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Background: Antibiotics, as the most commonly prescribed class of drugs in 
neonatal intensive care units, have an important impact on the developing 
neonatal gut microbiota. Therefore, comprehending the effects of commonly 
used antibiotic therapy on the gut microbiota and butyrate-producers in early 
infants could provide information for therapeutic decision-making in the NICU.

Objectives: To explore the effects of antibiotic therapy on the early development 
of gut microbiota and butyrate-producers in early infants.

Methods: A total of 72 infants were included in the study. We performed 16S 
rRNA sequencing on stool swab samples collected from neonatal intensive care 
unit patients who received amoxicillin-clavulanic acid (AC, n = 10), moxalactam 
(ML, n = 28) and non-antibiotics (NA, n = 34). We then compared the taxonomic 
composition between treatment regimens, focusing on differences in butyrate-
producers.

Results: Our study showed that there were significant differences in 
Shannon index (p = 0.033) and Beta diversity (p = 0.014) among the three 
groups. At the family level, compared with the other two groups, the relative 
abundance of Clostridiaceae (p < 0.001) and Veillonellaceae (p = 0.004) 
were significantly higher, while the relative abundance of Enterococcidae 
(p < 0.001) was significantly lower in the NA group. The relative abundance 
of Enterobacteriaceae (p = 0.022) in the AC group was greater than that in 
the other two groups. Additionally, butyrate-producers (p < 0.001), especially 
Clostridiaceae (p < 0.001), were noticeably more abundant in the NA group. The 
relative abundance of Clostridiaceae and butyrate-producers were the lowest in 
the ML group (p < 0.001).

Conclusion: We found that antibiotic therapy had an adverse impact on the initial 
development of gut microbiota and leaded to a reduction in the abundance of 
butyrate-producers, particularly Clostridiaceae. Furthermore, moxalactam had 
a more pronounced effect on the gut microbiota compared to amoxicillin-
clavulanic acid.
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Introduction

Antibiotics, as the most commonly prescribed class of drugs in 
neonatal intensive care units (NICUs), demonstrate dual effects. While 
antibiotics are lifesaving in treating infections, prolonged exposure 
(greater than 3 or 5 days) is associated with short-term complications, 
including necrotizing enterocolitis (NEC), late-onset sepsis (LOS), 
periventricular leukomalacia (PVL), retinopathy of prematurity 
(ROP), chronic lung disease (CLD), and death (Esaiassen et al., 2017; 
Ting et al., 2016; Carl et al., 2014). Similarly, this exposure is linked to 
an increased risk of long-term health outcomes such as obesity, 
inflammatory bowel disease and allergy (Ajslev et al., 2011; Örtqvist 
et al., 2019; Arrieta et al., 2015). Therefore, rational and standardized 
antibiotic usage is a crucial target for antimicrobial stewardship 
in NICUs.

Infancy is a critical period for the establishment and 
development of the gut microbiota, shaped not only by the 
gestational age, delivery mode, and feeding but also by medical 
interventions, such as antibiotics (Bokulich et al., 2016; Reyman 
et al., 2019). Antibiotic therapy can induce alterations in species 
diversity (alpha diversity) and community composition of the gut 
microbiota, with effects persisting for an extended period in children 
(Gasparrini et al., 2019). During this critical developmental window, 
perturbations in the gut microbiota can profoundly affect host 
physiology and disease risk (Cox et al., 2014; Vangay et al., 2015) 
including asthma (Yamamoto-Hanada et al., 2017), allergy (Kim 
et al., 2018), type 1 diabetes (Clausen et al., 2016), obesity (Block 
et  al., 2018) and impaired neurocognitive outcomes (Slykerman 
et al., 2019).

