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Neonatal calf diarrhea (NCD) remains a significant contributor to calf mortality 
within the first 3 weeks of life, prompting widespread antibiotic use with associated 
concerns about antimicrobial resistance and disruption of the calf gut microbiota. 
Recent research exploring NCD treatments targeting gut microbiota dysbiosis 
has highlighted probiotic supplementation as a promising and safe strategy for 
gut homeostasis. However, varying treatment outcomes across studies suggest 
the need for efficient treatment options. In this study, we evaluated the potential 
of probiotics Limosilactobacillus reuteri, formally known as Lactobacillus reuteri, 
isolated from healthy neonatal calves to treat NCD. Through in silico whole 
genome analysis and in vitro assays, we identified nine L. reuteri strains, which 
were then administered to calves with NCD. Calves treated with L. reuteri strains 
shed healthy feces and demonstrated restored gut microbiota and normal animal 
behavior. Leveraging a machine learning model, we evaluated microbiota profiles 
and identified bacterial taxa associated with calf gut health that were elevated by 
L. reuteri administration. These findings represent a crucial advancement towards 
sustainable antibiotic alternatives for managing NCD, contributing significantly to 
global efforts in mitigating antimicrobial resistance and promoting overall animal 
health and welfare.
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1 Introduction

Neonatal calf diarrhea (NCD) is one of the most common causes of death in preweaning 
beef calves, posing significant challenges to calf health and farm economics (USDA, 2010). 
NCD can cause acute gastroenteritis, central nerve system depression, cardiac arrhythmia, and 
high mortality rates in young calves (Cho and Yoon, 2014). Thus, efficacious treatment and 
preventive strategies are urgently needed. NCD can be caused by a combination of factors, 
with infections caused by pathogenic bacteria, viruses, and protozoa being prime contributors 
(Maier et  al., 2022; Meganck et  al., 2014; Wei et  al., 2020). Environmental stressors and 
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nutritional factors also play pivotal roles in the manifestation and 
severity of this condition (Bendali et al., 1999; Cho and Yoon, 2014). 
In the first week after birth, enterotoxigenic E. coli (ETEC) infection 
is the typical cause of NCD, and cryptosporidium and virus infections 
are the main reasons for NCD from day 5–30, while Salmonella 
infection is the main reason from day 14–60 (CDFA, 2022). In this 
complex scenario, probiotics have emerged as a promising adjunct to 
conventional therapeutic approaches, particularly given escalating 
concerns over antimicrobial-disturbed gastrointestinal microbiota, the 
rise of antibiotic resistance, and increasing consumer preferences for 
antibiotic-free animal products (Du et al., 2023; Ji et al., 2018).

Probiotics are administered with the intent of establishing a 
healthy gut microbiome, which is crucial for enhancing immunity, 
improving gut integrity, and potentially mitigating the impact of 
enteric pathogens (Carr et al., 2002; Hill et al., 2014; Suez et al., 2020; 
Xiao et al., 2024). Despite the growing utilization of probiotics, the 
efficacy of probiotics in neonatal calves has been variable, reflecting 
the influence of the specific probiotic strains utilized and the 
pre-existing health conditions of the animals (Beck et al., 2022; Vitetta 
et al., 2017). Probiotics exert their beneficial effects through various 
mechanisms that include competition with pathogens for colonization 
sites and nutrients, modulation of the host immune response, and the 
production of antimicrobial peptides (Liu et al., 2021; Mohseni et al., 
2021; Plaza-Diaz et  al., 2019; Raheem et  al., 2021). These effects 
contribute to the maintenance of gut homeostasis and balance. Despite 
the widespread public interest in probiotics, the evidence supporting 
their effectiveness often presents inconsistencies and conflicts. Veiga 
et al highlighted the need to transition from generic probiotics to 
precision probiotics (Veiga et al., 2020). They outlined the necessary 
future steps for the development of targeted probiotics, emphasizing 
strategies that prioritize phenotypic and target-based discovery, along 
with trials customized to individual needs and responses. This 
evolving perspective seeks to refine the understanding and application 
of probiotics, moving beyond a one-size-fits-all approach towards a 
more customized paradigm.

In the previous study, we investigated the gut microbiota and its 
association with calf diarrhea (Fan P. et al., 2021). Neonatal calves with 
abnormal feces, characterized by either watery or hemorrhagic feces, 
exhibited significantly less bacterial richness compared to those with 
normal feces. The lower gut bacterial diversity was more pronounced 
with the escalating severity of fecal abnormalities. Notably, 
we  identified bacterial taxa such as Christensenellaceae, 
Oscillospiraceae, Barnesiella, Parabacteroides, and Lactobacillus, which 
were more abundant in normal feces. Furthermore, Lactobacillus 
strains isolated from healthy calves showed antimicrobial activity 
against pathogens associated with cattle diarrhea, including E. coli K88 
and Salmonella Typhimurium. These data suggest that a high 
abundance of Lactobacillus in calves may play a pivotal role in 
reducing NCD. Furthermore, we  reported that microbiota 
composition is shaped by host genetic background and modulated by 
host–microbe interactions (Fan P. et al., 2020; Fan P. X. et al., 2021). 
Therefore, we hypothesized that the probiotics derived from the gut 
microbiota of healthy calves might effectively cure NCD in calves, 
especially those raised in the same herd because they have relatively 
small variations in their host genetic background and 
growth environment.

