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Introduction: The exploration of new bioactive compounds for agricultural 
applications is critical for sustainable development. Endophytic fungi, particularly 
those from underexplored biomes in Brazil, represent a promising source of natural 
compounds. This study focused on isolation and bioprospecting endophytic fungi 
from the medicinal plant Vochysia divergens (Pohl), grown in Serra do Amolar 
(Brazilian Pantanal Biome), with an additional emphasis on conserving microbial 
biodiversity.

Methods and results: Leaves and petioles were collected from 18 V. divergens 
specimens, from which 293 endophytes were isolated and grouped by morphological 
characteristics into 91 phenotypes. One representative of each phenotype was 
selected for secondary metabolite extraction and taxonomic identification. Fungi 
belonging to 27 families and 32 different genera were identified, with Diaporthe, 
Phyllosticta, and Pseudofusicoccum as the most predominant. We also introduce 
and describe a new endophytic species, Diaporthe amolarensis. Multiple extracts 
inhibited mycelial growth of the phytopathogenic fungus Colletotrichum abscissum, 
with a superior effect compared to the fungicide control. These extracts were 
produced by Diaporthe amolarensis, Xylaria arbuscula, and Nemania primolutea. 
Additionally, the extract from one X. arbuscula isolate displayed moderate activity 
against the phytopathogen Phyllosticta citricarpa. HPLC-UV and HPLC-MS analyses 
of these most inhibitory extracts revealed natural products with beneficial potential 
that need characterization and to have their modes of action elucidated.

Discussion: Finally, a very important contribution of this study was the ex situ 
conservation of the biodiversity of the Serra do Amolar, allowing future studies 
and biotechnological applications involving endophytes from this region.
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1 Introduction

One of the biggest challenges facing global agriculture is the 
control of diseases caused by pathogenic microorganisms. Their rapid 
dissemination capacity and ability to affect crop production have a 
severe impact on national agriculture, leading to significant economic 
losses (Fontes and Valadares-Inglis, 2020). Phytosanitary management 
involves various practices, with the application of chemical pesticides 
being one of them. Despite the increase in pesticide use over the 
recent decades, this has not resulted in a proportional reduction in 
crop losses (Tan et al., 2018; Sang and Kim, 2020). The large-scale use 
of pesticides and fungicides has led to its own sets of problems, 
including the resistance of some pathogenic microorganisms 
(Morandi et al., 2009; Braga et al., 2022; Torres-Rodriguez et al., 2022). 
Among these harmful pathogens of most concern are fungi from 
several genera, such as Colletotrichum (Lima et al., 2011; Silva et al., 
2017), Phyllosticta (Baldassari et al., 2006; Tonial et al., 2017), and 
Fusarium (Brown et  al., 2012; Paccanaro et  al., 2017). Therefore, 
species of these genera were used as targets for testing new compounds 
with activity against phytopathogens.

Considering the risk of pathogen resistance to commonly used 
fungicides, it has become increasingly necessary to control these 
pathogens and their negative impacts with new chemical classes that 
have modes of action different from existing fungicides (Javed et al., 
2021; Afzal et  al., 2023). Biotechnological advances improve 
biosynthetic processes, including the production of bioactive 
compounds of diverse natural substances that can significantly 
support human, animal, and plant health (Faria et al., 2023). Such 
compounds, derived from plants, animals, and microorganisms, are 
gaining considerable attention (Rafiq et al., 2024). Our research group 
has been dedicated to the prospection and discovery of secondary 
metabolites (SMs) produced by endophytic microorganisms of 
medicinal plants from underexplored Brazilian biomes (Savi et al., 
2015; Gos et al., 2017; Noriler et al., 2018; Savi et al., 2018; Iantas et al., 
2021; Glienke et al., 2024). Endophytes are a dependable source of 
natural products, as they colonize the internal tissues of plants without 
causing damage to their host, an interaction based on the exchange of 
signals and compounds (Petrini et al., 1993; Araújo et al., 2014). In 
this symbiotic relationship, the endophytes receive protection and 
nutrients and in return produce SMs that protect the host by 
increasing its resistance to pathogens (Savi D. et al., 2019).