Infancy also represents a pivotal time for acquiring butyrate-
producers (Bokulich et al., 2016), whose metabolite butyrate plays a 
central role in metabolic functions (Zhang et al., 2021), acting as the 
primary energy source for colonocytes and exerting regulatory effects 
on local immune system homeostasis and glucose homeostasis 
(Zhang et al., 2021; Donohoe et al., 2011; Smith et al., 2013). Butyrate 
promotes intestinal barrier function, physiological mucosal hypoxia, 
and the proliferation of health-associated anaerobes (Peng et  al., 
2007; Kelly et al., 2015). Additionally, Butyrate exhibits protective 
effects in conditions such as obesity, type 2 diabetes, autism, and 
cardiovascular disease (Blaak et al., 2020; Liu et al., 2019; Chen et al., 
2023). Given its crucial role in host health, understanding the 
communities that produce gut butyrate is a priority in gut 
microbiota research.

The research about the impacts of commonly used antibiotic 
therapies on gut microbiota and butyrate-producing bacteria in early 
infants remains limited. Therefore, we  compared the effects of 
amoxicillin-clavulanic acid (AC), moxalactam (ML) and 
non-antibiotics (NA) on gut microbiota diversity, composition and 
butyrate-producing bacteria in NICU infants in the study. We aimed 
to explore the effects of antibiotic therapy on the early development of 
gut microbiota and butyrate-producers in early infants to inform 
treatment decisions and contribute to the standardization of antibiotic 
use in the NICU.

Materials and methods

Study design and participants

This neonatal cohort study was conducted at Hunan Children’s 
Hospital in China, from August 1, 2018, to October 31, 2019. Seventy-two 
infants were enrolled based on the administration and types of antibiotics 
they received, and were subsequently divided into three groups: the 
amoxicillin-clavulanic acid (AC) group, the moxalactam (ML) group, 
and the non-antibiotics (NA) group, comprising 10, 28, and 34 infants, 
respectively. Inclusion criteria included infants who had received at least 
one dose of AC or ML without concomitant use of other types of 
antibiotics or who had not received any antibiotics prior to stool swab 
sample collection. Exclusion criteria applied to infants lacking a stool 
swab sample or with documented prior exposure to different antibiotics 
prior to hospitalization. Additionally, infants who did not receive 
intravenous medications were excluded from the study. The flow chart is 
shown in Supplementary Figure S1. Ethical approval for this study was 
obtained from the Medical Ethics Committee of Hunan Children’s 
Hospital (HCHLL-2018-64), and informed consent was obtained from 
the parents of all participating infants.

Butyrate-producers classification and 
quantification

According to a list of known butyrate-producers, we quantified 
the observed butyrate producers at the level of family, including 
Clostridiaceae, Bacteroidaceae, Lachnospiraceae, Erysipelotrichaceae, 
Ruminococcaceae, Eubacteriaceae, and Fusobacteriaceae (Rooney 
et  al., 2020; Romick-Rosendale et  al., 2018; Fu et  al., 2019). 
Subsequently, we quantified the relative abundance and richness of 
these butyrate-producers in each sample.

Gut microbiome analyses

Freshly evacuated fecal samples were collected into sterile tubes 
and immediately frozen in ice boxes, and transported to the laboratory 
within 2 hours. All samples were stored at −80°C until further 
processing. Bacterial DNA was extracted from the fecal samples using 
the QIAamp FAST DNA Stool Mini-Kit according to the 
manufacturer’s instructions. The V3-V4 region of the 16S rRNA gene 
was amplified using 341F/806R primers (341F: 5′-GTGCC 
AGCMGCCGCGG-3′/806R: 5′-GGACTACVVGGGTATCTAAT 
C-3′), and polymerase chain reaction (PCR) was conducted. The 
amplified DNA was then sequenced using the Illumina 
MiSeq platform.

To ensure the accuracy in subsequent analyses, the raw reads were 
filtered based on the following criteria: reads containing bases with a 
terminal mass less than 20 and sequences shorter than 100 base pairs 
were discarded using Trim Galore software. The merged sequences 
were assembled using FLASH2 software. Primer sequences were 
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removed using mothur software, and sequences exhibiting a base 
mismatch rate greater than 2% and shorter than 100 base pairs were 
eliminated using usearch, resulting in the acquisition of optimized 
sequences of high quality and reliability. The filtered sequences were 
then clustered into operational taxonomic units (OTUs) with a 
similarity threshold of ≥97%.

