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Background: PCR and culture tests are used together to confirm the diagnosis 
of active tuberculosis (TB). Due to the long culture period, if the PCR test is 
negative, it takes a significant amount of time for the culture result to be available. 
Interferon-γ release assays (IGRAs), which are widely used to diagnose TB or 
latent tuberculosis infection (LTBI), cannot effectively discriminate TB from LTBI. 
The purpose of this study is to analyze the diagnostic performance of various 
markers for differentiating between TB from LTBI.

Methods: PubMed-Medline, EMBASE, Cochrane Library, and Web of Science 
were searched up to the end of May 2024, without restrictions on publication 
date and population. Articles describing the diagnostic value of at least 
one biomarker for differentiating between TB and LTBI were included. The 
QUADAS-2 tool was used to assess study quality. Two independent researchers 
assessed the articles using Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines. The network meta-analysis (NMA) was 
performed for diagnostic tools of 11 groups used to differentiate TB from LTBI.

Results: Out of 164 identified articles, 159 reports were included in the systematic 
review and 58 in the meta-analysis. Seventy results from 58 reports accounting 
for 9,291 participants were included. When measuring interleukin-2 (IL-2) after 
stimulation with latency antigen, the most significant odds ratio was shown in 
terms of sensitivity, specificity, positive predictive value and negative predictive 
value. The values were 9.46, 18.5, 11.30, and 9.61, respectively.

Conclusion: This study shows that the IL-2 level after stimulation with latent 
antigen is a potential biomarker for differentiating TB from LTBI.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_
record.php?ID=CRD42024542996.
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1 Introduction

Tuberculosis (TB) remains a significant public health problem and 
a leading cause of infectious death. TB was the world’s second leading 
cause of death from a single infectious pathogen, after coronavirus 
disease (COVID-19) (World Health Organization, 2023). TB is caused 
by the bacillus Mycobacterium tuberculosis, which is spread when 
symptomatic infected people expel bacteria into the air by coughing. 
The spectrum of the disease ranges from asymptomatic and 
non-transmissible latent TB infection (LTBI) to highly active, 
transmissible TB disease. After infection with M. tuberculosis, 
approximately 5% of healthy adults will develop active TB within 
2 years (Menzies et al., 2018). Individuals with LTBI face an ongoing 
risk of developing active TB through reactivation based on the host 
immune response.

Diagnosing TB involves a detailed medical history, clinical 
examination, and radiological, microbiological, immunological, 
molecular-biological, and histological investigations, where available 
(Acharya et al., 2020). However, the clinical presentation of TB is 
diverse; definite diagnosis can be  challenging due to the limited 
sensitivity of the nucleic acid amplification test and M. tuberculosis 
cultures, especially in extrapulmonary forms of TB. The TB PCR and 
culture are sputum-based tests, causing problems for patients who 
cannot produce sufficient sputum, often seen in children and patients 
with extrapulmonary disease.

Moreover, there is no gold standard test for LTBI. Because of low 
bacterial burden, the diagnosis of LTBI is indirect and depends on 
evidence of a cellular immune response to mycobacterial antigens. The 
most commonly used tests for LTBI diagnosis are the intradermal 
tuberculin test (TST) and interferon (IFN)-γ release assays (IGRAs) 
(Zellweger et al., 2020). False positives in TST occur mainly in patients 
who have had the BCG vaccine, have infections with non-tuberculosis 
mycobacteria (NTM), or are immunosuppressed, such as those with 
AIDS (Acharya et al., 2020). False negatives can occur in patients with 
recent TB infection, ancient TB infection, recent live virus vaccination, 
and some viral infections (measles and chicken pox) (Zellweger et al., 
2020). Incorrect methods or interpretation of results, especially in 
young children, can also lead to false negatives (Zellweger et al., 2020).