Brazil is a country with enormous biodiversity, comprising six 
different biomes, some of which are understudied. One of them is the 
Pantanal (Glienke et al., 2024), the largest continuous wetland in the 
world, located in the states of Mato Grosso and Mato Grosso do Sul 
(in addition to Bolivia and Paraguay), experiencing drastic seasonal 
fluctuations, with alternating periods of floods and droughts. This 
biome has an enormous richness of species, and its diversity is strongly 
related to the seasonality of the region, offering the potential to 
discover an abundance of natural products. The plant Vochysia 
divergens (Cambará) belongs to a group of approximately 5% of the 
tree species of the Pantanal biome that is capable of surviving in 
regions long flooded and therefore became dominant in that area. In 
addition, it has medicinal properties and is used in teas and syrups for 
the treatment of colds, coughs, pneumonia, and gastrointestinal 
diseases (Arieira and Da Cunha, 2006).

The Serra do Amolar, an environmental preservation area, 
managed by the Serra do Amolar Protection and Conservation 

Network, in the Pantanal biome, is located in the north of the state of 
Mato Grosso do Sul, on the border with the Mato Grosso state and 
Bolivia. It is one of the largest biological heritage sites in Brazil. Our 
research group has been studying endophytes from medicinal plants 
located in other regions of the Pantanal and found several new 
endophytic natural products (Savi et al., 2015; Gos et al., 2017; Noriler 
et al., 2018; Savi et al., 2018; Iantas et al., 2021). Because the Serra do 
Amolar region is difficult to access and consequently little studied, it 
is much more native than other areas of the Pantanal (Fundação 
Ecotrópica, 2003; Moreira, 2011). Our hypothesis is that the plants in 
this region harbor a greater diversity of endophytes with greater 
potential to produce undiscovered compounds with beneficial 
properties. Additionally, this region has been recently suffering from 
wildfires, placing its biodiversity at risk (Pessi et al., 2023). Therefore, 
this study aimed to extend our knowledge of endophytic fungi present 
in the Pantanal Biome through bioprospecting the medicinal plant 
Vochysia divergens from the Serra do Amolar. To evaluate its potential 
for producing SMs with biological activities, we isolated and identified 
the endophytic community, extracted SMs, and tested them against 
three phytopathogens. This study contributes not only to discover new 
SMs with biotechnological applications but also to explore the 
diversity of endophytes present in this underexplored region and, in 
addition, conducts an ex situ conservation of the isolates.

2 Materials and methods

2.1 Sampling of plant material

Sampling of plant material occurred in February 2019 with 
assistance from the Serra do Amolar Institute.1 We sampled the leaves 
and petioles of 18 V. divergens trees along a section of the Paraguay 
River (Figure 1; Supplementary Table S1) within the Serra do Amolar. 
The collected samples were stored in plastic bags and kept under 
refrigeration until processing.

2.2 Isolation of endophytes

After collection, five leaves and five petioles from each plant 
without marks or injuries were used to isolate endophytic fungi. To 
eliminate the epiphytic microorganisms, a surface disinfection 
protocol was performed as described by Petrini (1986) and adapted 
by Noriler et al. (2018). Then, the leaves and petioles were fragmented 
into five pieces (8-mm squares), each of which was placed onto Petri 
dishes containing potato dextrose agar (PDA), pH 5.8, with the 
addition of tetracycline (50 μg/mL) to inhibit bacterial growth. The 
plates were incubated at 28°C for up to 30 days, and fungal growth was 
checked daily. The emerging mycelia were transferred to fresh PDA 
plates at pH 5.8 and stored for later use.

The isolates were grouped according to their macromorphological 
characteristics, such as colony color, hyphal texture, and growth rate. 
A pure culture of each representative phenotype was generated, using 
the single spore culture method according to Gilchrist-Saavedra et al. 