Statistical analyses

Descriptive statistics were computed for the basic information of 
the study subjects. Normally distributed data were presented as 
mean ± standard deviation (X ± SD), while non-normally distributed 
data were expressed as median and interquartile range [M (P25–P75)]. 
Categorical data were described by absolute numbers. Group 
differences were assessed using the Chi-square test or Fisher’s exact 
test for categorical variables and the Kruskal-Wallis Test for 
continuous variables. Pairwise comparisons were conducted using the 
Wilcoxon rank-sum test. The alpha diversity index of the gut 
microbiota was compared among the three groups using R software, 
with significance assessed via the Kruskal-Wallis H rank sum test. The 
beta diversity was analyzed through principal coordinates analysis 
(PCoA) to demonstrate differences in gut microbiota composition 
among groups, with significance determined using the PERMANOVA-
test. Linear discriminant analysis effect size (LEfSe) was used to 
identify the species most likely to explain differences between groups 
with the linear discriminant analysis (LDA).

Subjects were divided into three groups based on the presence and 
type of antibiotics, and the crude trends of gut microbiota composition 
were observed at the phylum, class, order, and family levels. 
Differences at these taxonomic levels and in butyrate-producers were 
analyzed using R software and IBM SPSS 27.0. Statistical analyses and 
mapping were conducted using IBM SPSS 27.0 and R 4.3.2. A p-value 
<0.05 was considered statistically significant.

Results

Clinical characteristics of the neonates

A total of 72 NICU infants were included in this study. The clinical 
characteristics of the neonates are presented in Table 1. There were no 
significant differences among the three groups in terms of gestational 
age, birth weight, day of age, sex ratio, mode of delivery, and type of 
feeding (p > 0.05).

Gut microbiota characteristics of the AC 
group, ML group, and NA group

Alpha diversity analysis found that the Shannon index 
(Figure 1A, 1.465vs. 1.125 vs.1.206 p = 0.033) was higher in the NA 
group than that in the AC group and ML group. However, there were 
no significant differences in Chao1, ACE, and Simpson index among 
the three groups (Figures  1B–D, p  >  0.05). Differences in beta 
diversity were discovered among treatment regimens (Figure  1E, 
p = 0.014).

The LEfSe analysis (Figure 1F) showed eight bacteria (p, c, o, f, and 
g, respectively, representing phylum, class, order, family, and genus 
level) were enriched in the NA group, five bacteria were enriched in the 
ML group and ten bacteria were enriched in the AC group. 
Clostridiaceae, Clostridium_sensu_stricto_1, Veillonellaceae, and 
Veillonella were abundant in the NA group. Firmicutes, Enterococcaceae, 
and Enterococcus were abundant in the ML group. As well as, 
Enterobacteriaceae were abundant in the AC group.

At the phylum level (Figure 1G), there was increasing trend in the 
relative abundance of Firmicutes (0.212 vs. 0.459 vs. 0.965, p = 0.010) 
in the AC, NA and ML groups, while there was decreasing trend in the 
relative abundance of Proteobacteria (0.568 vs. 0.458 vs. 0.022, 
p = 0.025). At the class level (Figure 1H), there was increasing trend in 
the relative abundance of Bacilli (0.161 vs. 0.193 vs.0.911, p = 0.002) in 
the AC, NA and ML groups, while there was decreasing trend in the 
relative abundance of Gammaproteobacteria (0.567 vs. 0.458 vs. 0.022, 
p = 0.025). There was increasing trend in the relative abundance of 
Clostridia (0.002 vs. 0.003 vs. 0.036, p < 0.001) in the AC, ML and NA 
groups, while there was decreasing trend in the relative abundance of 
Negativicutes (0.002 vs. 0.0005 vs. 0.00006, p < 0.001). At the order level 
(Figure 1I), there was increasing trend in the relative abundance of 
Lactobacillales (0.161 vs. 0.188 vs. 0.841, p = 0.009) in the AC, NA and 
ML groups, while there was decreasing trend in the relative abundance 
of Enterobacterales (0.567 vs. 0.455 vs. 0.021, p = 0.025). The relative 
abundances of Clostridiales (0.0000 vs. 0.0003 vs. 0.0145, p < 0.001) and 
Veillonellales (0.00006 vs. 0.0005 vs. 0.0016, p  = 0.003) showed an 
increasing trend in the ML group, AC group, and NA groups. At the 
family level (Figure  1J), there was increasing trend in the relative 
abundance of Clostridiaceae (0.0000 vs. 0.0003 vs. 0.0145, p < 0.001) 
and Veillonellaceae (0.00005 vs. 0.00053 vs. 0.00129, p = 0.004) in the 
ML, AC and NA groups. The relative abundances of Enterobacteriaceae 
(0.003 vs. 0.226 vs. 0.307, p = 0.022) showed an increasing trend in the 
ML group, NA group, and AC groups, while the relative abundances of 
Enterococcaceae (0.395 vs. 0.050 vs. 0.022, p  < 0.001) showed a 
decreasing trend in the ML group, AC group, and NA groups.