In this study, we  developed probiotics to treat NCD using 
Limosilactobacillus strains isolated from healthy calves. Furthermore, 

we successfully developed a machine learning (ML) model to identify 
health-status-associated bacterial taxa and predict calf health indexes. 
The results indicate a notable conversion of the gut microbiota toward 
increased gut health indexes.

2 Materials and methods

2.1 Animal selection and management

The animal study was reviewed and approved by the University of 
Florida Institutional Animal Care and Use Committee. The calves 
chosen for probiotic treatment were selected based on the severity of 
their diarrhea and the ineffectiveness of prior antibiotic treatment.

2.2 Whole-genome sequencing and 
bioinformatics

Whole-genome sequencing (WGS) was carried out on 22 
Lactobacillus reuteri strains (Supplementary Table S1). The DNA 
extraction was performed using the DNeasy blood and tissue kit 
(Qiagen, United  States), following the protocol for Gram-positive 
bacteria. For WGS sequencing, the library was prepared using the 
Nextera XT sample preparation kit (Illumina, United States), as per 
the manufacturer’s instructions. The sequencing was conducted using 
the Illumina MiSeq platform. The sequencing data were processed by 
trimming with Sickle and assembled with SPAdes (Joshi and Fass, 
2011; Prjibelski et al., 2020). Core-genome alignment was performed 
using Roary (Page et  al., 2015). while maximum likelihood 
phylogenetic trees were generated by IQ-Tree (Nguyen et al., 2015), 
with ModelFinder used for determining the best tree model and 
ultrafast bootstrap analysis employing 1,000 replicates.
(Kalyaanamoorthy et al., 2017) The resulting tree was visualized using 
iTol (Letunic and Bork, 2021). Functional inference of the L. reuteri 
strains was conducted via genome-wide functional annotation using 
eggnog-Mapper (Huerta-Cepas et  al., 2017). The identification of 
antimicrobial resistance genes and virulence factors followed 
previously established methods (Zhai et al., 2021). A circular genome 
map was generated for the comparison of the nine selected L. reuteri 
strains, which was analyzed using Proksee (Grant et al., 2023). The 
bacteriocin gene was identified using BAGEL (van Heel et al., 2018).

2.3 In vitro characterization for probiotic 
profiling

Twenty-two strains of L. reuteri, along with a reference strain, 
ATCC53608, isolated from the small intestine of a pig, were evaluated 
for their probiotic potential through various tests. The viability of the 
strains was tested in simulated gastrointestinal juice (SGJ) and 
simulated colonic environment (SCEM). The SGJ was formulated with 
0.5% w/v NaCl, 0.5% w/v pepsin, and sterilized water, with the pH 
adjusted to 2. SCEM was prepared following the method described by 
Polzin et al. (2013) with a pH of 7. The L. reuteri strains were initially 
grown in MRS (De Man, Rogosa and Sharpe) broth (BD Difco™, 
United States) under anaerobic conditions overnight, then diluted 
100-fold in fresh MRS broth and further incubated anaerobically for 
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18 h at 37°C. The bacteria were then harvested, washed with PBS, and 
incubated in SGI for 2 h and in SCEM for 12 and 24 h. Bile salt 
tolerance was assessed by culturing each strain in MRS broth 
containing 0.1, 0.2, and 0.3% bile salt (Sigma-Aldrich, United States), 
followed by incubation at 37°C under anaerobic conditions for 4 h. 
Acid tolerance was tested in MRS broth at pH = 2, culturing L. reuteri 
strains for 2 h. Lastly, a bacterial competition assay was conducted 
against E. coli K88 with slight modification (Massip et  al., 2019). 
L. reuteri strains were co-cultured with E. coli K88 at a 1:1 ratio in 
MRS broth for 24 h. To evaluate the suppression activity of L. reuteri, 
bacterial cell counts were performed before and after incubation using 
serial dilution and the plating method. The total number of E. coli K88 
was counted on LB agar after incubation at 37°C for 24 h.

2.4 Oral administration and fecal sample 
collection

Three diarrheic calves were administered orally with a mixture of 
nine L. reuteri strains, receiving approximately 109 colony-forming 
units (CFUs) daily per calf. To prepare this probiotic formulation, the 
overnight cultures of each L. reuteri strain were diluted 100-fold in 
fresh MRS broth and allowed to grow for 16 h. Subsequently, the 
bacteria were harvested, washed with PBS, and resuspended in 1 mL 
of 30% glycerol. The probiotic products were stored at −80°C until 
administrated. For administration, probiotics were mixed with 9 mL 
of water in a syringe to orally feed. The morphology of calf feces was 
documented through photographs. For tracking changes in the gut 
microbiome, fecal samples were collected daily from the rectal anal 
junction using sterile swabs during the treatment period and on days 
8 and 11 post-treatment using sterile swabs, as described previously 
(Fan P. et al., 2021).

