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The gut microbiota actually shares the host’s physical space and affects the 
host’s physiological functions and health indicators through a complex network 
of interactions with the host. However, its role as a determinant of host health 
and disease is often underestimated. With the emergence of new technologies 
including next-generation sequencing (NGS) and advanced techniques such as 
microbial community sequencing, people have begun to explore the interaction 
mechanisms between microorganisms and hosts at various omics levels such as 
genomics, transcriptomics, metabolomics, and proteomics. With the enrichment of 
multi-omics integrated analysis methods based on the microbiome, an increasing 
number of complex statistical analysis methods have also been proposed. In this 
review, we  summarized the multi-omics research analysis methods currently 
used to study the interaction between the microbiome and the host. We analyzed 
the advantages and limitations of various methods and briefly introduced their 
application progress.
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1 Introduction

Metabolome gut microbiome is a complex ecosystem composed of thousands of bacteria, 
viruses, fungi, and protozoa, which have certain regulatory effects on the host’s metabolism 
and immune system along with many other physiological functions. The gut microbiota is 
typically transmitted from the mother to the infant at birth through processes such as delivery, 
breastfeeding, and skin contact, helping to establish the initial colonization of beneficial 
microorganisms in the infant’s gut. As the infant grows, the gut microbiota continues to 
be influenced by environmental factors, including the host’s nutrition, lifestyle, immune status, 
and medication, leading to further changes in its composition (Jandhyala et al., 2015). Changes 
in the gut microbiota will then affect the host’s health status, leading to the occurrence of 
diseases including colorectal cancer (Rebersek, 2021), inflammatory bowel disease (Santana 
et al., 2022), obesity, and depression (Breton et al., 2022; Cheung et al., 2019).

Although the gut microbiota has a significant impact on host health, research progress on 
the gut microbiota has been relatively slow due to technical limitations. In recent years, with 
advancements in sequencing technology, research on the gut microbiota has shown explosive 
growth, and researchers have gained a more intuitive understanding of the composition of the 
gut microbiota.
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The current research on the gut microbiota is gradually revealing 
the complex interaction relationship between microorganisms and 
their hosts. For example, the interactions among gut microbiota 
change with the alteration of its host’s disease status (Cao et al., 2022); 
metabolomics combined with metagenomics analysis results show 
that gut microbiota has the ability to metabolize drugs (Zimmermann 
et al., 2019); combined analysis of microbiome and host transcriptome 
also indicates that gut microbiota can regulate the expression of host 
genes (Richards et al., 2019). Therefore, in order to further explore the 
interaction between the gut microbiota and the host, multi-omics 
integrated analysis based on the microbiome has been widely 
conducted. This article provides a review of the multi-omics integrated 
analysis methods.

2 Microbiome data analysis methods 
and their limitations

2.1 Microbiome data analysis methods

Current microbiota analysis methods mainly include shotgun 
sequencing and 16S rRNA amplicon sequencing (Sharpton, 2014). In 
shotgun sequencing, researchers first extract DNA from the sample 
and sequence it. Then, computational methods are used to align the 
reads with a reference genome or marker genes to infer the abundance 
of microbial communities in the sample (Sharpton, 2014). In 16S 
rRNA amplicon sequencing, researchers only amplify and sequence a 
fragment of the 16S rRNA gene from the bacterial genome in the 
sample. This sequencing method uses conserved regions of the 16S 
rRNA gene as the target for PCR primers, with variable regions used 
for the classification of microbial communities in the sample.

Current microbial sequencing technologies are primarily divided 
into short-read sequencing (e.g., Illumina) and long-read sequencing 
(e.g., Nanopore), each with distinct characteristics and applications. 
Short-read sequencing, known for its high throughput, low cost, and 
accuracy, is widely used in large-scale microbial genome sequencing 
projects, especially when rapid sequencing of a large number of 
samples is required (Xia et  al., 2023). This technology generates 
abundant short sequences, which are valuable for studying microbial 
communities and their functions. On the other hand, long-read 
sequencing, which provides longer sequence lengths, is particularly 
useful for analyzing complex genomic regions, such as structural 
variations and repetitive sequences, enabling more accurate microbial 
genome analysis. Furthermore, long-read sequencing allows for real-
time data output, making it suitable for studies that require rapid 
feedback. However, both sequencing methods have their limitations. 
Short-read sequencing, due to its shorter read lengths, faces challenges 
in sequence assembly, particularly in complex genomic regions, and 
struggles with identifying repetitive sequences and structural 
variations, often requiring additional validation. In contrast, long-read 
sequencing tends to be more expensive and has a higher error rate. 
Therefore, both short-read and long-read sequencing technologies 
have their respective advantages and drawbacks, and the choice 
between them should be based on the specific research needs and 
budget constraints (Pervez et al., 2022).

In addition to sequencing methods, microbial taxonomic 
annotation is a key component of microbial sequencing analysis. 
There are numerous taxonomic annotation tools available, each with 

its own strengths and limitations, making them suitable for different 
applications. QIIME 2 (Quantitative Insights Into Microbial Ecology 
2), for example, offers a wide range of functions, including data 
preprocessing, sequence filtering, clustering, and visualization. It can 
also be extended through the installation of plugins, making it widely 
used in 16S/18S rRNA sequence analysis, microbial community 
analysis, and metagenomic analysis. However, QIIME 2 requires 
command-line operation, which necessitates some programming 
skills, and it demands significant computational resources. Another 
widely used tool is MOTHUR, an open-source, extensible platform 
that supports a variety of functions, including sequence quality 
control, clustering, classification, and species abundance analysis. 
While MOTHUR offers a more comprehensive feature set, it requires 
higher levels of computational and biological expertise, which makes 
it more complex to use. As a result, its user base is smaller than that of 
QIIME 2, and it is primarily applied in 16S rRNA sequence processing 
and ecological studies of microbial communities. Kraken is another 
commonly used taxonomic tool based on k-mer classification. It is 
fast, especially well-suited for large-scale datasets, and offers higher 
accuracy compared to traditional methods. However, Kraken requires 
more memory for data processing, and its downstream analysis 
capabilities are not as comprehensive as those of QIIME 2 and 
MOTHUR, limiting its broader application (Lu and Salzberg, 2020). 
Kraken is primarily used for the rapid classification of metagenomic 
and metatranscriptomic data, particularly in large-scale datasets. 
BLAST (Basic Local Alignment Search Tool) is a classic sequence 
alignment tool that provides high-precision sequence similarity 
searches and taxonomic annotation, with a frequently updated 
database. However, BLAST has limitations for large-scale data 
analysis, as it only performs alignment and does not offer community 
analysis or functional predictions. Additionally, due to the time-
consuming nature of its alignment process, BLAST is commonly used 
for precise alignment of individual gene sequences in smaller datasets. 
MetaPhlAn (Metagenomic Phylogenetic Analysis) is a tool specifically 
designed for metagenomic sequencing, known for its high accuracy 
and targeted approach. However, it is limited to metagenomic data 
analysis and does not perform well with 16S rRNA data, making it 
unsuitable for studies that require broader data types (Bokulich et al., 
2018). MetaPhlAn is mainly used for detailed analysis of microbial 
community composition in metagenomic datasets. Tools like RDP 
Classifier, USEARCH/UPARSE, and SILVA are specifically designed 
for 16S rRNA sequencing data and are not applicable to metagenomic 
sequencing (Zou et  al., 2023). These tools are often used for the 
classification of 16S/18S rRNA gene sequences and are particularly 
useful for microbial community research. In conclusion, each tool and 
database has its specific strengths and ideal use cases. The choice of 
tool should consider factors such as the type of data (e.g., 16S/18S 
rRNA or metagenomic data), analysis requirements (e.g., classification 
accuracy or processing speed), and available computational resources 
(Sempéré et al., 2021). Comprehensive platforms like QIIME 2 and 
MOTHUR are suitable for more integrated analyses, while tools like 
Kraken and MetaPhlAn are better for rapid classification and analysis 
of metagenomic data. BLAST and RDP are more suited for detailed 
sequence alignment and analysis of smaller datasets.