TABLE 1 Comparison of basic information and clinical data of study subjects.

Clinical information AC (n = 10) ML (n = 28) NA (n = 34) F/H/X2 p value

Gestational Age* (weeks) 35.8 (33.9, 36.8) 37.9 (36.3, 39) 37.6 (35.7, 39.1) 5.259 0.072

Birth weight, mean (SD) (g) 2,441 ± 440 3,003 ± 741 2,812 ± 632 2.73 0.072

Day of age* (d) 20 (5, 42) 17 (10, 27) 9 (4, 26) 3.475 0.176

Male/Female, n 6/4 18/10 27/7 2.391 0.303

Vaginal/Cesarean, n 3/7 14/14 19/15 2.071 0.355

MBM/Non-MBM, n 3/7 14/14 6/28 2.697 0.260

AC, amoxicillin-clavulanic acid; ML, moxalactam; NA, non-antibiotics; SD, standard deviation; MBM, mother’s breastmilk.
*Median (P25-P75).
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Gut microbiota characteristics of the AC 
group and ML group

There was nonsignificant difference in diversity between the AC 
group and ML group (Figures 2A–E).

Variations among the taxa were mainly compared at the phylum, 
class, order and family levels. At the phylum level (Figure  2F), 
compared with the ML group, the relative abundance of Firmicutes 
(0.212 vs. 0.965, p = 0.014) was significantly lower in the AC group, 
while Proteobacteria (0.568 vs. 0.022, p = 0.022) was significantly 
higher in the AC group. At the class level (Figure 2G), compared with 
the ML group, the relative abundance of Bacilli (0.161 vs. 0.911, 
p  = 0.020) was significantly lower in the AC group, while 
Gammaproteobacteria (0.567 vs. 0.022, p = 0.022) and Negativicutes 
(0.0005 vs. 0.00006, p = 0.016) were significantly higher in the AC 
group. There was no difference in the relative abundance of Clostridia 
(0.002 vs. 0.003, p = 0.619) between the AC group and ML group. At 
the order level (Figure 2H), by comparing the two groups, the relative 
abundances of Enterobacterales (0.567 vs. 0.021, p  = 0.026) and 
Veillonellales (0.0005 vs. 0.00006, p = 0.016) were noticeably greater 
in the AC group, while the abundances of Lactobacillales (0.161 vs. 
0.841, p = 0.047) were significantly lower in the AC group. There was 
no difference in the relative abundance of Clostridiales (0.0003 vs. 
0.0000, p = 0.066) between the AC group and ML group. At the family 
level (Figure  2I), by comparing the two groups, the relative 
abundances of Enterobacteriaceae (0.307 vs. 0.003, p = 0.017) and 
Veillonellaceae (0.00053 vs. 0.00005, p = 0.014) were noticeably greater 
in the AC group. There were no significant differences in the relative 
abundance of Clostridiaceae (0.0003 vs. 0.0000, p  = 0.066) and 
Enterococcaceae (0.050 vs. 0.395, p = 0.085) between the AC group 
and ML group.