1 https://institutoserradoamolar.org.br
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(2006). The pure cultures were used for molecular identification and 
bioprospecting and were all deposited in the Coleções Microbiológicas 
da Rede Paranaense (CMRP) culture collection2 at the Federal 
University of Paraná, Brazil. The access to genetic heritage isolated in 
this study was registered in SISGEN (National System for the 
Management of Genetic Heritage and Associated Traditional 
Knowledge) under number A74A5EE in compliance with Brazilian 
Law 13.123/2015, and the Nagoya Protocol. The collection of 
biological material used in this study was authorized by the Instituto 
Chico Mendes de Conservação da Biodiversidade (ICMBio), 
according to authorization SISBIO (Biodiversity Authorization and 
Information System) No. 85130.

2.3 Identification of endophytes

Genomic DNA was extracted from mycelia following previously 
published protocols (Raeder and Broda, 1985; Glienke, 1999). 
Subsequently, partial regions of six loci were amplified according to 
the specificities of each genus and species. The list of primers used for 
each amplification is shown in Table 1.

2 https://www.cmrp-taxonline.com

The PCRs were performed for a final volume of 12.5 μL (1X 
reaction buffer, 0.2 μM of forward primer, 0.2 μM of reverse primer, 
1.5 mM of MgCl2, 0.2 mM of dNTPs, and 0.05 U/μL of Taq 
Polymerase). The PCR conditions used for each gene and taxonomic 
group are listed in Table 2. The PCR products were purified using the 
enzymes Exo1 and FastAP (GE Healthcare, USA), and the BigDye® 
Terminator Kit v3.1 was used for the sequencing reaction. The product 
of this reaction was purified by gel filtration (Sephadex G50), and the 
sequencing was determined with an automatic sequencer (ABI3500®, 
Applied Biosystems, Foster City, CA, USA).

The obtained chromatograms were inspected using MEGA X 
(Tamura et al., 2011) and BioEdit (Hall, 1999). The sequences were 
compared with those available in the NCBI/GenBank database3 using 
the BLAST Tool and compared with type strains obtained from the 
MycoBank4 and Westerdijk Fungal Biodiversity Institute5 databases 
(Supplementary Tables S2–S4, S11–S49). Phylogenetic analyses were 
performed with the sequences that correspond to the type or authentic 
strains and those generated by this study. The alignments of the DNA 

3 National Center for Biotechnology Information—http://www.ncbi.nlm.nih.

gov/BLAST/.

4 http://www.mycobank.org/

5 http://www.westerdijkinstitute.nl/

FIGURE 1

Map of Brazil showing the division by biomes and the sample collection place. The magnified box shows the points of collection of leaves and petioles 
of Vochysia divergens used in this study (yellow dots) in contrast to the point of collection of leaves and petioles of the same plant in the previous 
study carried out by Noriler et al. (2018) (red dot) with approximately 260 km of distance between them. Source: The authors.
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sequences were made using Mafft software (Katoh and Toh, 2008)6 
and verified manually with MEGA X software. Bayesian inference 
analysis was inferred using MrBayes v3.2.6 ×86 (Ronquist et al., 2012) 
via CIPRES Science Gateway (Miller et al., 2011). This analysis was 
performed using two parallel runs with one cold and three heated 
chains each, using the number of generations needed to split 
frequencies ≤0.01 and a sampling frequency set to every 100 
generations. The posterior probability values were calculated after 
discarding the first 25% of the generated trees as burn-in. The resulting 
trees are plotted in FigTree v.1.4.2.7 The substitution modes were 
selected for each gene using JModelTest (Darriba et al., 2012). All 
sequences obtained were deposited at GenBank, and the access codes 
are listed in Supplementary Table S5.

