mann–Whitney U 9,973 0.757

IQR, interquartile range; MAD, mean absolute deviation.
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(p = 0.049), robust mean absolute deviation (p = 0.025), and 
skewness (p = 0.008) exhibited statistical significance; among the 
shape features, maximum 2D diameter slice (p = 0.008), maximum 
3D diameter (p = 0.005), sphericity (p = 0.011), and surface volume 

ratio (p = 0.005) were statistically significant; the other features 
were not.

The interquartile range of the sacrospinalis is equal in the median 
for both groups, but the confidence interval for the positive group is 

TABLE 5 Correlation between abdominal muscles radiomic features and infectious pancreatic necrosis (IPN).

Feature Negative Positive Statistical methods Statistic p

10 Percentile 30.00 (25.00, 35.00) 28.50 (21.00, 35.00) Mann–Whitney U 11,216 0.207

90 Percentile 69.00 (64.00, 75.00) 69.00 (62.00, 78.00) Mann–Whitney U 10,101.5 0.785

Energy 239309670.50 

(155707966.75, 

357551615.00)

241836573.50 

(122022174.50, 

368706009.75)

Mann–Whitney U 10,375 0.918

Entropy 1.04 (0.99, 1.09) 1.04 (0.99, 1.15) Mann–Whitney U 9,891 0.574

IQR 20.00 (18.00, 23.00) 22.00 (19.00, 27.00) Mann–Whitney U 8,649 0.023

Kurtosis 4.55 (3.81, 8.97) 4.80 (3.84, 9.29) Mann–Whitney U 10,139 0.825

Maximum 147.50 (115.00, 351.75) 171.00 (119.75, 510.00) Mann–Whitney U 9,185 0.125

Mean 49.46 (44.72, 54.10) 50.00 (42.57, 54.91) Mann–Whitney U 10,608 0.672

MAD 12.64 (11.20, 14.75) 13.21 (11.66, 17.42) Mann–Whitney U 8,799 0.039

Median 50.00 (45.25, 54.00) 50.50 (43.00, 55.00) Mann–Whitney U 10,501.5 0.782

Minimum −63.50 (−75.00, −50.00) −64.00 (−82.50, −51.50) Mann–Whitney U 10,818 0.476

Range 213.00 (179.25, 429.00) 247.50 (184.75, 672.50) Mann–Whitney U 9,092 0.096

Robust MAD 8.58 (7.67, 9.77) 9.19 (8.12, 11.61) Mann–Whitney U 8,527 0.015

Root mean squared 52.48 (47.75, 56.90) 53.14 (45.53, 58.53) Mann–Whitney U 10,322 0.976

Skewness −0.29 (−0.51, 0.31) −0.23 (−0.47, 0.72) Mann–Whitney U 9,782 0.476

Total energy 504705905.60 

(331904476.82, 

745238186.75)

505832574.90 

(277667575.85, 

814704451.82)

Mann–Whitney U 10,407 0.883

Uniformity 0.51 (0.49, 0.54) 0.50 (0.49, 0.55) Mann–Whitney U 10,606 0.674

Variance 274.30 (214.07, 396.96) 295.51 (227.77, 519.59) Mann–Whitney U 8,972 0.067

Elongation 0.64 (0.60, 0.69) 0.67 (0.60, 0.72) Mann–Whitney U 8,669 0.025

Flatness 0.23 (0.20, 0.26) 0.23 (0.21, 0.28) Mann–Whitney U 9,539 0.295

Least axis length 43.31 (36.50, 49.07) 42.02 (36.22, 51.25) Mann–Whitney U 10,513 0.77

Major axis length 178.21 (166.32, 199.38) 175.26 (166.77, 199.52) Mann–-Whitney U 10,828 0.467