Gut microbiota characteristics of the AC 
group and NA group

There was no difference in diversity between the AC group and 
NA group (Figures 3A–E).

The results showed that there were no significant differences in the 
relative abundance of Firmicutes (0.212 vs. 0.459, p  = 0.145) and 
Proteobacteria (0.568 vs. 0.458, p  = 0.287) at the phylum level 
(Figure 3F). In terms of class (Figure 3G), Clostridia (0.002 vs. 0.036, 
p = 0.013) was significantly more abundant in the NA group. However, 
the relative abundances of Bacilli (0.161 vs. 0.193, p  = 0.845), 
Gammaproteobacteria (0.567 vs. 0.458, p = 0.025) and Negativicutes 
(0.0005 vs. 0.002, p = 0.299) did not show the significant differences 
between the two groups. At the order and family level (Figures 3H,I), 
we did not observe the significant differences in the relative abundance 
of Lactobacillales (0.161 vs. 0.188, p = 0.955), Enterobacterales (0.567 
vs. 0.455, p  = 0.287), Clostridiales (0.0003 vs. 0.0145, p  = 0.123), 
Veillonellales (0.0005 vs. 0.001, p = 0.491), Clostridiaceae (0.0003 vs. 
0.0145, p = 0.123), Veillonellaceae (0.00053 vs. 0.00129, p = 0.715), 
Enterobacteriaceae (0.307 vs. 0.226, p = 0.450) and Enterococcaceae 
(0.050 vs. 0.022, p = 0.123) between the AC and NA groups.

Gut microbiota characteristics of the ML 
group and NA group

The alpha diversity showed that the Shannon index in the NA group 
was significantly higher than that in the ML group (Figure 4A, 1.46 vs. 
1.21, p = 0.015). But there were no significant differences in the Chao1 
index (Figure  4B, p  = 0.62), ACE index (Figure  4C, p  = 0.62), and 
Simpson index (Figure 4D, p = 0.067). The β diversity analysis (PCoA) 

FIGURE 1

Gut microbiota diversity and relative abundance in the AC, ML, and NA groups. (A) Comparison of Shannon index among the three groups. 
(B) Comparison of Chao1 index among the three groups. (C) Comparison of ACE index among the three groups. (D) Comparison of Simpson index 
among the three groups. (E) PCoA among the three groups. (F) Lefse analysis among the three groups. (G–J) Differential bacteria in relative abundance 
among the three groups at the phylum, class, order and family level, respectively. *Indicates p < 0.05, ** Indicates p < 0.01, *** Indicates p < 0.001. AC, 
amoxicillin-clavulanic acid group; ML, moxalactam group. NA, non-antibiotics group.
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results revealed significant differences in the intestinal microbiota 
between the ML group and the NA group (Figure 4E, p = 0.004).

At the phylum level (Figure 4F), when comparing the ML and NA 
groups, the relative abundance of Firmicutes (0.459 vs. 0.965, 
p = 0.017) was significantly less abundant in the NA group, while 

Proteobacteria (0.458 vs. 0.022, p = 0.033) was considerably greater in 
the NA group than in the ML group. At the class level (Figure 4G), 
Gammaproteobacteria (0.458 vs. 0.022, p = 0.033), Clostridia (0.036 vs. 
0.003, p < 0.001), Negativicutes (0.002 vs. 0.00006, p < 0.001) were 
significantly more abundant in the NA group, while Bacilli (0.193 vs. 

FIGURE 2

Gut microbiota diversity and relative abundance in the AC and ML groups. (A) Comparison of Shannon index between the two groups. (B) Comparison 
of Chao1 index between the two groups. (C) Comparison of ACE index between the two groups. (D) Comparison of Simpson index between the two 
groups. (E) PCoA between the two groups. (F–I) Differential bacteria in relative abundance between the two groups at the phylum, class, order and 
family level, respectively. *Indicates p < 0.05. AC, amoxicillin-clavulanic acid group; ML, moxalactam group.