Alternatives to TST, such as IGRA, are diagnostic tests based on 
the detection the in vitro secretion of IFN-γ by lymphocytes stimulated 
with peptides specifically encoded by M. tuberculosis. Two tests are 
widely used (the QuantiFERON-TB Plus and the T-SPOT.TB test), 
which differ in the laboratory procedure but rely on the same 
principle. IGRAs provide an accurate diagnosis of M. tuberculosis 
infection, but do not differentiate between TB and LTBI (Carranza 
et al., 2020; Zellweger et  al., 2020). Although TST and IGRA can 
diagnose LTBI, these methods can only differentiate infected 
individuals from healthy person and cannot distinguishing TB from 
LTBI. Because the treatments for TB and LTBI are different, 
misdiagnosis between TB and LTBI leads to the undertreatment of TB 
patients and overtreatment of LTBI patients. Moreover, there are 
differences in contagiousness, discrimination between TB and LTBI is 
very important in TB control. Many researches recently showed the 
immune response against a wide range of stage-specific antigens and 
evaluated the concentrations of biomarkers after stimulation with 
various antigens (Meier et  al., 2018). Among the M. tuberculosis 
antigens, the antigens that are highly expressed in the latent 
tuberculosis state and that can differentiate LTBI from active TB were 

reported as latency-associated antigens (Meier et al., 2018; Bai et al., 
2016; Chegou et al., 2012). However, there is currently no diagnostic 
test that can clearly distinguish between TB and LTBI.

This study aims to analyze potential biomarkers for differentiating 
TB from LTBI and confirm the performance of various modalities for 
discriminating between TB and LTBI through a network meta-
analysis (NMA) of published direct comparison studies.

2 Materials and methods

2.1 Data sources and search strategy

A search strategy using PubMed, EMBASE and the Cochrane 
Library was developed in collaboration with two independent authors 
(SR Shim and JH Jeong) up to the end of May 2024. We also manually 
searched the reference lists of identified publications for additional 
studies. We  used the controlled terminology of Medical Subject 
Headings (MeSH) for PubMed and Cochrane, and Emtree for 
EMBASE, along with text keywords to find studies related to the 
diagnostic markers in TB and LTBI (Supplementary Table S1). This 
study was registered in the PROSPERO database (registration number: 
CRD42024542996) and conducted following the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) statement 
(Hutton et al., 2015).

2.2 Study selection

The inclusion criteria for the NMA were as follows: (1) Studies 
where TB was recognized based on clinical symptoms and a positive 
result from at least one form of microbiological evidence, such as 
staining of acid-fast bacilli (AFB), AFB culture, or a molecular tests. 
LTBI cases were defined as apparently healthy individuals who had a 
history of close contact with TB patients and displayed positive results 
of TST or IGRA but showed no signs or symptoms of TB disease and 
had negative cultures for M. tuberculosis. (2) The antigens that are 
highly expressed in the latent tuberculosis state and that can 
differentiate LTBI from active TB were classified as latency-associated 
antigens in this study. Index tests and reference standards including 
the use of IFNg_TB_Ag (IFN-γ detection after TB antigen 
stimulation), CD4_T cell (CD4 T-cell detection without stimulation), 
CD8_T cell (CD8 T-cell detection without stimulation), IFNg_
LatencyAg (IFN-γ detection after latency antigen stimulation), IL10_
TB_Ag (interleukin-10 detection after TB antigen stimulation), IL13_
TB_Ag (interleukin-13 detection after TB antigen stimulation), IL2_
LatencyAg (interleukin-2 detection after latency antigen stimulation), 
IL2_TB_Ag (interleukin-2 detection after TB antigen stimulation), 
IL5_TB_Ag (interleukin-5 detection after TB antigen stimulation), 
IP10_TB_Ag (IP-10 detection after TB antigen stimulation), and 
TNFɑ_TB_Ag (TNF-α detection after TB antigen stimulation) for 
differentiating TB and LTBI. (3) Outcomes including differential 
diagnostic performance such as sensitivity, specificity, positive 
predictive value (PPV) and negative predictive value (NPV).