After sequencing and data processing, microbial abundance can 
be represented as a two-dimensional matrix count, where each value 
represents the estimated abundance of a taxon in a specific sample. 
Different bioinformatics analysis methods are then used for analysis 
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and exploration. A common analysis pattern is to use software such as 
EdgeR to explore the relationship between microbial function and 
host phenotype by comparing the differential microbial abundance 
between the experimental and control groups (Robinson et al., 2010). 
With the enrichment of analytical methods, Bioconductor packages 
in R and software like Anaconda in Python have also been developed 
(Gentleman et al., 2004). Knight et al. elaborated on current methods 
of microbiome analysis in detail in their review (Knight et al., 2018).

2.2 Limitations of microbiome data analysis 
methods

In microbiome data analysis, there is often a low accuracy in 
species classification. In shotgun sequencing, abundance is calculated 
based on the counting of short reads (usually <300 bp) in the 
sequencing experiment, which are aligned to multiple reference 
genomes to determine their origin. Due to the large genetic variations 
and species diversity in the host’s microbiome, the short read 
sequences may not match any reference genome or may match 
multiple reference genomes (Tierney et  al., 2019). Despite this 
limitation, researchers still use various methods for alignment and 
classification (Wood and Salzberg, 2014). In 16S rRNA amplicon 
sequencing, microorganisms are typically clustered and classified at 
defined thresholds, such as 97% or 99% sequence similarity, and the 
operational taxonomic units (OTUs) obtained from this classification 
process (Chiarello et  al., 2022). However, due to limitations of 
sequencing technology, it results in a higher sequencing error rate. 
With technological advancements, methods such as amplicon 
sequence variants (ASV) or zero-radius operational taxonomic units 
(zOTUs) can now be used to cluster microorganisms more accurately. 
These methods not only enhance nucleotide resolution when resolving 
amplicons, but also use complex models to correct sequences that may 
contain errors (Amir et  al., 2017; Antich et  al., 2021; Chiarello 
et al., 2022).

In addition to the above limitations, due to the nature of microbial 
data as a set, the counts for a specific sample are relative abundance 
information compared to other taxa, rather than absolute counts 
(Gloor et al., 2017). Therefore, the subset representing the whole is 
constrained to 1 in the dataset (Gloor et al., 2016). To address this 
issue, although methods like additive or centered log-ratio 
transformations have been developed, caution should still be exercised 
in selecting statistical models for microbiome research to avoid 
drawing erroneous conclusions due to the relative abundance of taxa. 
Many taxa in the microbiome data of samples have zero counts. Zero 
counts may not necessarily reflect true biological signals (Chen et al., 
2022). Therefore, this characteristic of microbiome data is also limiting 
the application of existing models, resulting in phenomena such as the 
“horse-shoe” pattern in dimensionality reduction methods like PCA 
and PCoA (Morton et al., 2017). Additionally, the gut microbiome is 
strongly influenced by factors such as changes over time, antibiotic 
use, and diet (Dudek-Wicher et al., 2018). A study by Vandeputte et al. 
found significant differences in the composition of the gut microbiome 
among different individuals (Vandeputte et al., 2021). Research by 
Johnson et  al. indicates that the gut microbiota is significantly 
influenced by dietary factors (Johnson et  al., 2019). In addition, 
microbiome data in animal models is also influenced by various 
factors such as cages, psychological stress, and the environment (Wang 

and LêCao, 2020). Therefore, in microbiome research, conclusions 
should not be drawn from short-term microbial measurements and 
analyses. Experiments should be conducted by increasing sample sizes 
and controlling dietary factors (Johnson et al., 2020).

2.3 Integrated multi-omics approach in 
microbiome studies

It is well known that multi-omics integrated analysis is beneficial 
for microbiome research. However, researchers have not yet reached 
a consensus on the best multi-omics integration method. Integration 
of multi-omics can occur at different stages of the analysis process, 
and researchers have proposed different multi-omics integration 
strategies for different research purposes (Figure 1). In some studies, 
the abundance of bacterial communities is estimated through the 
integration of metagenomics, metatranscriptomics, and proteomics 
from the beginning of the research (Heintz-Buschart et al., 2016b). In 
others, researchers introduce multi-omics data for batch correction 
during the data preprocessing process or integrated them during the 
data analysis process (Ugidos et al., 2022). More research strategies 
involve researchers conducting separate sequencing experiments for 
different omics, analyzing each omics dataset individually, and then 
integrating the results of each omics analysis (Forslund et al., 2021). 
This review summarizes various commonly used methods for 
microbiome association (Table 1).