Maximum 2D diameter 

column

149.23 (140.63, 186.94) 147.74 (138.45, 201.81) Mann–Whitney U 10,701 0.581

Maximum 2D diameter 

row

117.22 (109.44, 134.28) 118.61 (107.65, 148.15) Mann–Whitney U 9,896 0.578

Maximum 2D diameter 

Slice

140.85 (132.95, 159.86) 139.52 (131.26, 163.66) Mann–Whitney U 10,818 0.476

Maximum 3D diameter 163.09 (153.48, 222.48) 161.51 (152.06, 226.11) Mann–Whitney U 10,598 0.682

Mesh volume 170053.90 (124849.08, 

226962.00)

158223.70 (114210.53, 

203752.58)

Mann–Whitney U 11,066 0.292

Minor axis length 114.68 (107.51, 125.67) 115.75 (105.68, 144.08) Mann–Whitney U 9,822 0.511

Sphericity 0.48 (0.40, 0.50) 0.44 (0.37, 0.49) Mann–Whitney U 12,166 0.01

Surface area 32950.71 (26557.99, 

38100.90)

32240.91 (25502.50, 

39481.43)

Mann–Whitney U 10,503 0.78

Surface volume ratio 0.19 (0.16, 0.24) 0.21 (0.17, 0.26) Mann–Whitney U 8,516 0.014

Voxel volume 170378.76 (125078.19, 

227293.64)

158435.95 (114481.55, 

203957.85)

Mann–Whitney U 11,068 0.29

IQR, interquartile range; MAD, mean absolute deviation.
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greater than that for the negative group; the results of MAD and 
robust MAD are consistent with those of the abdominal muscles, 
indicating a more uneven signal intensity distribution in the IPN 

group; the median Sphericity is equal for both groups, but the 
confidence interval for the positive group is smaller than that for the 
negative group; the surface volume ratio for the positive group is 

TABLE 6 Correlation between sacrospinalis radiomic features and infectious pancreatic necrosis (IPN).

Feature Negative Positive Statistical 
methods

Statistic p

10 Percentile 21.00 (16.00, 25.00) 21.22 Mann–Whitney U 11,298 0.169

90 Percentile 63.00 (58.00, 69.00) 63.50 (57.75, 72.50) Mann–Whitney U 9,998 0.678

Energy 1249152060.00 

(764619051.75, 

1994064418.25)

1187720175.50 

(668420562.50, 

2087340047.00)

Mann–Whitney U 10,681 0.6

Entropy 0.99 (0.86, 1.04) 1.00 (0.85, 1.09) Mann–Whitney U 9,841 0.528

IQR 22.00 (20.00, 24.00) 22.00 (21.00, 26.25) Mann–Whitney U 8,587.5 0.018

Kurtosis 10.42 (5.55, 61.15) 23.54 (5.97, 66.70) Mann–Whitney U 9,273 0.157

Maximum 526.50 (382.25, 756.25) 528.50 (402.00, 796.25) Mann–Whitney U 9,686.5 0.398

Mean 43.95 (38.19, 48.39) 43.25 (37.46, 49.67) Mann–Whitney U 10,389 0.903

MAD 13.25 (12.16, 14.78) 13.39 (12.62, 16.81) Mann–Whitney U 8,868 0.049

Median 45.00 (39.00, 49.00) 45.2 Mann–Whitney U 10,492.5 0.791

Minimum −44.00 (−57.00, −34.00) −44.00 (−58.25, −29.00) Mann–Whitney U 10,068.5 0.75

Range 579.50 (415.50, 814.25) 571.50 (445.75, 847.75) Mann–Whitney U 9,730.5 0.433

Robust MAD 9.29 (8.43, 10.13) 9.40 (8.92, 10.94) Mann–Whitney U 8,671 0.025

Root mean squared 47.21 (41.66, 51.93) 47.15 (41.68, 55.19) Mann–Whitney U 10,241 0.936

Skewness 0.32 (0.01, 3.77) 1.01 (0.19, 4.42) Mann–Whitney U 8,375 0.008

Total energy 2847674195.50 

(1720109062.25, 

4205653583.50)

2575449699.50 

(1406155363.00, 

4910820334.25)