Studies were not published in original articles such as letters, 
conference abstracts, and case reports were excluded. We primarily 
retrieved English publications. Two investigators independently 
determined the eligibility of the obtained literature.
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2.3 Data extraction and quality assessment

For this systematic review and NMA, two investigators (SR Shim 
and JH Jeong) independently extracted data from selected articles, 
resolving disagreements by discussion and consensus. The extracted 
data included the first author, published time, country, TB incidence 
rate, number of TB patients and LTBI subjects, sensitivity, specificity, 
PPV and NPV. Each study was analyzed to retrieve the diagnostic 
performance of various markers for differentiating TB from LTBI 
based on the reference standard. Only studies providing such complete 
information were included in the NMA.

According to the Quality Assessment of Diagnostic Accuracy 
Studies tool-2 (QUADAS-2) recommended by the Cochrane 
Collaboration (Whiting et al., 2011), two investigators independently 
reviewed the quality of the articles. The QUADAS-2 evaluated the risk 
of bias and applicability of eligible studies across four domains: patient 
selection, index test, reference standard, and flow and timing. 
Selection bias exists in participants. In the index test part, whether the 
participants were detected in blind ways is critical. Information and 
disease progression bias are related to the reference standard. Signaling 
questions were included to help judge the quality of eligible articles. 
Disagreements were resolved by consensus.

2.4 Statistical analysis

The NMA was performed for different biomarkers and tools used 
to differentiate LTBI from TB. The various diagnostic tools were 
classified into 11 groups, and then NMA was performed for the 
different categories.

For Bayesian NMA, specific graphical analysis was completed 
using the “gemtc” package in R software v.4.3.1 (R Foundation for 
Statistical Computing) (Shim et  al., 2019). The simulation was 
conducted by putting the prior distribution and probability into the 
Markov Chain Monte Carlo (MCMC). After that, the optimal 
convergence model was selected by reviewing the trace plot, normal 
distribution plot, and the MCMC standard error of the generated 
posterior distribution. Through this, the posterior probability of the 
effect sizes of each biomarker could be  calculated in summary 
statistics (sensitivity, specificity, PPV, and NPV). A consistency test 
between direct and indirect comparisons was performed through 
node-splitting assessments.

In the Bayesian approach, the optimal probability of individual 
treatments being selected can be  obtained using the generated 
posterior distribution, which represents a kind of priority between 
treatments as a Surface Under the Cumulative Ranking Curve 
(SUCRA); the larger the SUCRA value, the higher the rank of the 
intervention (Shim et al., 2019; Rücker and Schwarzer, 2015; Salanti 
et  al., 2011). The analysis pooled the odds ratios (ORs) and 95% 
credible intervals (CrI). A two-sided p-value of ≤0.05, or not 
containing a null value (OR = 1) within the 95% CrIs, was considered 
statistically significant.

In addition, diagnostic test accuracy (DTA) was also conducted 
to specifically confirm the characteristics of individual biomarkers 
according to various covariates. The results showed the pooled 
estimation between summary statistics (sensitivity, specificity, PPV, 
NPV, and diagnostic OR) and 95% confidential interval (CI) for 
differentiating TB from LTBI. We used the bivariate random-effects 

model for analysis and pooling of the diagnostic performance 
measures across studies, as well as comparisons between different 
index tests (Reitsma et al., 2005; Shim and Lee, 2019). We also used 
the model to create hierarchical summary receiver operating 
characteristic curves (SROC) and to estimate the area under the curve 
(AUC) (Rutter and Gatsonis, 2001).