2.5 16S rRNA sequencing and microbiome 
analysis

16S rRNA sequencing was conducted to analyze the microbiome 
composition. Thawed fecal samples were homogenized on ice, and 
500 μL of each sample underwent DNA extraction using the QIAamp 
PowerFecal DNA kit as per the manufacturer’s protocol (Qiagen, 
United States). Subsequently, the V4 region of the 16S rRNA gene was 
amplified and sequencing was carried out on the MiSeq platform 
(2 × 250 bp). The resulting sequencing data underwent analysis using 
version 2 of the Quantitative Insights into Microbial Ecology (QIIME 
2) pipeline (Bolyen et al., 2019). Paired-end reads were imported, and 
initial base quality was evaluated through the Interactive Quality Plot. 
Quality control of sequences was performed using the Divisive 
Amplicon Denoising Algorithm (DADA2) pipeline integrated into 
QIIME 2, encompassing steps such as filtering low-quality reads, 
denoising, merging pair-ended reads, and discarding chimeric reads. 
A phylogenetic tree was constructed utilizing the align-to-tree-mafft-
fasttree pipeline from the q2-phylogeny plugin of QIIME 2. 
Sequencing depth was standardized to 1,1,043 sequences per sample. 
Evaluation of microbial diversity was conducted using the Shannon 
index and Bray–Curtis distance via the core-metrics-phylogenetic 
method. All amplicon sequence variants (ASVs) were taxonomically 
classified into bacterial taxa using the q2-feature-classifier plugin of 

QIIME 2 in conjunction with the SILVA 132 database.1 The relative 
abundance of bacterial taxa was determined by dividing the bacterial 
abundance by the sequencing depths.

2.6 Co-occurrence network analysis

To anticipate bacteria–bacteria interactions within the gut 
microbial community at various stages, co-occurrence patterns of 
bacterial genera were examined within each stage (early stage: day 
0–1, middle stage: day 4–5, late stage: day 8–11) using pairwise 
Spearman’s rank correlations (rs) based on relative bacterial 
abundance. The Spearman’s rank correlations were assessed using the 
Hmisc package of R 4.3.1 (R: A Language and Environment for 
Statistical Computing, 2022). A significant rank correlation between 
two genera (p < 0.05) indicated a co-occurrence event. The network 
was depicted using the Fruchterman Reingold layout within the 
interactive platform Gephi 0.10.1 (Bastian et al., 2009; Fruchterman 
and Reingold, 1991). In the network, nodes represent different 
bacterial genera, while edges signify significant correlations between 
nodes. Node size reflects the degree of connection, and edge thickness 
indicates the strength of correlation.

2.7 Machine learning model construction 
and health-index prediction

To explore the relationship between calf health status and gut 
microbiome composition, including specific bacterial taxa, a machine 
learning approach was introduced. The random forest algorithm was 
employed for classifying microbiome differences (Ho, 1995). Initially, 
the model was trained using microbiome data of 91 calves (74 healthy 
and 17 with diarrhea) collected previously (Fan P. et al., 2021). The 
relative abundance of bacterial taxa and the health status of the calf 
were used as training data. Three-fold cross-validation was applied to 
optimize model performance. We employed a feature importance 
function to pinpoint bacterial taxa that were crucial for health status 
classification. Subsequently, taxa with an importance value greater 
than 0 (including 150 taxa) were selected to refine and improve the 
model’s accuracy. After developing the model, it was then applied to 
predict the health status of calves in the current study. The model 
calculated a probability score for each calf based on the relative 
abundance of its gut bacterial taxa. A probability score close to 1 
indicated a likelihood of healthy gut microbiota in the calf. The 
procedure was carried out using the Scikit-learn package and 
visualized using the Seabron package2 in Python (Pedregosa 
et al., 2011).

2.8 Statistical analysis

Specific statistical analyses were performed on each in vitro 
experiment to evaluate their outcomes comprehensively. The viability 

1 https://www.arb-silva.de/documentation/release-132/

2 https://seaborn.pydata.org/
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of strains in SGI was assessed using one-way ANOVA followed by 
Tukey’s multiple comparisons test, while the viability in an acidic 
condition (pH = 2, MRS media) was examined through one-way 
ANOVA followed by Dunnett’s multiple comparisons test. The 
viability under varying bile salt concentrations was analyzed via 
two-way ANOVA followed by Tukey’s multiple comparisons test, 
while the duration of strains in SCEM was tested using two-way 
ANOVA followed by Dunnett’s multiple comparisons test. Growth 
inhibition ability against ETEC K88 was determined by one-way 
ANOVA followed by Dunnett’s multiple comparisons test in a 
competitive assay, with L. reuteri ATCC53608 as the control for 
comparison. These statistical analyses were conducted using GraphPad 
Prism version 10.1.1 for MacOS, provided by GraphPad Software 
based in Boston, Massachusetts, United States.3