2.4 Morphological characterization/
taxonomy

The descriptions provided here were based on 
macromorphological characteristics in different culture media and 
micromorphological characteristics from sporulated colonies, which 
formed asexual structures. These observations were conducted for the 
isolates to which the new species descriptions apply. For the isolate 
CMRP4997, the following culture conditions were used: PDA pH 5.5, 
oatmeal agar (OA), and 2% malt extract (MEA) with and without the 
addition of sterile pine needles and autoclaved leaves of Schinus 
terebinthifolius, incubated at 25°C over a period of 12 h of light and 
12 h of darkness as described by Gomes et al. (2013). Colony diameter 
measurements were determined at 25°C in the dark in PDA, pH 5.5, 
OA, and MEA media, with measurements performed 3, 4, 5, and 
7 days after inoculation. After 15 days, colony colors were described 

6 https://mafft.cbrc.jp/alignment/server/

7 http://tree.bio.ed.ac.uk/software/figtree/

(verse and reverse) using color charts of Ranyer (1970). Alpha and 
beta conidia were measured to calculate the mean size and standard 
deviation using ImageJ software. The micromorphological 
characteristics were examined and captured using a BX51 Olympus 
microscope equipped with an SC30 camera from the microscopy 
center (Centro de Tecnologias Avançadas em Microscopia—UFPR).

2.5 Extraction and evaluation of endophyte 
SMs

2.5.1 SM extractions
Endophytic isolates representing each phenotype were selected for 

small-scale fermentations in liquid medium and extract production. 
The isolates were cultured for 7 days in PDA at pH 5.8 and 28°C. Three 
mycelial discs (6 mm) were added into Erlenmeyer flasks (250 mL) 
containing 100 mL of liquid malt extract medium (Schulz et al., 2002) 
and incubated under constant agitation (180 rpm) for 10 days at 
28°C. The cultures were filtered using Whatman no. 4 filter paper to 
remove the mycelium, and the remaining broth was mixed with 4% of 
Amberlite® XAD-16 polymer and kept overnight under constant 
agitation (180 rpm), followed by centrifugation. The resin was washed 
three times with distilled water and extracted three times with 
methanol (MeOH). The solvent was evaporated in vacuo at 45°C to 
obtain the dry crude extract and then diluted in MeOH to a final 
concentration of 10 mg/mL (Iantas et al., 2021).

2.5.2 SM mycelial growth inhibition of pathogenic 
Fungi

The phytopathogenic fungus C. abscissum CMRP704 was used for 
the initial screening of the antifungal activity of the crude extracts. The 
experiment was carried out with 100 μL of each extract (10 mg/mL) 
added to a Petri dish containing PDA pH 5.8 and spread using a 
Drigalski spatula, followed by a pathogen mycelial disc (6 mm) placed 
in the center of the plate. The fungicide Carbendazim (Derosal®; 
1.0 mg/mL) and pure methanol were used as positive and negative 

TABLE 1 List of primers used in PCR amplifications.

Region Primer Primer DNA sequence References

ITS
V9G 5’ TTACGTCCCTGCCCTTTGTA 3′ De Hoog and Gerrits van den Ende (1998)

ITS4 5’ TCCTCCGCTTATTGATATGC 3’ White et al. (1990)

LSU
LROR 5’ GTACCCGCTGAACTTAAGC 3′ Vilgalys and Hester (1990)

LR5 5’ TCCTGAGGGAAACTTCG 3’ Vilgalys and Hester (1990)

tub2

T1 5’ AACATGCGTGAGATTGTAAGT 3′ O’Donnell and Cigelnik (1997)

T22 5’ TCTGGATGTTGTTGGGAATCC 3′ O’Donnell and Cigelnik (1997)

Bt2b 5’ ACCCTCAGTGTAGTGACCCTTGGC 3’ Glass and Donaldson (1995)

tef1
EF1-728F 5’ CATCGAGAAGTTCGAGAAGG 3′ Carbone and Kohn (1999)

EF1-986R 5’ TACTTGAAGGAACCCTTACC 3’ Carbone and Kohn (1999)

his3
CYLH3F 5’ AGGTCCACTGGTGGCAAG 3′ Crous et al. (2004)