Microbiome data analysis also faces issues such as sensitivity to 
analysis processes and excessive dependence on databases. In the 
process of bioinformatic analysis, when using different differential 
analysis software, different parameters, or aligning to different 
reference databases, researchers may obtain different results (Arora 
et al., 2020; Nearing et al., 2022; Peters et al., 2019). When conducting 
multi-omics integrated analysis, the impact caused by the analysis 
process may be amplified to a certain extent. Therefore, when studying 
or integrating data from multiple sources, researchers should ensure 
the impact of the analysis process is reduced by uniformly processing 
samples. Furthermore, multi-omics integrated analysis also relies on 
corresponding databases that support individual data analysis. For 
example, 16S rRNA amplicon sequencing requires microbial 
sequences to be  aligned with known rRNA sequences stored in 
sequence databases such as SILVA (Quast et  al., 2013). Similarly, 
metabolomics research may rely on databases such as Human 
Metabolome Database (HMDB) (Wishart et al., 2022). Transcriptomics 
research may rely on pathway databases, such as Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000). Multi-
omics integrated analysis means the need to introduce more databases. 
Due to the complexity of database construction, database updates are 
relatively slow. Therefore, the results of multi-omics integrated analysis 
based on microbiology may be affected by database updates, leading 
to significant differences in research results (Debelius et al., 2016; 
Nearing et al., 2022).

Dimensionality reduction analysis is typically the first step in 
any omics analysis, as it provides a rapid way to visualize the overall 
structure of a dataset. Commonly used dimensionality reduction 
methods include Principal Component Analysis (PCA), Principal 
Coordinate Analysis (PCoA), Isomap, t-SNE, and UMAP analysis. 
All dimensionality reduction methods perform different 
transformations to embed data into two-dimensional space, where 
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PCA or PCoA typically constructs independent datasets for each 
sample before comprehensive analysis to identify sample 
distribution patterns (Silveira et al., 2021; Zhao et al., 2022). In 
addition to the above dimensionality reduction methods, methods 
such as Multi-omics Factor Analysis (MOFA) that can perform 
dimensionality reduction analysis on multi-omics data have also 
been proposed (Garcia-Etxebarria et al., 2021). Meng et al. reviewed 
various integrated dimensionality reduction analysis methods in 
their review (Meng et  al., 2016). In addition to dimensionality 
reduction analysis methods, clustering algorithms are also 
commonly used to identify overall patterns in datasets. Common 
clustering methods include Euclidean distance, Manhattan 
distance, and Bray–Curtis dissimilarity. Currently, various 
clustering analysis methods have been used for clustering multi-
omics datasets, enabling clustering analysis to more accurately 
capture the complex relationships between different omics. In 2007, 
Von Luxburg et al. proposed Spectral clustering and provided a 
detailed explanation of Spectral clustering in their paper 
(Luxburg, 2007).

The methods for determining the quantitative and covariate 
relationships of multi-omics data often require the computation of 
similarity metrics, such as Pearson correlation coefficient and 
Spearman correlation coefficient. The Pearson correlation cannot 
identify nonlinear relationships and is prone to discovering spurious 
correlations in the dataset. Although Spearman correlation can 

detect nonlinear relationships, it is also susceptible to finding 
spurious correlations in the dataset (Lovell et al., 2015). For the 
above reasons, methods utilizing similarity metrics such as Kendall’s 
tau (Liu et al., 2016), centered log ratio (CLR) (Gloor et al., 2016), 
SparCC (Friedman and Alm, 2012), REBACCA (Ban et al., 2015), 
mutual information (Tackmann et  al., 2019), cosine similarity 
(Jackson et  al., 2018), Canonical correlation analysis (CCA) 
(Sankaran and Holmes, 2019) and Procrustes analysis (Lisboa et al., 
2014) have begun to be  proposed. In a study, Faust et  al. 
simultaneously used various methods such as Bray-Curtis, 
dissimilarity, Kullback–Leibler divergence, Pearson correlation, and 
Spearman correlation for correlation analysis (Faust et al., 2012). 
You  et  al. also compared multiple methods in a study of joint 
analysis of metabolomics and microbiome, and found that 
Spearman correlation was generally the most effective (You 
et al., 2019).

2.4 Multi-omics integration analysis based 
on the microbiome

With the advancement of technology, various omics technologies 
continue to emerge. In the multi-omics integration analysis based on 
the microbiome, in addition to the microbiome, a large amount of 
sequencing data from different omics, such as genomics, 

FIGURE 1

Depicts multi-omics integrated analysis occurring at various stages of the analysis process.
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transcriptomics, proteomics, and metabolomics, are also analyzed. 
Depending on the different research subjects, there are certain 
differences in the research strategies of omics technologies (Table 2). 
Therefore, each multi-omics integration analysis model needs to 
consider factors that are essential, and we  will review these 
considerations in this section.

2.5 Microbiome and host genome joint 
analysis

Genome-wide association analysis (GWAS) is one of the most 
important methods for identifying genetic mutation sites in the host 
genome associated with gut microbiota. Currently, researchers have 

TABLE 1 Principles and advantages of microbiome association methods.

Classification of 
methods

Method Principle of analysis Advantage Study

Traditional Association Methods Pearson Reflect the degree of linear 

correlation between two 

continuous variables by the 

deviations of the two variables 

from their respective means

High test efficiency, strong 

interpretability

Pearson (1896)

Spearman Evaluate the correlation between 

two statistical variables using a 

monotonic equation

It does not require any specific 

data distribution and has a wide 

applicability range

Spearman (2015)

SparCC Fit the observed data to the 

Dirichlet distribution and 

calculate the correlation 

coefficient

Addressing the issue of excess 

negative correlations in 

traditional methods, known as 

the suppression of positive 

correlations

Friedman and Alm (2012)

CCLasso Use the least squares method 

with the L1 penalty term to infer 

compositional data, establish a 

model to infer the correlation 

between microorganisms

Accuracy and reproducibility are 

comparable to SparCC, but the 

error rate is better than SparCC

Fang et al. (2015)

Zero-inflated models Zero-inflated negative 

binomial regression

Attributing zero observations in 

data to zeros generated by the 

data structure and sampling 

zeros

It is suitable for datasets with an 

excessive number of zero 

observations and has higher 

statistical efficiency

Lambert (1992)

Association method based on 

mutual information (MI)

KNN-MI Find neighboring samples of the 

sample in the space formed by 

random variables X and Y, and 

calculate the mutual information

It does not require any specific 

data distribution and is suitable 

for nonlinear correlations

Kraskov et al. (2004)

Kernel density MI The method of kernel density 

estimation estimates the 

probability density function of 

continuous variables and 

calculates mutual information

It does not require any specific 

data distribution and is suitable 

for nonlinear correlations

Moon et al. (1995)

MIC Grid the scatter plot of variables 

in various ways and calculate the 

maximum mutual information 

value

Universal, fairness, and 

symmetry. Suitable for nonlinear 

correlations

Reshef et al. (2011)

Method for constructing interaction 

networks

mmvec Estimate the co-occurrence 

probability of metabolites and 

microorganisms through neural 

network learning, and estimate 

the associative relationship

F1 score, precision, and recall are 

higher compared to traditional 

statistical methods

Morton et al. (2019)

MIMOSA2 Compute the correlation by 

assessing the estimated metabolic 

capacity of the microbiome and 

the actual observed levels of 

metabolites

By integrating EGG or host 

information, more accurate 

results can be obtained.