3 Results

3.1 Genomic similarity of potential 
probiotics isolated from healthy calves

Limosilactobacillus reuteri was identified as the predominant 
species in the normal feces of healthy claves in the previous study, 
exhibiting significant antimicrobial activity against diarrheagenic 
E. coli and S. typhimurium (Marianelli et al., 2010; Schwaiger et al., 
2023). In this study, we aimed to assess the therapeutic potential of 
L. reuteri strains for the treatment of neonatal calf diarrhea. To 
understand the genomic characteristics of these strains, we conducted 
WGS and performed a phylogenetic analysis on 22 L. reuteri strains 
isolated from healthy calves (Supplementary Table S1). As shown in 
Figure 1A, a remarkable degree of genetic similarity was observed 
among the strains. Despite this overall genomic similarity, distinct 
genomic clusters emerged, revealing nine discernible clusters with 
1-278 single nucleotide polymorphisms (SNPs) in each cluster. In 
order to elucidate the metabolic pathways, we selected representative 
9 strains highlighted in red from each cluster and predicted functional 
gene categories according to the Cluster of Orthologous Groups 
(COG) framework. Gene functions involved in genome replication, 
recombination, repair, RNA processing, and modification exhibited 
high richness among strains (Figure 1B). The majority of functional 
gene categories were similar across the strains, with minor variations, 
possibly reflecting subtle genetic distinctions. Taken together, the 
similarity in both phylogenetic relatedness and COG profiles among 
the nine L. reuteri strains suggest that clonal variants of L. reuteri 
strains prevail in animals on the same farm, with likely similar 
functionalities within the gastrointestinal tract of calves.

3.2 Functional annotation of Lactobacillus 
reuteri genomes

To identify differences in genome structure, we compared the 
selected genomes. Consistent with the phylogenetic tree analysis 
(Figure  1A), these genomes exhibited a high degree of genomic 

3 www.graphpad.com

similarity with minor gene addition and deletion (Figure 1C). Genes 
associated with probiotic functions are shown in Figure 1C and listed 
in Supplementary Table S2. The enlA gene encoding bacteriocin 
enterolysin A was encoded in all genomes. Genes associated with bile 
salt resistance, including cbh, ppaC, glpK, and srtA, were identified, 
and genes conferring pH tolerance, such as Alkaline phosphatase 
(itaS), F0F1 ATP synthase (atpE and atpH), and sodium proton 
antiporters (nhaK and nhaP3), were also present in all nine genomes. 
Cold and heat shock proteins, cspB, cspC, dnaK, grpE, and hsp., related 
to temperature stress, were detected in all nine strains. In addition, 
we identified oxidative stress-related genes in the L. reuteri strains, 
such as nox, yumB, iolU, usp5, uspA, uspA3, ytpP, and yjbH, which 
contribute to probiotic potential of the L. reuteri strains. Furthermore, 
we annotated the antibiotic resistance genes and the virulence factors 
in the nine L. reuteri genomes, using Comprehensive Antibiotic 
Resistance Database and the Virulence Factor Database (Alcock et al., 
2023; Chen et al., 2005). All nine genomes carried a partial vanT gene 
in vanG cluster, 34.49% identify in 52.67% of total gene length, which 
exerts glycopeptide resistance (Supplementary Table S2). However, 
virulence genes were not found in the evaluated genomes.

3.3 Host-origin-associated genomic 
heterogeneity of strains

To explore the heterogeneity of L. reuteri, we  investigated the 
phylogenetic relatedness of WGS of various L. reuteri strains obtained 
from a range of host sources. We collected 83 L. reuteri WGS data 
originating from horses, sheep, chicken, cow, pig, sourdough, probiotic 
products, and humans from the NCBI database (Supplementary Table S3) 
and conducted a core-genome-based phylogenetic analysis (Figure 2). 
The node confidence is statistically supported by bootstrap values, 
where a higher value corresponds to a higher statistical support for the 
node. These 105 genomes formed five distinct clades (I, IIa, IIb, III, and 
IV). Interestingly, two clades (I and IIb) were clustered with genomes 
from multiple hosts including human probiotic products, suggesting 
one type of probiotics was commonly used. Alternatively, a type strain 
of L. ruteri can colonize different hosts. Interestingly, three clades (IIb, 
III, and IV) were specifically associated with beef calves, pigs, and mice, 
respectively, indicating these strains have been adapted to specific host 
niches. These data suggest that L. ruteri isolated from beef calves may 
have enhanced potency to treat NCD in claves.

3.4 Probiotic characteristics of 
Lactobacillus reuteri strains

To assess probiotic potential of the isolates, we conducted in vitro 
analyses, mimicking the conditions of the gastrointestinal (GI) tract. 
Acid tolerance was evaluated in a simulated gastrointestinal fluid (SGI, 
pH 2) for 2 h (Figure 3A). Probiotic L. reuteri ATCC53608 was used 
as a reference strain (MacKenzie et al., 2010; Heavens et al., 2011). The 
survival rate varied among strains, ranging 20 to 100% in 
SGI. KCJ2K2639, KCJ2K2646, and KCJ2K2673 showed significantly 
greater survival rates compared to ATCC53608. However, all tested 
strains showed enhanced survival rate in MRS (pH = 2) compared to 
SGI, suggesting that complex media composition might provide 
protection activity at low pH (Figure 3B). Subsequently, we assessed 
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the survival rate of L. reuteri strains at different concentrations of bile 
salts (Figure 3C). All strains showed greater than 50% viability in both 
0.1 and 0.2% bile salt, whereas viability decreased at 0.3% bile salt. 