3 Results

3.1 Study selection and characteristics

A total of 164 literature citations were retrieved from three 
independent databases. After removing 5 duplicates, we read titles and 
abstracts and excluded 95 records (75 were irrelevant topics, 18 were 
reviews, abstracts or letters, and two were not written in English). 
Ultimately, a total of 9,291 patients from 58 articles were included (Bai 
et al., 2016; Balcells et al., 2018; Baumann et al., 2014; Bayaa et al., 
2021; Cao et al., 2018; Chegou et al., 2013; Chiappini et al., 2012; 
Corrìa et al., 2019; Delemarre et al., 2021; Della Bella et al., 2018; 
El-Sheikh et al., 2021; Gourgouillon et al., 2012; Grassi et al., 2021; 
Jeong et al., 2015; Kaewseekhao et al., 2020; Kamakia et al., 2017; 
Katakura et al., 2020; Kim et al., 2015; Li, 2016; Li et al., 2023; Li et al., 
2022; Luo et al., 2019; Luo et al., 2020; Luo et al., 2021c; Luo et al., 
2021a; Luo et al., 2021e; Luo et al., 2021f; Luo et al., 2021b; Luo et al., 
2021d; Luo et al., 2022; Luo et al., 2023; Mamishi et al., 2016; Mamishi 
et al., 2019; Masungi et al., 2002; Molicotti et al., 2011; Molicotti et al., 
2015; Movahedi et al., 2017; Nonghanphithak et al., 2017; Peng et al., 
2020; Petrone et al., 2018; Sali et al., 2018; Sandhu et al., 2012; Sun 
et al., 2016; Sutherland et al., 2010; Suzukawa et al., 2016; Tang et al., 
2020; Temmerman et al., 2004; Wang et al., 2012; Wang et al., 2013; 
Wang et al., 2019; Wang et al., 2021; Wen et al., 2017; Won et al., 2017; 
Wu et al., 2017; Yang et al., 2015; Yao et al., 2017; Zhang et al., 2022; 
Zhou et al., 2017), and the details of the study screening process are 
shown in Figure 1. The 58 studies were mainly performed in five 
countries: China (48.3%), Italy (12.1%), Iran (5.2%), Japan (5.2%) and 
Korea (5.2%). The study subjects were mainly from areas with 
moderate to high TB burden (72.4%), diagnostic tests using 
stimulators (75.9%), and assay detecting cytokines or chemokines 
(51.7%), and immunoassays (62.1%). All selected studies were 
prospective case–control, cohort, and cross sectional studies. The 
detailed characteristics of all the studies are shown in 
Supplementary Table S2.

3.2 Quality assessment

A summary of the risk of bias and applicability concerns based on 
15-item QUADAS-2 is presented in Figure 2. First, looking at the risk 
of bias, patient selection (Chiappini et al., 2012; Della Bella et al., 2018; 
Kim et al., 2015; Mamishi et al., 2016; Mamishi et al., 2019; Masungi 
et al., 2002; Molicotti et al., 2011; Molicotti et al., 2015; Movahedi 
et  al., 2017; Nonghanphithak et  al., 2017; Petrone et  al., 2018; 
Suzukawa et al., 2016; Tang et al., 2020; Temmerman et al., 2004; Wen 
et al., 2017) and flow and timing (Bai et al., 2016; Baumann et al., 
2014; Bayaa et al., 2021; El-Sheikh et al., 2021; Grassi et al., 2021; 
Kaewseekhao et  al., 2020; Masungi et  al., 2002; Peng et  al., 2020) 
showed relatively high risk compared to other domains. Although the 
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index test was clearly established, six studies were graded as high risk 
due to lack of explanation. Reference tests showed that all studies were 
low risk.

In applicability concerns, patient selection and index testing 
showed low risk in all but three studies (Della Bella et al., 2018; Kim 
et al., 2015; Movahedi et al., 2017) and one study (Temmerman et al., 
2004). Reference tests showed that all studies were low risk. Overall, 
quality of the included studies had a low risk of bias and an acceptable 
level of applicability.