Noecker et al. (2016)
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identified and distinguished a large number of SNP sites through 
GWAS, which can provide important clues for in-depth analysis of the 
genetic mechanisms of complex traits or diseases or open up new 
avenues. Therefore, drawing on the principles of traditional GWAS 
analysis of complex traits, researchers have proposed microbiome-
wide association analysis (miGWAS) to explore the association 
between the host’s entire genome genetic markers and gut microbiota 
(Blekhman et al., 2015). However, due to the fact that gut microbiota 
data is not composed of simple multidimensional data, but rather a 
complex multidimensional trait. Individual microbial abundance data 
often exhibit uneven distribution, with many zero values and outliers 
present. Moreover, the complex biological interactions among 
microbiota lead to highly collinear relationships and complex 
structural correlations between microbial abundances (Kurilshikov 
et al., 2017). Currently, although there are many statistical analysis 
methods available for handling such complex data, there is still no 
single statistical method that is fully applicable to the interaction 
between host genetics and gut microbiota. The GWAS methods 
currently used are not entirely suitable for the localization analysis of 
microbiome quantitative trait loci (mbQTL).

For miGWAS analysis of gut microbiota, as shown in Table 3, 
there are currently two main methods widely used. One is based on 

traditional linear mixed models, which require phenotypes to follow 
a normal distribution. In early whole-genome mbQTL localization, 
phenotypes are typically transformed appropriately before applying 
linear mixed model GWAS analysis. For example, in mbQTL 
localization work conducted in mice, the FaST-LMM software is often 
used. Goodrich utilized the GEMMA software based on linear mixed 
models in a study of a twin cohort in the UK. Blekhman employed 
linear model methods used in plink (Kurilshikov et al., 2017). Due to 
suboptimal transformation effects of many microbiota abundance 
data, some studies have also employed statistical methods independent 
of traditional linear mixed models for the analysis of the association 
between host genetic variation and gut microbiota abundance. Wang 
et al. proposed that microbiota abundance data better fit a negative 
binomial distribution. Therefore, they used a generalized linear model 
conforming to the negative binomial distribution for statistical 
analysis. Additionally, for phenotypes with a substantial number of 
microbiota abundances being zero, they applied a hurdle model based 
on the negative binomial distribution for analysis. The hurdle model, 
also known as a two-part model, simultaneously considers the 
presence of microbiota and the relationship between microbiota 
abundance variations and host genetics. The first part of the model 
employs a binomial probability distribution model to determine the 

TABLE 2 Single-omics techniques and their research methods.

Omics 
techniques

Research methods Study

Microbiome 16 s sequencing, metagenomic sequencing, single-cell microbial sequencing Knight et al. (2018)

Genomics De novo sequencing, resequencing, simplified genome sequencing Wang and Han (2022)

Metabolomics Targeted metabolomics, untargeted metabolomics, lipidomics, spatial metabolomics Liu and Locasale (2017)

Proteomics
Protein mass spectrometry identification, protein sequencing, quantitative proteome analysis, Post-translational 

modified proteomics, spatial proteomics, single-cell proteomics

González-Gomariz et al. 

(2019)

Transcriptomics
Translationomics, general transcriptome sequencing, single-cell transcriptome sequencing, spatial transcriptome 

sequencing technology, whole transcriptome sequencing, full-length transcriptome sequencing

Aldridge and Teichmann 

(2020)

Epigenomics
Genome-wide bisulfite sequencing, chromatin immunoprecipitation and sequencing, high-throughput 

chromosome capture, transposase-accessible chromatin sequencing, single-cell epigenome sequencing

Boix et al. (2021) and 

Preissl et al. (2023)

TABLE 3 Summary of the analysis protocols for miGWAS.

Sequencing method Traits Model Study

16Sseq Beta-diversity
Envfit: ordinaon-based, permutan test for 

significance
Wang J. et al. (2016)

16Sseq Beta-diversity
Microbiome GWAS: distance-based, 

parametric
Goodrich J. et al. (2016)

16Sseq; WGS Enterotype
Enterotype GWAS: logistic model 

implemented in PLINK
Liu et al. (2021)

16Sseq; WGS Bacterial taxa
Combined two-part logit/lognormal 

model
Turpin et al. (2016)

16Sseq; WGS Bacterial taxa
GEMMA: Genomewide efficient mixed 

models
Goodrich J. et al. (2016)

16Sseq; WGS Bacterial taxa Hurdle negative binomial model Wang J. et al. (2016)

16Sseq; WGS Bacterial taxa
Spearman correlaon excluding zero 

incidence
Bonder et al. (2016)

WGS Bacterial pathways
Spearman correlaon excluding zero 

incidence
Bonder et al. (2016)
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association between the presence of microbiota and the host genetic 
background (Xu et al., 2015). The second part of the model analyzes 
the portion of data where microbiota abundance is greater than 0 and 
its association with host genetic variation. In a similar vein to the 
two-part model, Turpin et al. utilized a model based on the generalized 
estimating equations for a log-normal model (Turpin et al., 2016). 
Furthermore, Bonder et al. employed the Spearman rank-sum test 
method to conduct an association analysis between gut microbiota 
abundance and host genetic variation (Bonder et al., 2016).

Additionally, we know from extensive research on microbiota, 
particularly human gut microbiota (Li et al., 2014; Qin et al., 2010), 
that the number of microbial genes in the gut far exceeds those of the 
host and plays a central role in metabolism and immune regulation 
(Clemente et al., 2012; Marchesi et al., 2016). Therefore, Qin et al. 
from BGI-Shenzhen introduced the concept and methodology of 
Metagenome-Wide Association Study (MGWAS) for the first time in 
2012, using GWAS as a model. They conducted MGWAS analysis 
based on deep shotgun sequencing of gut microbial DNA from 345 
Chinese individuals (Qin et al., 2012). Their study identified 60,000 
molecular markers associated with type 2 diabetes. MGWAS analysis 
revealed that patients with type 2 diabetes exhibit moderate gut 
microbiota dysbiosis and a reduced abundance of butyrate-producing 
microorganisms. In general, MGWAS not only can identify changes 
at a high-resolution strain level but also can identify enriched or 
decreased microbial functions based on annotations from databases 
such as KEGG, COG, and EggNOG in diseased individuals. In 
addition to type 2 diabetes and obesity, MGWAS has also been used 
in the research of human diseases such as colorectal cancer (Zeller 
et al., 2014) and rheumatoid arthritis (Zhang X. et al., 2015). With the 
advancement in the field of microbiology, MGWAS is expected to have 
broader applications in studying the influence of gut microbiota on 
host complex traits.