However, all strains maintained viability, demonstrating their 
tolerance to high bile salt. Specifically, KCJ2K2646 showed significantly 
higher viability at 0.1% bile salt. At 0.2%, KCJ2K2614, KCJ2K2639, 

FIGURE 1

Genetic homogeneity and host-specific phylogeny of L. reuteri strains isolated from healthy neonatal calves. (A) Phylogenetic relatedness of L. reuteri 
strains form healthy neonatal calves. Bootstrap values indicate the confidence of each branch, with single nucleotide polymorphisms (SNPs) 
annotated. Nine strains (highlighted in red) were selected for further investigation. (B) Clusters of Orthologous Groups (COG) categories across nine 
selected strains. The y-axis depicts the proportion of genes within various COG functional groups, reflecting the relative richness of each cluster within 
a specific strain. (C) Comparative genome visualization of nine selected strains, with KCJ2K2614 as the reference. Each individual genome is denoted 
by a different color. Genes that confer resilience to environmental stressors are annotated on the outermost circle.
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FIGURE 2

Host-specific phylogeny of L. reuteri. The phylogenetic tree included 105 L. reuteri genomes—83 from NCBI and 22 from this study—showcasing their 
genetic relatedness and host-specific grouping. Strains fall into five clades (I, IIa, IIb, III, and IV), reflecting their adaptation to different host niches. Host 
origins are denoted by colored strips. Node size indicates bootstrap support, with larger nodes signifying greater confidence. The scale represents 
genetic distance to illustrate evolutionary relationships.
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and KCJ2K2673 showed comparable viability to the reference strain. 
After 12 h and 24 h of treatment in a simulated colonic environment 
(SCEM) at pH 7, strains showed varying survival rates (Figure 3D). 

Particularly, KCJ2K2639 showed outstanding viability with bacterial 
growth and demonstrated a significantly higher viability compared to 
the reference strain. To investigate whether the strains may suppress 

FIGURE 3

Probiotic potential of L. reuteri strains in various conditions. (A) The survival of L. reuteri strains was tested in simulated gastric conditions at pH 2 for 
2 h, comparing their viability to the reference strain L. reuteri ATCC53608. (B) The viability of L. reuteri strains in MRS media at pH 2 for 2 h was 
measured. (A,B) One-way ANOVA was used for statistical comparison against the reference strain. (C) The viability of L. reuteri strains in bile salts at 0.1, 
0.2, and 0.3% for 2 h. Statistical difference was determined against the reference strain using two-way ANOVA. (D) The viability of L. reuteri strains in a 
simulated colonic environment at neutral pH over 12 and 24 h. Statistical difference was determined against the reference strain using two-way 
ANOVA. (E) Competition assay to measure the inhibitory effect of L. reuteri strains on the growth of ETEC K88 after 24 h of co-culture. Statistical 
difference was determined against the reference strain using one-way ANOVA. (A–E) Significant differences are marked by asterisks for p-values less 
than 0.05.
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pathogenic E. coli growth, a competitive growth assay (Figure 3E) was 
performed. Co-culturing enterotoxigenic E. coli (ETEC) K88, a known 
diarrheagenic E. coli in calves, with L. reuteri strains for 24 h resulted 
in a significant inhibition of E. coli K88 growth. Given that the in vitro 
test results demonstrate all 9 tested strains can survive in the GI tract 
environments and suppress ETEC infection, L. reuteri strains have the 
potential to serve as treatment for NCD in calves.

3.5 Probiotic administration cured diarrhea 
and restored gut microbiota diarrheic 
calves

To evaluate probiotic candidates for NCD treatment, a mixture 
of 9 L. reuteri strains was administered to diarrheic calves. Three 
calves with severe diarrhea were selected by a veterinarian after the 
failure of antibiotic treatment. Due to the severity of diarrhea, no 
treatment control was not included to prioritize animal welfare. 
Probiotics were administrated on Day 0, and feces were collected 
from the rectal anal junction at specified intervals post-
administration. Feces morphology was monitored throughout the 
treatment period. As shown in Figure 4A, there were noticeable 
changes in fecal morphology, transitioning from bloody or watery 
feces to normal brown feces, along with observable improvements 
in animal behavior, indicating that probiotics were effective for 
treating diarrhea. Microbiota changes were assessed through 16S 
rRNA sequencing of feces during treatment. Alpha diversity 
analysis, comparing the bacterial community richness (Figure 4B) 
and diversity (Figure  4C) during treatment, revealed increased 
parameters on Day 8 or 11 across all three calves, as compared to 
Day 0 (Figures 4B,C). However, distinct microbiota structures were 
observed among the treated calves (Figure  4D) which was 
consistent with feces morphology. Given the association between 
higher bacterial richness and improved gut health (Fan P. et al., 
2021), the observed enhancement in alpha diversity indicates the 
effectiveness of probiotics in restoring gut microbiota in 
diarrheic calves.