3.3 Diagnostic test accuracy of detection 
markers for discrimination of TB and LTBI

The diagnostic performance results of tools according to disease 
groups and TB burden are presented in Supplementary Table S3. The 
sensitivity ranged from 0.746 to 0.895; the specificity ranged from 
0.822 to 0.901; the PPV ranged from 0.844 to 0.909; and the NPV 
ranged from 0.721 to 0.906 (Supplementary Table S3). The pooled 
sensitivity, pooled specificity, pooled PPV, and pooled NPV of the 
diagnostic methods used in this analysis were all above 0.85, showing 

good diagnostic performance. In the TB group, the results were 
slightly higher than the LTBI group.

According to SROC curve, AUC was 0.832 to 0.939 (Figure 3; 
Supplementary Table S4). The AUC of SROC analysis for total was 
0.922 (sensitivity 0.852, specificity 0.865); for TB, it was 0.936 
(sensitivity 0.878, specificity 0.875); for LTBI, it was 0.874 (sensitivity 
0.778, specificity 0.837) (Figure  3; Supplementary Table S4). The 
diagnostic tools used in the study had high overall diagnostic 
performance, but among them, the overall diagnostic performance 
was best in the TB disease group.

3.4 Network meta-analysis (NMA)

The inconsistency tests for NMA assumption were analyzed using 
the node-splitting approach, and the findings (p > 0.05 for all) indicate 
consistency across the direct and indirect comparisons for all 
outcomes. In the NMA shown in Figure 4, a variety of visualization 
techniques were used to elucidate the comparative diagnostic 
performance of various markers for TB from LTBI. The network plots 
provide a comprehensive illustration of all the direct and indirect 

FIGURE 1

Flow chart of the identified and included articles.
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treatment comparisons, establishing a visual network of the evidence 
base. Adjacent to these plots, network forest plots present the effect 
sizes along with their 95% credible intervals for each comparison, 
offering a detailed statistical evaluation of the diagnostic performance 
(Supplementary Table S5). Complementing these, the SUCRA bar 
charts distill the cumulative data into a ranked probability format, 
demonstrating the likelihood of each diagnostic test being most 
efficacious. A network plot of the 66 included results is depicted in 
Figure  4. There were many results compared with methods of 
measuring IFNg_TB_Ag, and a total of 11 methods could 
be compared. As a result of sensitivity, the odds ratio of IL2_LatencyAg 
and IL2_TB_Ag were 9.46 [95% CrI: 1.40, 75.40] and 3.17 [95% CrI: 

1.02, 10.07], respectively, which were statistically significantly high. 
The SUCRA also showed the rankings of IL2_LatencyAg, IL2_TB_Ag, 
and CD4_Tcell. TNFa showed the lowest ranking, which was lower 
than the IFNg_TB_Ag currently used in IGRA.

In the specificity analysis, only IL2_LatencyAg showed a 
statistically significant high value of 18.50 [95% CrI: 1.70, 288.00]. The 
SUCRA result also showed the rankings of IL2_LatencyAg, IFNg_
LatencyAg, and IL5_TB_Ag. IL13_TB_Ag showed the lowest ranking.

The PPV analysis results showed that only IL2_LatencyAg had a 
statistically significant high value of 11.30 [95% CrI: 2.64, 61.40]. In 
the SUCRA results, IL2_LatencyAg ranked highest, followed by IFNg_
LatencyAg and CD4_Tcell. IL13_TB Ag showed the lowest ranking.

FIGURE 2

Risk of bias and applicability concerns graph based on 15-item modified Quality Assessment of Diagnostic Accuracy Studies. The overall quality of the 
included studies was deemed to be satisfactory.
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In the NPV analysis results, only IL2_LatencyAg showed a 
statistically significant high value of 9.61 [95% CrI: 3.25, 33.50]. IL2_
LatencyAg also ranked highest, while TNFa showed the lowest 
ranking in the SUCRA.

3.5 Publication bias

The statistical approaches to publication bias in 58 studies using 
funnel plots are shown in Figure 5. Individual studies were distributed 
symmetrically about the combined effect size and toward the top of 
the graph. Additionally, the Egger’s regression test, which 

mathematically analyzed publication bias, also suggested that there 
was no evidence of publication bias or small-study effect in this NMA 
(all p > 0.05).