2.6 Microbiome and metabolome joint 
analysis

In omics technologies, metabolomics plays a crucial role in 
linking host phenotypes and microbial functional profiles (Fiehn, 
2002; Patti et al., 2012). Metabolomics is a systematic study of all small 
molecules within a biological system. Unlike other omics, metabolites 
and metabolic pathways are relatively conserved across species. The 
gut metabolome includes metabolites produced by both the host and 
the microbial community. Conducting a joint analysis of the 
microbiome and metabolome helps in understanding the interactions 
between gut microbial functions and the host. In recent years, with 
technological advancements, a plethora of bioinformatics tools and 
analytical methods have been developed for single omics analyses 
(Dhariwal et al., 2017; Xia et al., 2012; Xia et al., 2009). However, 
methods for multi-omics joint analysis are still relatively scarce 
(Gautam et al., 2023; Ni et al., 2020). The key point in the joint analysis 
of the microbiome and metabolome lies in the integration of multi-
omics data. Microbiome and metabolome data consist of two or more 
matrices that share sample IDs but contain different biological 
variables, such as metabolites or operational taxonomic units (OTUs). 
Currently, two main methods of data integration are used to combine 
microbiome and metabolome data. (1) Statistical integration: Utilizing 
univariate or multivariate analyses to understand the correlations 

between biological variables in different omics datasets; (2) 
Knowledge-driven integration: By projecting important biological 
variables identified from individual omics onto existing knowledge 
bases to understand potential mechanistic links, thereby constructing 
interaction networks.

The simplest method in statistical integration is univariate 
correlation analysis, which aims to determine whether there is a 
strong linear relationship (Pearson correlation) or a monotonic 
relationship (Spearman correlation) between individual metabolites 
(metabolome) and taxonomic groups (microbiome). For example, in 
a multi-omics study of the goat rumen microbiome, Mao et al. used 
univariate correlation methods to establish a Pearson correlation 
matrix between genera and metabolites (Mao et al., 2016). The authors 
found a clear correlation between changes in rumen microbial 
community structure and metabolite profiles with increasing 
carbohydrate intake (Mao et al., 2016). While univariate correlation 
analysis is relatively straightforward, these methods have a higher false 
positive rate, leading to lower reliability of research results. While 
multivariate methods are more complex than univariate methods, 
they allow for the simultaneous consideration of interactions between 
data matrices and within data matrices, significantly increasing the 
reliability of the analysis results. On the other hand, due to the high-
dimensional nature of omics data, dimensionality reduction methods 
have become a primary approach for statistical integration. The 
purpose of dimensionality reduction techniques is to reduce a large 
number of variables to a small number of new components or 
principal variables with minimal information loss. For example, El 
Aidy et al. (2013) used O2-PLS to integrate pairwise the metabolomic, 
transcriptomic, and metagenomic data of germ-free mice colonized 
with the gut microbiota of normal mice. The authors found a strong 
correlation between early microbial colonizers and changes in urine 
metabolites, as well as a correlation between colonic tissue metabolites 
and upregulation of genes involved in O- and N-glycan biosynthesis 
and degradation (El Aidy et al., 2013). Canonical correlation analysis 
(CCA) (Moser et al., 2018) and co-inertia analysis (CIA) (Thioulouse 
and Lobry, 1995) are two other commonly used multivariate 
correlation methods in omics integration. CCA is a feature extraction 
method that identifies the optimal linear combinations of X and Y to 
maximize the correlation between the components. Co-inertia 
analysis (CIA) was initially used in ecological studies and later applied 
to omics integration. It describes the shared structure between two 
datasets by maximizing the covariance between components. CIA first 
applies data reduction techniques such as PCA or correspondence 
analysis to X and Y separately, then constrains the generated 
components to maximize the squared covariance between X and Y 
(Thioulouse and Lobry, 1995).

Knowledge-driven omics integration methods leverage existing 
knowledge frameworks about relationships between metabolites, 
species, and/or genes to integrate different omics data. This 
information can be  gathered through literature mining or 
computationally predicted from public databases. The simplest form 
of knowledge-based omics integration is through association 
networks, which are created based on pairwise relationships between 
biological entities measured in omics data. Pairwise relationships can 
be computed directly from omics data itself or based on third-party 
resources. For instance, McHardy et al. (2013) constructed interaction 
networks of the cecum and colon based on pairwise Spearman 
correlations between microbiome and metabolome data. While 
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correlation-based network reconstructions involve interactions 
between microbial species, they do not provide more detailed 
mechanistic information about these interactions. Metabolic models, 
comprehensive reconstructions of an organism’s metabolism, serve as 
an alternative to the interaction-based network methods used 
previously. These models can serve as a scaffold for integrating omics 
data, thereby providing crucial mechanistic details about microbial 
community functions and activities.

2.7 Microbiome and metaproteome joint 
analysis

Given that gut microbes constitute over 90% of the total microbial 
population in the host, current metaproteomic research is 
predominantly centered on gut microbiota. Samples collected from 
the host gut contain the microbiome and host proteins. These 
microbiome/host proteins directly represent the functional activities 
of the gut ecosystem. Macroproteomic analysis can quantify the 
proteins produced by the host and microbiome, providing a basis for 
a deeper understanding of the functional roles of microbes in host 
health (Peters et al., 2019). As a complement to metagenomics and 
metatranscriptomics, macroproteomic analysis reflects the activity of 
cellular translation and post-translational processes. Similar to 
metabolomics, macroproteomics is typically achieved through mass 
spectrometry analysis. One advantage of macroproteomics over 
metabolomics is the ability to obtain information on sample 
classification and functional activities. When functional variations are 
observed, this information enables researchers to assess the 
contributions specific to phylogenetic development. In the context of 
microbiome and metaproteome joint analysis, the use of 
macroproteomics to assess microbial functions has been shown to 
be  superior to 16S rRNA gene sequencing (Kleiner et  al., 2017), 
further highlighting the value of metaproteomics in microbiome 
research. Studies have shown that with sufficient depth of 
macroproteomic measurements, macroproteomics can also be used to 
analyze abundance information of microbial communities (Xiong 
et al., 2017).