Mann–Whitney U 10,661 0.619

Uniformity 0.54 (0.50, 0.63) 0.54 (0.50, 0.63) Mann–Whitney U 10,773 0.515

Variance 286.91 (244.39, 468.43) 307.96 (256.65, 654.50) Mann–Whitney U 9,045 0.084

Elongation 0.68 0.68 t-Test 1.31513754 0.189

Flatness 0.32 (0.29, 0.37) 0.32 (0.29, 0.42) Mann–Whitney U 10,156 0.843

Least axis length 108.65 (101.74, 120.38) 109.74 (102.19, 151.06) Mann–Whitney U 9,466 0.251

Major axis length 346.65 (320.52, 374.80) 356.08 (327.14, 381.18) Mann–Whitney U 8,989 0.071

Maximum 2D diameter 

column

331.83 (307.16, 355.28) 334.92 (309.67, 366.12) Mann–Whitney U 9,127 0.106

Maximum 2D diameter 

row

263.36 (238.13, 296.13) 265.74 (231.65, 304.67) Mann–Whitney U 10,007 0.687

Maximum 2D diameter 

slice

330.38 (303.91, 365.72) 342.84 (313.74, 382.86) Mann–Whitney U 8,369.5 0.008

Maximum 3D diameter 343.67 (318.46, 379.83) 359.58 (329.37, 408.87) Mann–Whitney U 8,284 0.005

Mesh volume 1211160.13 (843465.21, 

1518283.12)

1119268.25 (755711.11, 

1583688.32)

Mann–Whitney U 10,954 0.368

Minor axis length 234.46 (212.14, 258.54) 238.73 (205.35, 263.39) Mann–Whitney U 9,996 0.676

Sphericity 0.15 (0.12, 0.18) 0.15 Mann–Whitney U 12,137 0.011

Surface area 324534.33 (273229.10, 

450328.40)

338175.63 (268258.35, 

528150.56)

Mann–Whitney U 9,860 0.545

Surface volume ratio 0.32 (0.25, 0.40) 0.35 (0.28, 0.49) Mann–Whitney U 8,247 0.005

Voxel volume 1211242.46 (846322.89, 

1519310.32)

1117691.58 (755909.58, 

1586327.08)

Mann–Whitney U 10,966 0.359

IQR, interquartile range; MAD, mean absolute deviation.

https://doi.org/10.3389/fmicb.2024.1509915
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fmicb.2024.1509915

Frontiers in Microbiology 14 frontiersin.org

greater than that for the negative group (0.35 vs. 0.32). These findings 
are consistent with the overall abdominal muscles.

The skewness feature of the sacrospinalis shows statistical 
significance, whereas there is no statistical difference in the abdominal 
muscles, with the median of the positive group being greater than that 
of the negative group (1.01 vs. 0.32), indicating that the intensity 
distribution of the sacrospinalis in IPN patients may be more uneven.

For the sacrospinalis, the maximum 2D diameter slice and 
maximum 3D diameter exhibit statistical significance, whereas there 
is no statistical difference for the abdominal muscles. These features 
have significant discriminative or representative value in assessing the 
morphology, structure, or function of the sacrospinalis. Both features 
are greater in the positive group than the negative group, indicating 
that the volume of the sacrospinalis in IPN patients is larger in 
NPF patients.

4 Discussion

IPN, as a severe complication of ANP, poses a significant 
clinical challenge due to its high mortality rate and incidence (Li 
et al., 2022). However, prolonged antibiotic use in the absence of 
infection may lead to multidrug-resistant bacterial infections, 
further increasing mortality (Lu et al., 2022). Therefore, early and 
accurate diagnosis of IPN followed by timely and effective 
treatment measures is crucial. This study delineated muscles and 
fat tissues using deep learning techniques based on non-contrast 
CT images. Subsequently, we extracted 18 first-order features and 
14 shape features using radiomic techniques and conducted a 
correlation analysis. Notably, we  provided detailed medical 
interpretations for the statistically significant features, revealing 
the potential physiological and pathological significance behind 
these features. This study highlights the important role of body 
composition, including muscles and fat tissues, in acute 
pancreatitis. It provides a quantitative evaluation tool based on 
highly standardized and readily available non-contrast CT data 
using artificial intelligence.