4 Discussion

This systematic review and NMA included 58 studies 
encompassing 9,291 patients, summarizing the evidence on diagnostic 
accuracy outcomes (sensitivity, specificity, PPV, and NPV) for 
discrimination between TB and LTBI. A total of 11 methods could 
be compared. Forest plots shows that the odds ratio of IL2_LatencyAg 

FIGURE 3

Summary receiver operating characteristic (SROC) curves of diagnostic tests depending on total studies (A), disease status (TB: B, E, H and LTBI: C, F, I) 
and TB burden (low burden country: D, E, F and moderate to high burden country: G, H, I).
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is statistically significant in sensitivity, specificity, PPV and NPV, and 
the values were 9.46 [95% CrI: 1.40, 75.40], 18.5 [95% CrI: 1.70, 
288.00], 11.30 [95% CrI: 2.64, 61.40], and 9.61 [95% CrI: 3.25, 33.50], 
respectively. The SUCRA values of the performance of 11 different 
diagnostic methods for the discrimination between TB and LTBI 
indicated that “IL2_LatencyAg” ranked first based on sensitivity, 
specificity, PPV, and NPV. There are many other test methods that 
show superiority over the IFNg_TB_Ag used as a commercial kit, but 
TNF a and IL13_TB Ag were ranked low in performance. Among the 
diagnostic tools assessed, IL2_LatencyAg emerged as the most 
effective, ranking highest in sensitivity, specificity, PPV, and NPV. This 
method’s diagnostic odds ratios were significantly higher than other 
methods, underscoring its potential as a preferred diagnostic tool for 
clinical practice.

TB is an infectious disease spread through the respiratory tract, 
while LTBI has no symptoms and not contagious but carries a risk of 
progressing to TB depending on the individual’s immune status 

(Menzies et al., 2018). Since there are differences in treatment for each 
condition, distinguishing between TB and LTBI is essential to reduce 
the burden on people with TB. However, no laboratory tool is 
currently available for differential diagnosis. Immunoassay-based 
methods could be clinically useful tools for distinguishing TB from 
LTBI due to their speed and cost-effectiveness. Immunological results 
can be obtained more quickly than microbial culture and at a lower 
cost than molecular or imaging tests. Therefore, developing 
immunologic methods to distinguish TB from LTBI and improving 
the diagnostic performance of existing tests can play a positive role in 
reducing the prevalence of tuberculosis and controlling the infection.

IGRAs, immune-based blood tests that measure IFN-γ (T-cell 
responses to TB-specific antigens) are widely used for diagnosing 
LTBI. Commercial IGRAs are based on quantifying IFN-γ after brief 
lymphocyte stimulation (16–24 h) that allows detection of effector and 
effector memory T cells (Lanzavecchia and Sallusto, 2000). To improve 
diagnostic performance, enhancements are being made to the antigens 

FIGURE 4

Schematic diagram of the network of evidence used in network meta-analysis, forest plots and surface under the cumulative ranking area (SCURA) in 
(A) sensitivity, (B) specificity, (C) positive predictive value (PPV) and (D) negative predictive value (NPV) of various markers for differentiating TB from LTBI.
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stimulated in vitro. Besides early secreted antigenic target 6 (ESAT-6) 
and culture filtrate protein 10 (CFP-10), the new generation of IGRA 
includes the new TB-specific secreted protein TB 7.7 as antigen that 
boosts the host cellular immune response, thereby increasing 
sensitivity for identifying LTBI (Armand et al., 2014). The reagent 
used to measure only IFN-γ produced by CD4 T-cells has also been 
used recently to measure IFN-γ produced by CD8 T-cells (Jomehpour 
et al., 2023). However, detecting only IFN-γ cannot differentiate TB 
from LTBI (Diel et al., 2011). Besides IFN-γ, interleukin-2 (IL-2) is an 
additional cytokine produced by helper T cells, stimulating both 
helper T cells and cytotoxic T lymphocytes (Sharma et al., 2014). It has 
been reported that the IL-2 levels differ between TB and LTBI (Biselli 
et al., 2010; Borgstrøm et al., 2012; Carranza et al., 2020). It has been 
also reported that IL-2/IFN-γ is an useful value for differentiating TB 
from LTBI (Biselli et al., 2010). Our evidence generated by NMA can 
provide important decision support that IL2_LatencyAg is an effective 
tool for discrimination of TB and LTBI, which can be  added to 
commercial kits to enhance differential diagnostic performance.