As metagenomics has been widely used in microbiome research, 
a high proportion of previous studies on gut microbiome using 
macroproteomics or metabolomics have been conducted through 
metagenomics. By integrating shotgun metagenomics with 
macroproteomics, not only can protein expression levels 
be  quantified, but protein identification can also be  achieved by 
generating matched sample metagenomic databases. Using a 
matched shotgun metagenomic database search approach, Mills RH 
et al. conducted an integrated metagenomic/macroproteomic study 
of the microbiome in patients with Crohn’s disease, revealing 
consistent changes in genes, proteins, and pathways compared to the 
control group (Mills et al., 2019). In healthy adults, Tanca et al.’s 
study found that the taxonomic composition of microbial 
communities obtained using metagenomics and macroproteomics is 
generally comparable. However, metagenomics (representing 
functional potential) and macroproteomics (representing functional 
activity) exhibit significant differences, with macroproteomics 
showing higher inter-individual variability (Tanca et  al., 2017). 
Heintz-Buschart et  al. conducted a more integrated multi-omics 
study of the microbiome in type 1 diabetes (T1DM) patients, 

providing a good example of integrated multi-omics data integration 
(Heintz-Buschart et  al., 2016a). In summary, metagenomic and 
metatranscriptomic data are first utilized for co-assembling the 
genome and predicting microbial genes in the gut. The latter are then 
translated into protein sequences and used for protein identification 
in metaproteomics. This integrated data processing workflow enables 
efficient integration of all three omics datasets and assesses the 
relationships between microbial proteins or functions encoded, 
transcribed, and expressed.

2.8 Joint analysis of the microbiome with 
other omics data

In current research methodologies, the integration of multi-omics 
(including phylogenetic marker-based microbiome analysis, shotgun 
metagenomics, metatranscriptomics, metaproteomics, metabolomics, 
genetic variations, gene expression, and epigenetics) is one of the 
important approaches to reveal the interactions between host genetics 
and microbial communities by combining diverse data from both the 
host and microbes, providing new insights into microbial functional 
studies. Through host transcriptomics, researchers can quantify gene 
expression activities under different treatment or disease states, 
thereby gaining insights into the interactions between host genes and 
the microbiome (Conesa et  al., 2016). Analysis techniques in 
metatranscriptomics enable researchers to quantify the abundance of 
microbial gene transcripts in samples, aiding in a deeper 
understanding of microbial functional characteristics. The research 
protocols in metatranscriptomics vary depending on the organism 
under study. For instance, after next-generation sequencing, 
transcripts are aligned to a metatranscriptomic reference genome for 
quantitative analysis (Shakya et al., 2019).

Currently, research methods for integrating multi-omics analysis 
can be  broadly categorized into two main types: one common 
approach involves fixing host genetics, such as using twin cohorts 
(Goodrich J.K. et al., 2016) or genetically modified animals (Carmody 
et al., 2015) as subjects to study the interactions between host genetics 
and gut microbiota. This method significantly reduces the workload 
of collecting host genotypes; however, it is limited to individual genes 
or genes previously reported, making it challenging to generate new 
hypotheses about host–microbe interaction mechanisms. The other 
approach directly correlates host genomic variation data, gene 
expression data, epigenetic information, etc., with gut metagenomic 
data, metatranscriptomic data, and even metaproteomic data. By 
integrating high-dimensional host information data with high-
dimensional microbial data, correlations between the host and gut 
microbiota can be discovered statistically. This integrative approach of 
multi-omics data plays an increasingly important role in microbiome 
research. For example, several studies have identified associations 
between host genomic variations and gut microbiota (Blekhman et al., 
2015; Goodrich J. et  al., 2016), with some findings validated in 
multiple populations (Turpin et al., 2016).

Although integrating multi-omics poses greater statistical 
challenges for researchers, such as the use of efficient bioinformatics 
tools and advanced statistical methods (multivariate statistics and 
machine learning methods) (Blanco-Míguez et al., 2019; Knight et al., 
2018; Mallick et al., 2017; Valles-Colomer et al., 2016), this integration 
of high-dimensional host data and microbial data analysis is playing 
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an increasingly important role in research. However, since factors like 
environment, diet, and ecological factors can also influence the 
composition of the gut microbiota among individuals, and may 
be related to host genetics (Knights et al., 2014). Therefore, it is crucial 
to control these factors through experimental or statistical methods. 
As host genetic information can also predict gene expression in 
specific tissues, in the future, integrating host genotypes and 
microbiome information may help investigate the expression 
interaction network between the host and the microbiome.

3 Based on the progress of 
multi-omics integrated analysis of the 
microbiome

3.1 Progress in the joint analysis of the 
microbiome and host genome

In human studies, the initial research on the joint analysis of the 
microbiome and host genome was conducted with candidate genes 
set. Researchers found several significant associations between the 

microbiome and host genetics in the context of candidate genes. Early 
studies revealed associations between the Fucosyltransferase 2 (FUT2) 
gene and microbial energy metabolism and mucosal inflammation 
(Tong et al., 2014), as well as between the MEFV gene and changes in 
bacterial phylum abundance (Khachatryan et al., 2008). Furthermore, 
a study conducted the first human whole-genome mbQTL mapping 
in 93 individuals with both metagenomic and genotype data within 
the Human Microbiome Project, indicating a correlation between the 
two (Blekhman et al., 2015). Subsequently, researchers carried out 
three independent large-scale population studies on mbQTL. Bonder 
et al. (2016), Turpin et al. (2016), and Wang et al. J. (2016) conducted 
high-resolution QTL mapping in populations from the Netherlands, 
Canada, and Germany, respectively. All three groups used similar 
experimental designs in fairly large cohorts and found similar results 
(Table 4).

In addition, research on the joint analysis of the microbiome and 
host genome is not limited to humans. Due to the complexity of 
human populations and ethical considerations, some studies have also 
been conducted in experimental animals (Table  4). As the most 
common experimental animals, Benson et al. (2010) conducted a 
miGWAS study in mice and identified 26 mbQTLs associated with the 

TABLE 4 Summary of the combined analysis of microbiome and host genome.