The application of deep learning enables precise segmentation 
of muscle and fat (Graffy et al., 2019; Shen et al., 2023), which is 
crucial for delving into the complexity of infectious diseases. It 
not only enhances our comprehension of the disease’s 
pathophysiological mechanisms but also significantly enriches the 
means of assessing patients’ nutritional status and inflammatory 
responses. For instance, the study by Zhang et  al. explored 
radiomic features from CT images of 1,245 adrenal glands and 
surrounding fat tissues, strongly demonstrating their correlation 
with disease progression in COVID-19 patients (Zhang M. et al., 
2023). Similarly, Yoo et al. utilized deep learning techniques to 
quantify liver and spleen volumes, as well as SAT and VAT tissues 
and skeletal muscle indices, providing valuable prognostic 
information for patients with chronic hepatitis B (CHB) (Yoo 
et al., 2023). Compared to traditional assessment methods (such 
as modified CT severity index [MCTSI], Ranson, bedside index 
for severity in acute pancreatitis [BISAP], etc.), these methods, 
while concise and easy to understand, have limitations due to the 
limited factors they consider, making it difficult to fully reflect the 
complexity and dynamic changes of diseases. Previous studies 
have primarily focused on the pancreas itself (Zhang C. et  al., 

2024; Xue et al., 2023; Lin et al., 2020; Chen et al., 2023). In our 
study, the detailed evaluation of VAT, SAT, abdominal muscles, 
and sacrospinalis not only deepened our understanding of the 
disease’s pathophysiological mechanisms but also significantly 
improved our ability to assess patients’ nutritional status and 
inflammatory responses. Through in-depth analysis of radiomic 
data, we found that some parameters showed a good correlation 
with disease states, further validating the reliability and 
effectiveness of these body composition indicators as disease 
assessment tools. This discovery not only emphasizes the 
importance of muscle and fat segmentation in the evaluation of 
infectious diseases but also lays a solid foundation for the future 
development of more precise and comprehensive disease 
assessment systems.

The World Health Organization defines obesity as a 
pathological condition characterized by excessive accumulation 
of body fat, with a body mass index (BMI) of ≥30 kg/m2 (Whitlock 
et al., 2009), which exerts certain effects on inflammation (Ponce-
de-Leon et  al., 2022). Numerous epidemiological studies and 
meta-analyses have demonstrated that obesity is a prognostic 
factor affecting the severity of acute pancreatitis (AP) (Chen et al., 
2012; Martínez et al., 2006; Cruz-Monserrate et al., 2016; Wang 
et al., 2011). This study found significant correlations between 
certain radiomic features of SAT and VAT and the occurrence of 
IPN: our results suggest that for patients developing IPN, less 
localized accumulation of VAT and SAT, uniform density of VAT 
and SAT, and a larger volume of SAT are risk factors. These 
findings may be related to age and sex (Zhou et al., 2022; Lizcano 
and Guzmán, 2014; Tchernof and Després, 2013; Frank et  al., 
2019; Palmer and Kirkland, 2016; Pascot et al., 1999): under the 
influence of sex hormones, men tend to accumulate fat tissue 
predominantly in visceral regions, while women accumulate it 
more subcutaneously, leading to symmetrical differences in fat 
distribution between genders; with advancing age, the distribution 
of fat in both genders also changes, which may affect the localized 
accumulation and uniformity of VAT density, thereby explaining 
why adjusted body composition parameters based on age and sex 
in previous studies could more accurately predict the severity of 
AP and avoid the fat paradox (Horibe et al., 2022). Furthermore, 
we  hypothesize that the statistical significance of skewness 
features may also be  associated with the distribution of fat 
necrosis; if so, our study’s results suggest that the inflammatory or 
necrotic process is more diffused in the adipose tissue of IPN 
patients, or there may be more synchronized pathological changes. 
Our conclusions indicate that the volume of SAT has a positive 
effect on the occurrence of IPN, and we  speculate that the 
increased volume of subcutaneous adipose tissue may be related 
to enhanced or systemic inflammatory responses, which could 
exacerbate the infection of necrotic pancreatic tissue.