H3-1b 5’ GCGGGCGAGCTGGATGTCCTT 3′ Glass and Donaldson (1995)

act
ACT-512F 5’ ATGTGCAAGGCCGGTTTCGC 3′ Carbone and Kohn (1999)

ACT-783R 5’ TACGAGTCCTTCTGGCCCAT 3′ Carbone and Kohn (1999)
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controls, respectively. The plates were incubated at 24°C for 7 days, 
and the diameter of the colonies was measured and compared with 
that of both control plates (Savi, 2011). The percentage of mycelial 
growth inhibition was calculated with the following formula: 
Pi = (Cd  – Td)/Cd, where Pi = percent inhibition; Cd = control 
growth diameter; Td = treatment growth diameter. The experiments 
were carried out in triplicate.

The extracts that presented mycelial growth inhibition higher than 
the positive control (fungicide Carbendazim) in the previous analysis 
with C. abscissum were also evaluated against the phytopathogens 
F. graminearum LGMF1703 and P. citricarpa CMRP06 (Glienke et al., 
2011), using the same methodology, with the following modifications: 
(1) the incubation temperature used for F. graminearum was 28°C, (2) 
the growth inhibition rates were analyzed at 4 and 21 days after 
inoculation for F. graminearum and P. citricarpa, respectively. The 
experiments were performed in triplicate.

2.5.3 Chemical analyses of SMs
To identify the potential compounds in the prioritized 

bioactive fungal extracts, we conducted chromatography analyses 
using HPLC-UV/MS. HPLC-UV/MS analyses were accomplished 
with an Agilent InfinityLab LC/MSD mass spectrometer (MS 
Model G6125B; Agilent Technologies, Santa Clara, CA, USA) 
equipped with an Agilent 1260 Infinity II Series Quaternary LC 
system and a Phenomenex NX-C18 column (250 × 4.6 mm, 
5 μm) [method: solvent A: H2O/0.1% formic acid, solvent B: 
CH3CN; flow rate: 0.5 mL min−1; 0–30 min, 5–100% B (linear 
gradient); 30–35 min, 100% B; 35–36 min, 100–5% B; 36–40 min, 
5% B]. All solvents used were of ACS grade and purchased from 
Pharmco-AAPER (Brookfield, CT). A549, PC3, and HEL299 cells 
were obtained from ATCC (Manassas, VA). All other reagents 
used were reagent grade and purchased from Sigma-Aldrich 
(Saint Louis, MO).

2.5.4 Cytotoxicity assays for SM extracts
The cytotoxicity of crude extracts was evaluated against A549 

(non-small-cell lung carcinoma), PC3 (prostate adenocarcinoma), and 
HEL299 (normal lung fibroblast) human cell lines. The assays were 
accomplished in triplicate following our previously reported protocols 
(Savi et  al., 2018; Shaaban et  al., 2013, 2015; Wang et  al., 2013) 
actinomycin D (A549, PC3, and HEL299) was used as a 
positive control.

3 Results

3.1 Endophyte diversity observed with 
Vochysia divergens from the Serra do 
Amolar

A total of 293 cultivable endophytic fungi were isolated from leaf 
and petiole fragments collected from 18 trees of V. divergens. The 
isolates were grouped into 91 phenotypes according to their 
morphological characteristics (Supplementary Figure S1). A 
representative isolate of each phenotype was identified at the genus 
and/or species level using phylogenetic analyses (Figures  2–4; 
Supplementary Figures S2–S36).

All the identified phenotypes belong to the Phylum Ascomycota 
within three classes: Eurotiomycetes, Dothideomycetes, and 
Sordariomycetes. Sordariomycetes was the dominant class 
corresponding to 69% of the isolates, and the dominant orders in this 
class were Diaporthales (25%, with 56 isolates belonging to three 
families and three genera), Glomerellales (21%, with 24 isolates of one 
family), and Xylariales (21% with 27 isolates of six genera of four 
families). The 293 isolates belong to 32 different genera of 27 families 
(Figure 5; Supplementary Table S6). All isolates were included in the 
same phenotype as the representative isolate used in the identification 
analysis belong to the same family/genera. Diaporthe and Phyllosticta 
were the most frequent genera isolated, with 50 isolates obtained from 
each of one, followed by Pseudofusicoccum with 44 isolates (Figure 5; 
Supplementary Table S6). It was also observed that among the most 
isolated genera the individuals were predominantly obtained by both 
leaf and petiole tissues, while in the least frequent genera, the host 
tissue specificity was more evident (Figure 5).