FIGURE 3

Gut microbiota diversity and relative abundance in the AC and NA groups. (A) Comparison of Shannon index between the two groups. (B) Comparison 
of Chao1 index between the two groups. (C) Comparison of ACE index between the two groups. (D) Comparison of Simpson index between the two 
groups. (E) PCoA between the two groups. (F–I) Differential bacteria in relative abundance between the two groups at the phylum, class, order and 
family level, respectively. *Indicates p < 0.05. AC, amoxicillin-clavulanic acid group; NA, non-antibiotics group.
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0.911, p < 0.001) were significantly less abundant in the NA group. At 
the order level (Figure  4H), Enterobacterales (0.455 vs. 0.021, 
p = 0.030), Clostridiales (0.0145 vs. 0.0000, p < 0.001) and Veillonellales 
(0.0016 vs. 0.00006, p = 0.001) were significantly more abundant in 
the NA group, while Lactobacillales (0.188 vs. 0.841, p = 0.004) was 
significantly less abundant in the NA group. At the family level 
(Figure  4I), the relative abundances of Clostridiaceae (0.0145 vs. 
0.0000, p < 0.001), Veillonellaceae (0.00129 vs. 0.00005, p = 0.002) and 
Enterobacteriaceae (0.226 vs. 0.003, p = 0.026) were noticeably greater 
in the NA group, while the relative abundances of Enterococcaceae 
(0.022 vs. 0.395, p < 0.001) was significantly lower in the NA group.

Butyrate-producers characteristics of the 
AC group, ML group, and NA group

Compared with the AC group and ML group, the relative 
abundance of butyrate-producers (Figures 5A–D, 0.0409 vs. 0.0148 vs. 
0.0001, p = 4.5e-06), especially Clostridiaceae (Figure 5E, 0.01449 vs. 
0.00025 vs. 0.00000, p = 0.00026) were noticeably more abundant in 
the NA group. Other butyrate-producers, such as Erysipelotrichaceae, 
Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, and Bacteroidaceae 
exhibited no significant differences among the three groups 
(Supplementary Figure S2). When comparing the AC and ML groups, 
butyrate-producers (0.0148 vs. 0.0001, p = 0.009) exhibited higher 
abundances in the AC group, as shown in Figure  5D, while 
Clostridiaceae (0.00025 vs. 0.00000, p = 0.066) exhibited no significant 
difference between the two groups, as shown in Figure 5E. When 
comparing the AC and NA groups, the abundances of butyrate-
producers (0.0148 vs. 0.0409, p = 0.327) and Clostridiaceae (0.00025 
vs. 0.01449, p = 0.123) exhibited no significant difference between the 
two groups. When comparing the ML and NA groups, the abundances 
of butyrate-producers (0.0001 vs. 0.0409, p < 0.001) and Clostridiaceae 

(0.00000 vs. 0.01449, p < 0.001) were significantly lower in the ML 
group than in the NA group, as shown in Figures 5D,E.

Discussion

In our study, we found that antibiotic exposure was associated with 
a reduction in gut microbiota diversity. Furthermore, at the family 
level, we  found that antibiotic treatment led to an increase in the 
abundance of Enterococcaceae, while simultaneously resulting in a 
decrease in the abundance of butyrate-producers particularly 
Clostridiaceae. Additionally, we  observed that the gut microbiota 
composition in the NA and AC groups had a high degree of similarity, 
while the ML group differed from them, indicating that moxalactam 
had a greater impact on the gut microbiota compared to amoxicillin-
clavulanic acid.