Skeletal muscle, as a pivotal component of the human body, not 
only supports fundamental motor functions but is also closely 
associated with individual metabolic status, inflammatory 
responses, and long-term disease prognosis (Akturk et al., 2021; 
Picca and Calvani, 2021; Modesto et  al., 2020). In this study, 
we conducted an in-depth analysis of the sacrospinalis muscle and 
all abdominal muscles, including the sacrospinalis. Patients with 
IPN exhibited scattered and heterogeneous muscle density 
distributions in the overall abdominal muscles and the sacrospinalis, 
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a significant difference compared to the NPN population. This 
alteration was manifested in an increased surface area-to-volume 
ratio and a morphological deviation from the ideal spherical 
structure. These findings suggest that such changes in muscle tissue 
may represent an adaptive response to the pathological state of IPN, 
and we have posited several hypotheses: First, the dispersion and 
heterogeneity of muscle density might be  related to the level of 
inflammation within IPN patients. Inflammatory responses could 
lead to alterations in the intramuscular environment, affecting 
muscle cell growth, metabolism, and extracellular matrix 
remodeling (Tu and Li, 2023); second, the increased volume of the 
sacrospinalis, particularly in IPN patients, may reflect compensatory 
changes in muscle tissue during disease progression. The increase 
in muscle volume might be an adaptation to the additional load 
imposed by inflammation and metabolic disturbances, and it may 
also represent an attempt by the body to maintain essential 
physiological functions. The significant differences in skewness 
features indicate that the muscle density distribution in IPN 
patients deviates from the normal range, and the increased 
asymmetry may be related to the damage and repair processes in 
muscle tissue. During the continuous self-repair of muscle tissue, 
structural and functional asymmetries may arise due to the 
influence of an inflammatory environment.

While this study has made certain progress in body composition 
assessment and IPN prediction based on non-contrast CT, there are 
still some limitations. First, this is a single-center study with a 
relatively limited sample size, which may limit the generalizability of 
the findings. Second, this study did not quantitatively assess the 
degree of pancreatic infection, which may affect the in-depth 
understanding of the mechanism of IPN occurrence. Additionally, 
this study did not provide a detailed analysis of patient prognosis and 
length of hospital stay; future studies can further explore the 
relationship between body composition and the prognosis of 
pancreatitis patients. Finally, due to the unclear boundaries of 
pancreatitis, this study did not segment pancreatic lesions, which may 
limit the in-depth exploration of the pathophysiological mechanisms 
of pancreatitis itself.

5 Conclusion

This study, utilizing deep learning techniques in conjunction 
with unenhanced CT imaging, has elucidated the close association 
between muscle and fat tissue and the progression of ANP to IPN, 
providing a novel tool for early warning and personalized treatment 
of IPN. The research identified that first-order features of fat (such 
as skewness, uniformity, etc.), first-order features of muscle, and 
shape features (such as interquartile range, sphericity, etc.) are all 
significantly correlated with IPN. In-depth analysis revealed that 
less localized accumulation of VAT and SAT, uniform density of 
VAT and SAT, larger volume of SAT, and the dispersion and 
heterogeneity of abdominal muscle density distribution are all risk 
factors for IPN. This not only confirms the pivotal role of body 
composition in the progression of ANP but also provides a scientific 
basis for the implementation of early preventive treatment in clinical 
practice for high-risk patients. The findings of this study offer 
important references and guidance for improving the overall 
prognosis of pancreatitis patients and optimizing clinical 
management strategies.
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