Thirteen isolates did not group with any type genera from the 
families Chaetomiaceae (5), Mycosphaerellaceae (5), and Xylariaceae 
(3). These are families not yet very well resolved phylogenetically 
(Supplementary Figures S2, S3; Figure 4). We suggest that additional 
gene sequences need to be obtained to identify these 13 isolates at a 
more restricted taxonomic level. Thus, in the present study, these 
isolates were assigned only at the family level. Other four isolates did 
not cluster with any family of the Onygenales order, then with an 
analysis based on a reevaluation study of this order, those isolates are 
currently located in an incertae sedis clade in Onygenales (Kandemir 
et  al., 2022; Supplementary Figure S4). Therefore, those isolates 
remain identified on an Order level until further resolution studies.

All identifications were performed based on phylogenetic analysis 
individually for each genus or family and the trees are shown in the 
Supplementary material (Supplementary Figures S2–S36). The three 
dominant genera isolated in this study (Diaporthe, Phyllosticta, and 
Pseudofusicoccum) are discussed below. To identify the four strains 
producing bioactive SMs at the species level (i.e., Diaporthe 
amolarensis CMRP4997, Nemania primolutea CMRP4987, and Xylaria 
arbuscula CMRP5050 and CMRP5059), more robust analyses were 
performed using multilocus alignments. These analyses are also 
presented below.

3.1.1 Identification of isolates

3.1.1.1 The genus Diaporthe
Diaporthe was the dominant genus with 50 isolates obtained 

as endophytes that were grouped into 13 phenotypes 

TABLE 2 Conditions used for each amplified fragment.

Region PCR conditions

ITS (all isolates)
5 min at 94°C, 35 cycles of 30 s at 94°C, 30 s at 48°C 

and 1 min at 72°C, and a final step of 7 min at 72°C

act (Xylariaceae family) Conditions according to Hsieh et al. (2005)

tub2 (Xylariaceae family) Conditions according to Hsieh et al. (2005)

LSU (Xylariaceae family) Conditions according to Daranagama et al. (2015)

tef1 (Diaporthe genus) Conditions according to Gomes et al. (2013)

tub2 (Diaporthe genus)
5 min at 94°C, 40 cycles of 30 s at 95°C, 50 s at 58°C 

and 1 min at 72°C, and a final step of 5 min at 72°C

his3 (Diaporthe genus)
5 min at 95°C, 35 cycles of 30 s at 95°C, 30 s at 55°C 

and 2 min at 72°C, and a final step of 5 min at 72°C
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(Supplementary Table S6; Supplementary Figure S1). Based on a 
phylogeny using the partial sequence of tef1 with 1,104 pb and 316 
taxa (corresponding to the type and representative strains), these 13 
phenotypes were identified as belonging to five clades (data not 
shown). Each clade was submitted to a new analysis based on 
Diaporthe species complex, following a recently reappraisal by 
Norphanphoun et al. (2022). The results are described below.

3.1.1.1.1 Clade 1 Diaporthe oncostoma species complex: Diaporthe 
amolarensis CMRP4997, and Diaporthe sp. CMRP5034

Bayesian inference analysis of the Diaporthe oncostoma species 
complex comprising 1750 pb of tef1, tub2, and his3 partial 
sequences showed the strains CMRP4997 and CMRP5034 clustered 
with CMRP4330 (Diaporthe sp.) in a single branch (supported by 
0.999 probability), different from the other species present in the 
clade (Supplementary Tables S2, S7–S10). These three strains are 
phylogenetically close to the species D. anacardii, D. macadamiae, 
D. nebulae, D. velutia, D. phillipsii, and D. portugallica, and not 
distant from the species D. inconspicua and D. pterocarpi (Figure 2). 
The CMRP4330 strain was isolated by our group in a previous 