As treated animals showed a distinct gut microbiota structure, the 
microbiota profiles of individual calves were evaluated during 
treatment. Three claves showed distinct microbiota profiles 
(Figures 5A–C). Calf 2-402, with severe bloody diarrhea, showed a 
remarkable change in microbiota composition during probiotics 
treatment (Figure  5A). Initially, Bacteroides, Escherichia-Shigella, 
Streptococcus, Cachnoclostridium, and Veillonella were predominant 
on Day 0, but the relative abundance of these taxa decreased during 
treatment. Meanwhile, Lactobacillus, Bifidobacterium, Megasphaera 
increased. Calf 23-616 and calf 23-674, both with severe watery 
diarrhea, harbored different taxa compared to Calf 2-402 
(Figures  5B,C). On Day 0, Bacteroides, Escherichia-Shigella, 
Fusobacterium, Megasphaera, Alloprevotella, Anaerovibrio, and 
Sutterella were predominant. Although a notable change in the 
morphology of calf feces was observed starting from day 1 post-
treatment, the relative abundance of Lactobacillus and Bifidobacterium 
did not increase. Escherichia-Shigella continued to dominate the gut 
microbiota of calf 23-616 from days 2 to 6 post-treatment (Figure 5B). 
These data indicate that calves with NCD have distinct microbiota 
composition among animals and respond to probiotic 
treatment differently.

3.6 Microbe-microbe interactions altered 
by probiotics administration

To further understand the dynamic microbe-microbe interactions, 
which shape the gut microbiota, throughout probiotic treatment, 
we conducted a co-occurrence network analysis (Wei et al., 2020). In 
the early stages of treatment (Day 0-1), a dense network of both positive 
(n = 545) and negative (n = 260) interactions was observed, suggesting 
a complex and unstable microbial community due to diarrhea 
(Figure 5D). Nonetheless, we observed significant positive correlations 
between the potential diarrheagenic agent Escherichia-Shigella and 
Erysipelatoclostridium, Staphylococcus, and Clostridium_sensu_
stricto_18. On days 4–5 post-treatment, the network appeared less 
dense than Day 0, comprising 235 edges, including 121 positive and 
114 negative co-occurrences among 44 bacterial genera (Figure 5E), 
indicating changes in microbial interactions as the treatment 
progressed. Notably, Lactobacillus exhibited a significant negative 
correlation with eight bacterial taxa while showing positive correlations 
with three taxa, including [Ruminococcus]_gnavus_group, Clostridium_
sensu_stricto_1, Veillonella, and Enterococcus; Escherichia-Shigella 
displayed positive associations with Alloprevotella, UCG-005, and 
Prevotella. On days 8–11 post-treatment, the network showed fewer 
edges, including positive connections (n = 60) and negative connections 
(n = 31) (Figure 5F). We identified significant negative correlations 
were identified between Lactobacillus and other bacteria, including 
Colidextribacter, Butyricimonas, Desulfovibrio, Pseudoflavonifractor, 
and UBA1819. This co-occurrence network analysis suggests that the 
probiotic treatment might enhance gut microbiota homeostasis, with 
beneficial taxa establishing stronger positive interactions and 
potentially detrimental taxa being suppressed or their influence reduced.

3.7 Identification of health-related bacterial 
taxa and predicted improved health index 
during probiotic treatment using machine 
learning

To assess the health status of the gut microbiota and identify key 
taxa that are associated gut health, we  implemented and used a 
machine learning model in the Scikit-learn package. In particular, 
we trained a random forest classifier on data consisting of the relative 
abundance of the bacterial taxa and health status of calves. The former 
consists of the features for the model and the latter is the label of the 
data. Three-fold cross-validation was used to evaluate the classifier. 
We divided the data into three equal parts. In each of the three steps, 
one part was used to test, and the other two parts were for training our 
models and ranking features. Next, we identified the specific bacterial 
taxa that are most-associated to health-status by calculated the 
“importance score” of each taxon in the trained classifier, where the 
importance score is used to evaluate the significance of each feature 
towards the prediction of the model. These scores help in 
understanding which features are most influential in predicting the 
target variable, and they can significantly impact model interpretation 
and feature selection processes. In Random Forrest classifiers in 
sklearn, the importance score is given for each feature of the data, with 
the sum of all feature importance scores equal to one. The importance 
of a feature is computed as the (normalized) total reduction of the 
criterion brought by that feature, which is also known as Gini 
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importance or mean decrease in impurity. We give the importance 
score of each feature in Supplementary Table S5. The top 30 bacterial 
taxa with a high importance value are highlighted in Figure  6A, 

with Ruminococceae, Parasutterella, Ruminococcus torques, 
Subdoligranulum, and Lactobacillus identified as the top five significant 
taxa of calf health status.