In this study, we found a significant decrease in Shannon diversity of 
the gut microbiota in infants treated with moxalactam compared with 
non-antibiotic infants, which was consistent with previous studies 
showing that moxalactam reduces Shannon diversity of the gut 
microbiota (Zhu et  al., 2017). Spatz et  al. reported that amoxicillin-
clavulanic acid significantly reduced the bacterial alpha-diversity 
(Shannon index) (Spatz et al., 2023), we observed Shannon index was 
higher in the NA group than that in the AC group, although the 
differences was nonsignificant. McDonnell et  al. also reported that 
childhood antibiotic exposure was associated with reductions in 
microbial community richness and diversity (McDonnell et al., 2021). 
Moreover, there were studies finding that a reduced diversity of gut 
microbiota has been associated with the occurrence of NEC (Wang et al., 
2009), LOS (Mai et al., 2013), allergic disease (Bisgaard et al., 2011) and 
diabetes (Vatanen et al., 2018) later in life. Therefore, antibiotics may 
increase the risk of disease by reducing the diversity of the gut microbiota.

FIGURE 4

Gut microbiota diversity and relative abundance in the ML and NA groups. (A) Comparison of Shannon index between the two groups. (B) Comparison 
of Chao1 index between the two groups. (C) Comparison of ACE index between the two groups. (D) Comparison of Simpson index between the two 
groups. (E) PCoA between the two groups. (F–I) Differential bacteria in relative abundance between the two groups at the phylum, class, order and 
family level, respectively. *Indicates p < 0.05, ** Indicates p < 0.01, *** Indicates p < 0.001; ML, moxalactam group; NA, non-antibiotics group.
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Our results showed that antibiotic treatment led to a reduction in the 
abundance of Clostridiaceae at the family level, aligning with a previous 
study by Yu et  al., who reported that antibiotics inhibited the 
Clostridiaceae (Yu et  al., 2022). Additionally, a previous animal 
experiment reported that antibiotics reduced the abundance of 
Clostridium, while supplementing with Clostridium butyricum prevented 
aggravated inflammation and the dysregulated immune response 
characterized by greater M2 polarization of pulmonary macrophages and 
decreased release of IFN-γ and IL-17 as well as increased IL-5 levels (Zhu 
et al., 2021). Clostridiaceae plays a vital role in producing butyrate (Fu 
et al., 2019; Vital et al., 2014), which can offer fuel sources for the host and 
maintains the gut barrier (Hung et al., 2022). A decrease in Clostridiaceae 
has been linked to conditions like diabetes (T1D) (Elhag et al., 2020; 
Chen et  al., 2021), intestinal tumor (Chen et  al., 2020), and 
neurodevelopmental disorders (Hung et al., 2022). Our study found that 
antibiotic treatment led to an increased abundance of Enterococcaceae, 
which is consistent with a previous study (Yu et al., 2018). Moreover, 
Reyman et al. reported that antibiotics also increased the abundance of 
Enterococcus (Reyman et al., 2022), which were pathogenic bacteria 
widely recognized as leading hospital pathogens. Enterococcus could 
cause cell or organ damage by secreting proteins and producing toxic 
oxygen metabolites. Additionally, they exhibited a propensity for 
developing resistance and were associated with various conditions, 
including bacteremia, intra-abdominal infections, endocarditis, as well as 
inflammatory bowel diseases (Fiore et al., 2019). Consequently, antibiotics 
increase the risk of disease by altering the ratio of beneficial to pathogenic 
bacteria, disrupting the balance between microbial communities.

Both types of antibiotic treatment involved in this study led to a 
decrease of butyrate-producers, which suggested that antibiotics 
inhibited the production of butyrate-producing bacteria. This 
observation is consistent with the previous studies, which found 
antibiotics have a specific and pronounced negative effect on butyrate 