Study Sequencing method Analysis Population sample 
size

Number of 
Gene/Loci

Organism

Frank et al. (2011) 16S seq Gene 178 1 Humans

Blekhman et al. (2015) WGS Gene 93 1 Humans

Davenport et al. (2015) 16S seq Gene 184 1 Humans

Bonder et al. (2016) WGS Gene 1,514 2 Humans

Turpin et al. (2016) 16S seq Gene 1,561 9 Humans

Lim et al. (2017) 16S seq Gene 655 1 Humans

Xie et al. (2016) 16S seq Gene 1,126 8 Humans

Hughes et al. (2020) 16S seq Gene 3,890 11 Humans

Ishida et al. (2020) 16S seq Gene 1,068 5 Humans

Kurilshikov et al. (2021) 16S seq Gene 18,340 9 Humans

Benson et al. (2010) 16Sseq QTL 645 18 Mouse

Hillhouse et al. (2011) 16Sseq QTL 314 10 Mouse

McKnite et al. (2012) 16Sseq QTL 61 9 Mouse

Leamy et al. (2014) 16Sseq QTL 472 42 Mouse

Org et al. (2015) 16Sseq QTL 599 7 Mouse

Wang J. et al. (2016) 16Sseq QTL 334 20 Mouse

Snijders et al. (2016) 16Sseq QTL 293 169 Mouse

Kemis et al. (2019) 16Sseq QTL 500 28 Mouse

Perez-Munoz et al. (2019) 16Sseq QTL 128 27 Mouse

Suzuki et al. (2004) 16Sseq QTL 70 24 Mouse

Bubier et al. (2020) 16Sseq QTL 500 18 Mouse

Zhao et al. (2013) 16Sseq Heritability 60 13 Chicken

Chen et al. (2017) 16Sseq Heritability 500 74 Pig

Wen et al. (2021) 16Sseq Heritability 206 47 Chicken

Fan et al. (2021) 16Sseq Heritability 278 9 Bovine

Wang et al. (2022) 16Sseq Heritability 239 NA Pig
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TABLE 5 Summary of the combined analysis of microbiome and Metabolome.

Study Years Metabolomic 
technique

Sample type Population sample 
size

Disease

Marchesi et al. (2007) 2007 1H NMR Fecal water 33 samples IBD (CD and UC)

Jansson et al. (2009) 2009 ICR-FT-MS Fecal water 34 samples IBD (CD)

Phua et al. (2014) 2014 GC-TOFMS Fecal sample 21 samples Colorectal cancer (CRC)

Zhang C. et al. (2015) 2015 1H NMR Fecal water and urine 

sample

38 samples Prader–Willi syndrome (PWS) 

and simple obesity

Jacobs et al. (2016) 2016 UPLC-MS Fecal sample 90 samples IBD (CD and UC)

Sinha et al. (2016) 2016 LC/GC–MS Fecal sample 132 samples CRC

Wang et al. (2017) 2017 GC–MS Fecal sample 27 samples CRC

Franzosa et al. (2019) 2019 LC–MS Fecal sample 220 sample IBD (CD and UC)

abundance of 64 microbial taxa. Some of these mbQTLs exhibit 
pleiotropy, where multiple different genetic loci influence one or more 
microbial traits. It is worth noting that regardless of whether the 
microbial taxa are correlated, they may be  regulated by the same 
genetic loci. For example, a study found that an mbQTL on 
chromosome 7 affected two phylogenetically close bacteria while an 
mbQTL on chromosome 10 affected taxonomically unrelated 
lactobacilli and coriobacteriaceae. Subsequently, researchers 
conducted functional predictions on these selected mbQTLs that 
affect microbial abundance and found that many of the mbQTLs’ 
functions may be  related to host obesity, immunity, and 
disease susceptibility.

These studies have all confirmed the interactions between the host 
genome and the composition of the microbiome, identifying the 
pleiotropy of relevant loci. They have also highlighted several host 
phenotype-associated loci that have genetic effects on the microbiome 
composition. Furthermore, due to the high similarity in genetic 
microbiota and functional categorization of candidate genes among 
pigs, chickens, cattle, and mice, it suggests that the genetic effects of 
the host on the gut microbiota of different mammals are similar. This 
enhances researchers’ comprehensive and in-depth understanding of 
the interplay between the microbiome and host genome.

3.2 The progress of research on the joint 
analysis of the microbiome and 
metabolome

With the advancement of technology, metabolomics has become 
a powerful tool for studying individual metabolic differences in health 
and disease. Analyzing the fecal metabolome of individuals with 
inflammatory bowel disease (IBD) and colorectal cancer (CRC) 
revealed significant changes in the fecal metabolome of diseased 
individuals compared to healthy individuals.

In a study by Jansson et  al., researchers used untargeted 
metabolomics analysis to identify the contributions of metabolites 
produced by the gut microbiota to the host’s disease state. Ion 
Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/
MS) was used to discern the masses of thousands of metabolites in 
fecal samples collected from 17 identical twin pairs, including healthy 
individuals and those with CD. Pathways with differentiating 
metabolites included those involved in the metabolism and or 

synthesis of amino acids, fatty acids, bile acids and arachidonic acid. 
Several metabolites were positively or negatively correlated to the 
disease phenotype and to specific microbes previously characterized 
in the same samples (Jansson et al., 2009). Furthermore, Jacobs et al. 
studied the pre-disease risk status of inflammatory bowel disease 
(IBD) in first-degree relatives of 21 children with IBD. The results 
indicate individuals were classified into 2 microbial community types. 
One was associated with IBD but irrespective of disease status, had 
lower microbial diversity, and characteristic shifts in microbial 
composition including increased Enterobacteriaceae, consistent with 
dysbiosis. This microbial community type was associated similarly 
with IBD and reduced microbial diversity in an independent pediatric 
cohort. Individuals also clustered bioinformatically into two subsets 
with shared fecal metabolomics signatures. One metabotype was 
associated with IBD and was characterized by increased bile acids, 
taurine, and tryptophan. The IBD-associated microbial and 
metabolomics states were highly correlated, suggesting that they 
represented an integrated ecosystem (Jacobs et al., 2016). Franzosa 
et al. performed untargeted metabolomic and shotgun metagenomic 
profiling of cross-sectional stool samples from discovery (n = 155) and 
validation (n = 65) cohorts of CD, UC and non-IBD control patients. 
Metabolomic and metagenomic profiles were broadly correlated with 
fecal calprotectin levels (a measure of gut inflammation). Across 
>8,000 measured metabolite features, they identified chemicals and 
chemical classes that were differentially abundant in IBD, including 
enrichments for sphingolipids and bile acids, and depletions for 
triacylglycerols and tetrapyrroles (Franzosa et al., 2019). In addition, 
in recent years, a large number of studies involving multi-omics 
integrative analysis of the microbiome and metabolome have been 
conducted (Table 5). Through the joint analysis of the microbiome and 
metabolome, researchers have further elucidated how metabolites 
change with different physiological states in the complex life system 
of the host.