FIGURE 4

Impact of probiotic treatment on gut microbiota diversity and individual responses in calves. (A) The timeline of probiotic treatment and the 
corresponding sample collection points. Accompanying photographs illustrate the changes in fecal morphology observed in diarrheic calves 
throughout the course of probiotic treatment (Day 1 – 6). Fecal morphology was recorded on Day 0 prior to probiotic treatment. (B,C) An increase in 
gut microbiota richness and evenness during the treatment period. The Chao1 index (B), highlighting species richness, and the Shannon index (C), 
reflecting both species abundance and evenness, indicate the development of more diverse and abundant microbial communities in three calves 
undergoing probiotic treatment. (D) The beta-diversity among probiotic-treated calves, analyzed using the Unweighted-Unifrac dissimilarity matrix. 
The data reveal distinct, individualized microbiome structures among the three calves, underscoring the personalized microbial response to probiotic 
intervention.
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Finally, to optimize our model, we retrained our model on all 
taxa (features) with an importance score greater than zero. Our 
final model achieved a mean accuracy score of 86.49% (std dev 
0.03), demonstrating the capability of the model to accurately 
predict the health status of calves based on their microbiota 
profiles. The calves that shed normal feces (HC) were predicted 
to have a health index close to one, while calves with diarrhea 
(DC) predominantly displayed less than 0.5 (Figure  6B). 
Subsequently, the health index was applied to predict the gut 

health status of three calves treated with probiotics. All three 
calves exhibited an improvement in health status (Figure  6C). 
Notably, calf 23-616, initially scoring below 0.4, showed its health 
index increased to 0.9 following probiotic treatment. Although the 
improvements in calf 2-402 and 23-674 were less effective, their 
health index exhibited increasing trends, indicating probiotic 
treatment was effective. Taken together, the ML model not only 
effectively predicted the health status of calves based on their gut 
microbiome but also provided valuable insights into the specific 

FIGURE 5

Comprehensive analysis of microbiome diversity and bacterial interactions during probiotic treatment. (A–C) The relative abundance of bacterial 
genera at various time points throughout the probiotic intervention provides insights into the dynamic shifts in microbial populations in response to the 
treatment. The relative abundance of bacterial genera is presented for individual calve: (A) 2-402, (B) 23-616, and (C) 23-674. (D–F) The co-
occurrence networks of the microbiome were captured at distinct phases of the probiotic treatment: early (Day 0–1) (D), middle (Day 4–5) (E), and late 
(Day 8–11) (F). Each network visually represents the complex interactions and correlations between different bacterial taxa, highlighting how these 
relationships evolve over the course of the treatment.
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bacterial taxa contributing to the microbiome restructuring 
during probiotic treatment.

4 Discussion

In this study, we developed potential probiotics for the treatment 
of NCD. Orally administered L. reuteri strains isolated from healthy 
newborn calves restored the gut microbiota and relieved diarrhea. 
Additionally, we identified bacterial taxa associated with gut health 
and developed a health index for calves with diarrhea.

Previous studies have shown that probiotics play a pivotal role in 
improving gut health, reducing the incidence of diarrhea, and 
promoting growth in preweaning calves (Cangiano et al., 2020; Liu 
et al., 2022; Wang et al., 2023). Bacterial species, such as Lactobacillus, 
Bifidobacterium, Bacillus, and Enterococcus, are commonly used in 
probiotics. These probiotics establish a stable and nutrient-rich gut 
environment, effectively curbing the infiltration of pathogens and 
enhancing both digestive efficiency and the mucosal immune response 
(Collado et al., 2012; Ghazisaeedi et al., 2022; Li et al., 2023; Mills 
et al., 2023; Sharma et al., 2023; Sun et al., 2020; Tachibana et al., 
2020). However, it is worth noting that the heterogeneity observed in 
the outcomes of probiotic supplementation (Alawneh et al., 2020; 
Cangiano et al., 2020; USDA, 2011; Xiang et al., 2023). Interestingly, 
the most pronounced positive effects of probiotics tend to manifest 
when calves are experiencing high levels of stress and disease 
incidence; conversely, under relatively normal or less challenging 

conditions, the effects of probiotic supplementation may not reach 
statistical significance (USDA, 2011). Furthermore, younger calves 
tend to exhibit a greater diversity of responses to probiotics (Alawneh 
et al., 2020). This suggests that the age and developmental stage of the 
calf may significantly influence the efficacy of probiotic 
supplementation. These findings underscored the complexity of the 
probiotic landscape and the need for tailored approaches in 
probiotic therapy.

Calf 2-402, which presented severe bloody diarrhea (Figure 4A), 
was treated with probiotics effectively. The relative abundance of 
potential diarrheagenic taxa associated with gastrointestinal disorders 
or causing severe diarrhea was decreased, but the beneficial bacterial 
genera Lactobacillus and Bifidobacterium were increased (Figure 5A), 
which are known for their positive role in gut health and immune 
modulation (Presti et al., 2015). These shifts in microbial populations 
post-probiotic treatment not only indicate a restoration of microbial 
balance but also suggest a potential mechanism through which the 
probiotic treatment mitigates diarrheal symptoms and promotes gut 
health. The findings underscore the therapeutic potential of probiotics 
in cases of severe gastrointestinal disturbances in calves. In calf 23-616 
and calf 23-674, we did not detect increased prevalence of Lactobacillus 
and Bifidobacterium but Escherichia-Shigella, Bacteroides, and 
Fusobacterium were decreased by treatment. Fusobacterium is 
associated with severe watery feces and Fusobacterium nucleatum can 
secrete outer membrane vesicles that promote intestinal inflammation 
(Fan P. et al., 2021), potentially contributing to the occurrence of 
diarrhea (Engevik et al., 2021). These microbiome changes suggest 