In addition to IL2_LatencyAg, NMA results confirmed various 
test methods with superior performance compared to the current 
IGRA method (IFNg_TB_Ag). This showed the possibility of 
improving performance by combining other test targets with the 
current test method. In particular, it showed the potential for 
improved sensitivity by additionally measuring IL-2 with the currently 
used IGRA (IFNg_TB_Ag). It is thought that adding IL-2 as a 
measurement substance to the currently used IGRA method will 
be relatively easy to commercialize.

Various targets or immunological markers have been proposed 
over the last decade for the differential diagnosis between TB and 

LTBI. We want to explore whether cytokines, chemokine or other 
detection tools besides IFN-γ could improve the ability to distinguish 
between different TB infection statuses. Our study found that 
detecting IL-2 after stimulation using latency antigen or TB antigen 
are good candidates, potentially increasing the diagnostic potential of 
current methods for discriminating TB and LTBI.

While our study provides valuable insights, there are some 
limitations. The heterogeneity in study designs and patient 
populations may affect the generalizability of our findings. Each 
detection method is diverse, such as ELISA, ELISPOT, Luminex, 
RT-PCR, and flow cytometry, the detection target, and stimulator 
differ. There are differences in whether or not a stimulator is used, 
and when using a stimulator, there are various combinations such 
as using a single antigen as a TB antigen or using multiple antigens 
together. However, it was difficult to compare all combinations 
one-to-one, so during subgroup analysis, they were grouped into 
similar categories and analyzed for comparison. The relatively small 
sample size may have also influenced the result of the analysis due 
to low numbers of individuals in IL-2 category. The NMA results 
included the results of 273 patients from only three studies (Della 
Bella et al., 2018; Movahedi et al., 2017; Chiappini et al., 2012). The 
test method used in the study was IL-2 based ELISpot, which is 
inconvenient in terms of testing, making large-scale studies difficult 
to conduct in reality. It is necessary to derive results using larger-
scale studies through the development of a commercially available 
simple ELISA-based technology and evaluation of a sufficient 
number of cases.

When performing immunoassays using Luminex or ELISA, the 
results may not be  accurate when measuring low-concentration 

FIGURE 5

Funnel plot asymmetry test for assessing the discrimination power between tuberculosis and latent tuberculosis. Non-significant slope indicates that 
no significant bias was found.
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substances, and there may be  significant differences between the 
testing methods (Platchek et  al., 2020). Fortunately, most of the 
biomarkers we used in NMA were high-concentration (Suzukawa 
et al., 2016), but when screening new low-concentration markers and 
comparing different testing methods, it is necessary to develop a 
precise testing method that can provide consistent results and unify 
the testing methods.

5 Conclusion

In conclusion, our systematic review and meta-analysis 
demonstrate that the IL-2 detection after latency antigen stimulation 
has the potential to serve as biomarker for discrimination between TB 
and LTBI. In addition to the method of measuring IL-2 after 
stimulation with latency antigen, the sensitivity of measuring IL-2 
after stimulation with TB antigen was statistically significantly higher 
than the currently used IGRA method. There are limitations of 
heterogeneity in the types of testing methods and biomarkers, so it is 
thought that the performance of differential diagnosis can be improved 
if IL-2 is added to the current testing method rather than being used 
as a single marker for differential diagnosis. In addition, large-scale 
performance evaluations are needed for clinical utility of IL-2 alone 
or in combination with other biomarkers.
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