production in the gut (Zaura et al., 2015). In addition, Rooney et al. 
found that each additional day of antibiotics was associated with lower 
richness of butyrate producers within a week after therapy (Rooney et al., 
2020). Butyrate, a product of microbial fermentation of dietary fibers in 
the lower intestinal tract, plays an important role in the overall health 
(Canani et al., 2011). It supports intestinal homeostasis (Hamer et al., 
2008), and improves inflammation, oxidative status, epithelial defense 
barriers, visceral sensitivity, and intestinal motility (Liu et al., 2018). 
Butyrate-producers are crucial in maintaining a healthy gut environment 
by limiting the colonization of pathogenic microbes (Singh et al., 2022), 
supporting an anaerobic environment in the gut to prevent pathogenic 
expansions like Salmonella and E. coli (Rivera-Chávez et  al., 2016; 
Byndloss et  al., 2017), and contributing to vitamin biosynthesis, 
particularly vitamin B complexes (Belzer et  al., 2017). Depletion of 
butyrate-producing bacteria has been associated with several 
non-communicable diseases, such as type 2 diabetes mellitus (T2D) (Qin 
et al., 2012), obesity (Le Chatelier et al., 2013), and cardiovascular disease 
(Chen et al., 2023), as well as an increased risk of intestinal pathogens due 
to disrupted colonization resistance (Vital et al., 2017). Therefore, the 
disruption of gut microbiota by antibiotics, which increases the risk of 
disease, may be  associated with a reduction in butyrate-producing 
bacteria. Given the potential of butyrate-producers as next-generation 
probiotics, understanding the impact of antibiotics on these bacteria is 
crucial. Supplementation with butyrate-producing bacteria might help 
mitigate the effects of antibiotics on the gut microbiota.

Previous studies have suggested that early childhood exposure to 
antibiotics may have an impact on their long-term growth and 
development (Gerber et al., 2016). Antibiotics may affect growth and 
development by disrupting the gut microbiota (Korpela and de Vos, 
2016). In animal experiment, butyrate-producing bacteria have been 
proven to be important in improving the growth in aquatic animals 
(Liang et  al., 2023). Concurrently, studies have shown that 

FIGURE 5

Relative abundance of butyrate-producers in three groups of infants, stratified by treatment regimen received: AC, ML, or NA. Relative abundance of 
butyrate-producers in ML group (A). Relative abundance of butyrate-producers in NA group (B). Relative abundance of butyrate-producers in AC 
group (C). Total butyrate-producers content in three groups (D). Relative abundance of Clostridiaceae in three groups (E).
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butyrate-producing bacteria can suppress fat accumulation, thereby 
reducing the risk of obesity (Asano et al., 2019). In this study, we found 
that antibiotics reduced the abundance of butyrate-producers, 
especially Clostridiaceae. Therefore, we next want to investigate the 
role that butyrate-producers play in modulating the effects of 
antibiotics on growth and development. Additionally, we  aim to 
determine whether butyrate-producing bacteria could serve as a 
probiotic intervention to alleviate the impact of antibiotics on the 
gut microbiota.

Our study highlighted important findings about the relationship 
between antibiotic exposure and gut microbiota especially butyrate-
producers in infant. A key strength of this study is the focus on the 
specific effects of individual antibiotics, such as amoxicillin-clavulanic 
acid and moxalactam, rather than overall antibiotic exposure. 
Additionally, we  concentrated on examining the impact of these 
specific antibiotics on the abundance of butyrate-producing bacteria 
and revealed the differences in Clostridiaceae.

Our study has some limitations that should be acknowledged. Firstly, 
it was a cross-sectional, single-center study with a small sample size. 
Therefore, the results may not be generalizable to a larger population. 
Secondly, we had limited sampling time points, with only one time point 
analyzed. As a result, we were unable to determine the long-term effects 
of antibiotic treatments on gut microbiota. Finally, we conducted an 
initial analysis of the gut microbiota and identified disparities among 
various treatment groups by 16S rRNA sequencing. Nevertheless, the 
precise mechanisms through which antibiotics influence gut microbiota 
remain obscure. Consequently, subsequent research will be required to 
undertake animal and cellular experiments to elucidate the effects of 
antibiotics on the pathogenesis of gut microbiota.

Conclusion

Infants with antibiotics treatment exhibit a reduction in gut 
microbiota diversity, a decrease in the relative abundance of butyrate-
producers, especially Clostridiaceae, and an increase in the relative 
abundance of Enterococcidae. Indicating that antibiotic therapy has an 
adverse effect on the early development of gut microbiota and butyrate-
producers, especially Clostridiaceae in Early Infants. Moreover, this 
study revealed moxalactam had a more pronounced influence on the 
gut microbiota compared to amoxicillin-clavulanic acid.
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