3.3 Progress in research on the joint 
analysis of the microbiome and the 
proteome

Although metaproteomics is still in its early stages and new 
technologies are under development, research on metaproteomics has 
begun and has provided a new perspective on the functionality of the 
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microbiome from another level. It has offered new insights into the 
various physiological processes involved in health and disease states. 
Metaproteomics has been used to analyze the gut microbiota of 
patients with complex diseases such as IBD (Juste et al., 2014) and 
cirrhosis (Wei et al., 2016). As shown in Table 6, these studies have 
been able to more accurately identify microbial differences in 
experimental samples by comparing metaproteomic data from healthy 
and diseased individuals. Furthermore, changes in microbial 
metabolic pathways and alterations in host–microbe interaction 
networks can be further observed, aiding in elucidating the role of the 
gut microbiome in various diseases.

Catherine and colleagues conducted a study on the IBD 
population. They first developed and validated a workflow-
including extraction of microbial communities, two-dimensional 
difference gel electrophoresis (2D-DIGE), and LC–MS/MS-to 
discover protein signals from CD-associated gut microbial 
communities. Then they used selected reaction monitoring (SRM) 
to confirm a set of candidates. In parallel, they used 16S rRNA gene 
sequencing for an integrated analysis of gut ecosystem structure 
and functions. Their 2D-DIGE-based discovery approach revealed 
an imbalance of intestinal bacterial functions in CD. Many 
proteins, largely derived from Bacteroides species, were over-
represented, while under-represented proteins were mostly from 
Firmicutes and some Prevotella members. Moreover, although the 
abundance of most protein groups reflected that of related bacterial 
populations, they found a specific independent regulation of 
bacteria-derived cell envelope proteins (Juste et al., 2014). Michail 
and colleagues conducted another study on the population with 
non-alcoholic fatty liver disease (NAFLD), and the study found 
that, children with NAFLD had more abundant 
Gammaproteobacteria and Prevotella and significantly higher 
levels of ethanol, with differential effects on short chain fatty acids. 
This group also had increased genomic and protein abundance for 
energy production with a reduction in carbohydrate and amino 
acid metabolism and urea cycle and urea transport systems. The 

metaproteome and metagenome showed similar findings. The gut 
microbiome in pediatric NAFLD is distinct from lean healthy 
children with more alcohol production and pathways allocated to 
energy metabolism over carbohydrate and amino acid metabolism, 
which would contribute to development of disease (Michail 
et al., 2015).

Metaproteomics has not only been applied to study gut microbiota 
but also to investigate microbial communities from other sources, 
such as the human oral microbiome (Jersie-Christensen et al., 2018), 
vaginal microbiome (Berard et al., 2018), as well as environmental 
microbial communities in water (Hettich et al., 2012) and sediment 
ecosystems (Wang D.Z. et  al., 2016), allowing for a deeper 
understanding of the functions of these microbial communities. 
While significant differences between sample types require different 
sample collection and preprocessing procedures, and distinct 
microbial compositions necessitate specialized microbial databases for 
better identification, it is encouraging that mass spectrometry 
techniques, databases, and functional analysis methods have already 
begun to be applied despite the variations among biological samples.

4 Conclusion and future directions

In this review, we have summarized the multi-omics integrative 
analysis methods based on the microbiome and briefly outlined their 
initial applications. The characteristic of multi-omics technologies is 
the organic integration of information from various omics dimensions, 
constructing gene regulatory networks, comprehensively exploring 
and deeply understanding the regulatory and causal relationships 
among various biological molecules, thereby correctly deciphering the 
biological functions and physiological mechanisms of organisms. The 
strategy of multi-omics integrative analysis is to normalize, compare, 
and correlate batch data from different omics levels for specific 
biological functions in the same integrated analysis software, 
establishing correlations between molecular data at different levels. 

TABLE 6 Summary of the combined analysis of microbiome and metaproteomics.

Study Sequencing 
method

Sample type Population sample 
size

Number of identified 
protein groups

Disease

Juste et al. (2014) 16Sseq Fecal sample 12 samples Not reported IBD (CD)

Erickson et al. (2012) mNGS Fecal sample 12 samples 2,904 (healthy), 1,928 (ileal CD), 

2,241 (colonic CD) on sample 

average

IBD (CD)

Michail et al. (2015) 16Sseq Fecal sample 50 samples 96 (healthy), 104 (NAFLD) on 

sample average

Non-alcoholic fatty liver 

disease (NAFLD)

Kolmeder et al. (2015) Metaproteomics Fecal sample 29 samples Not reported Obesity

Wei et al. (2016) Metaproteomics Fecal sample 6 samples 5,020 Liver cirrhosis

Li et al. (2016) Metaproteomics MLI lavage 51 samples Not reported IBD (CD and UC)

Gavin et al. (2018) Metaproteomics Fecal sample 101 samples 11,378 Type 1 Diabetes (T1DM)

Chen et al. (2018) Metaproteomics Fecal sample 20 samples 2,440 Major depressive disorder 

(MDD)

Zhang et al. (2020) Metaproteomics MLI lavage 176 samples 53,207 IBD (CD and UC)

Blakeley-Ruiz et al. 

(2019)

Metaproteomics Fecal sample 25 samples 14,850 IBD (CD) in remission
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Simultaneously, combining GO functional analysis, metabolic 
pathway enrichment, molecular interactions, and other biological 
functional analysis systems comprehensively elucidates the functions 
and regulatory mechanisms of biological molecules. The application 
of multi-omics integrative analysis can further clarify the complex 
relationships among various biological molecules involved in the host, 
microbiome, and their interactions, providing new insights into 
disease biology.

An emerging application of multi-omics analysis is in precision 
medicine. In precision medicine research, measurement data from 
multiple omics levels are used to guide and formulate treatment plans 
tailored to the specific physiological state of patients. Due to the 
multifactorial effects of the microbiome, it can provide a promising 
target for precision medicine. For example, adjusting drugs or doses 
based on a patient’s microbiome composition or other molecular 
phenotypes may benefit disease treatment. Although various methods 
have been developed for multi-omics integrative analysis, the lack of 
standardization and other issues can lead to research results being 
prone to false positives. Therefore, there is an urgent need at this stage 
to establish an optimal approach for integrating multi-omics data, 
which will help to gain a more in-depth and specific understanding of 
the role of the microbiome in host biological processes.
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