FIGURE 6

Random forest (RF) model assisted health index prediction. (A) Ranking of health-associated bacterial taxa. The importance scores of input taxa were 
evaluated by the RF model, with the top 30 important taxa presented. (B) Health index predictions by the RF model. Healthy calves (HC) typically 
exhibited a health index of around 1, while diarrheic calves (DC) primarily showed a Health Index below 0.5. (C) Changes of health index during in vivo 
treatment. The microbiota data was utilized in the RF model, and the health index was indicated for each day throughout the treatment course. 
Overall, the health index scores of all three calves with probiotic treatment demonstrated progressive improvement in gut health status over the 
observed period.
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that the tested probiotic strains may significantly contribute to 
increasing beneficial bacteria and reducing diarrhea-associated 
bacteria in the calf ’s gut, thereby aiding in the treatment of calf 
diarrhea. Collectively, the probiotic treatment fostered an increase in 
microbial richness and induced personalized shifts in the gut 
microbial composition. These findings support that native-originated 
probiotic treatments could be pivotal for customized animal health 
management strategies.

Probiotics can improve animal health when probiotic strains are 
able to survive gastrointestinal condition and colonize the epithelium 
(Madsen et al., 2001; Ohland and MacNaughton, 2010; Shi et al., 2014). 
Tested L. reuteri strains not only showed enhanced viability in 
gastrointestinal simulations (Figure 3), but also carried genes associated 
with stresses such as temperature, pH, bile salts, and oxidation 
(Figure 1C; Supplementary Table S2). Diverse genes associated with 
these stresses are necessary to survive pass through the GI tract. 
Furthermore, bacteriocin enterolysin A can suppress pathogenic 
bacteria in the GI tract and enhance animal health through the 
inhibition of bacterial growth by cell wall lysis (Anjana and Tiwari, 2022; 
Nilsen et al., 2003). Furthermore, the safety of probiotics was evaluated 
as they might produce adverse effects on host health by encoding 
antibiotic resistance genes (Castro-López et al., 2021). However, any 
functional antibiotic resistance genes were identified by in silico analysis.

As in silico analysis continues to evolve, ML technology has 
emerged as an indispensable tool, significantly contributing to the 
precision understanding of probiotics. Particularly notable is its 
application in the realm of gut microbiome research, where ML models 
prove instrumental in handling large datasets, unraveling complex 
patterns, and predicting the effectiveness of interventions targeting gut 
microbes, alongside personalized healthcare solutions (Das et al., 2023; 
Li et al., 2022; Liu et al., 2022; Tan et al., 2023). Westfall et al. employed 
a multivariate adaptive regression splines model to formulate probiotics 
tailored to specific therapeutic properties, guided by the distinctive 
metabolic activities of these microorganisms (Westfall et al., 2021). Sun 
et al. introduced a ML platform named iProbiotics, which utilized a 
support vector machine algorithm to discern probiotic characteristics 
from whole-genome sequencing data (Sun et al., 2022). Furthermore, 
McCoubrey et  al. applied a ML model based on a random forest 
classifier to select functional excipients optimizing probiotic growth in 
the gastrointestinal tract (McCoubrey et al., 2022). By recognizing the 
potential of the gut microbiome as a marker of host health, Gupta et al. 
introduced the Gut Microbiome Health Index (GMHI), a biologically 
interpretable mathematical formula designed to predict disease 
likelihood independently of clinical diagnoses (Gupta et al., 2020). In 
this study, we employed a ML model to predict the health status of 
calves based on their microbiome profiles. This approach allowed for a 
comprehensive assessment of the effects of L. reuteri on calf health. 
Compared to traditional statistical methods, this ML-based approach 
offered a more comprehensive view, encompassing various health 
indicators and bacterial species. The results not only validated our 
microbiome findings but also enhanced our understanding of the 
effects of probiotic strains. Although these studies underscored the 
critical role of ML in probiotics research, they also emphasized the 
need for further phenotypic validation for probiotic selection and 
refined modeling techniques.

This study has provided valuable insights into the prospect of 
harnessing the natural gut microbiota for probiotic development. 

While these findings are promising, the long-term effects of probiotic 
treatment on gut health and overall calf performance need to 
be explored. Additionally, further studies are required to understand 
the mechanism of action of L. reuteri in different environmental and 
dietary conditions with more animals.

5 Conclusion

NCD is a major cause of calf deaths, leading to widespread 
antibiotic use and concerns about antimicrobial resistance. 
We screened potential probiotics L. reuteri using WGS, in silico, and in 
vitro analyses, and then L. reuteri strains were administered to diarrheic 
calves. Potential probiotics L. reuteri improved diarrhea and animal 
behavior. Machine learning analysis identified beneficial bacterial taxa 
and predicted the health status of calves, marking progress in antibiotic 
alternatives. In conclusion, this study adds to the growing body of 
evidence that supports the use of native gut microbiota-derived 
probiotics in veterinary practice, aiding global efforts in mitigating 
antimicrobial resistance and promoting animal health and welfare.
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