study (Iantas et al., 2021) also as an endophyte of V. divergens from 
the Pantanal Biome, however, from a different region than the 
Serra do Amolar. The strain CMRP5034 is very similar to 
CMRP4330 and was named Diaporthe sp. However, the strain 
CMRP4997 is a separate branch. Due to the long length of the 
branch, these strains probably do not belong to the same species 
(Figure 2).

The D. amolarensis CMRP4997 strain was the only one that 
showed sporulation in culture, and therefore, it was possible to 
describe this new species, which was designated Diaporthe 
amolarensis, named after its isolation region, the Serra do Amolar 
(Pantanal, Brazil). The macro and micromorphology were described 
using different culture media (Figure  6). Below, we  describe this 
new species.

Species description.
Diaporthe amolarensis CMRP4997.
Diaporthe amolarensis: Mayrhofer & Glienke, sp. nov. Mycobank 

843837 (Figure 6).
Etymology: Named after the Pantanal region where it was 

collected, Serra do Amolar.

FIGURE 2

Bayesian inference phylogenetic tree of Diaporthe oncostoma species complex based on multiple alignments of tef1, tub2, and his3 partial sequences. 
The data matrix had 56 taxa and 1750 characters. The species Diaporthe corylicola (CFCC 53986) was used as an outgroup. Strains marked with a “T” 
correspond to type sequences. Bayesian posterior probabilities equal to or greater than 0.50 are presented next to each node. The scale bar of 0.02 
represents the number of changes. The sequence of the isolates here studied is presented with their isolation codes (CMRP4997 and CMRP5034) 
highlighted in bold.
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Sporulation on PDA and OA culture media. Conidiomata 
pycnidial globose, conical or irregular, solitary or aggregated, 
exposed on PDA medium surface, dark brown to black, cream 
translucent conidial drops exuded from the ostioles, 170–350 μm 

diameter. Conidiogenous cells hyaline and subcylindrical, tapering 
toward the apex 12.2–15.1 × 2–3.5 μm. Alpha conidia common, 
hyaline, fusiform, biguttulate, 12.8–16.1 × 3.3–4.9 μm, 
mean ± SD = 14.5 ± 1.8 × 4.29 ± 0.44 (n = 50). Beta conidia 

FIGURE 3

Bayesian inference phylogenetic tree of Nemania species based on multiple alignments of ITS, act, and tub2 partial sequences. The data matrix had 25 
taxa and 2,846 characters. The species Biscogniauxia arima (YMJ 122) was used as an outgroup. Strains marked with a “T” correspond to type 
sequences. Bayesian posterior probabilities equal to or greater than 0.50 are presented next to each node. The scale bar of 0.08 represents the number 
of changes. The sequence of the isolate here studied is presented with its isolation code (CMRP4987) highlighted in bold.
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spindle-shaped, aseptate, smooth, hyaline, mostly curved toward 
one end 26.4–35.1 × 0.3–1.5 μm, mean ± SD = 30.26 ± 2.50 × 
0.89 ± 0.29 (n = 50), and gamma conidia absent (Figure 6).

Culture characteristics: Colonies covering a dish after 15 days 
in the dark at 25°C. Colonies on flat PDA, aerial mycelium with 
cotton texture, white to pale yellow on the surface, colonies 

FIGURE 4

Bayesian Inference phylogenetic tree of species from Xylariaceae family based on multiple alignments of ITS, LSU, and tub2 partial sequences. The data 
matrix had 47 taxa and 5,647 characters. The species Barrmaelia rappazii (CBS 142771) was used as an outgroup. Strains marked with a “T” correspond 
to type sequences. Bayesian posterior probabilities equal to or greater than 0.50 are presented next to each node. The scale bar of 0.2 represents the 
number of changes. The sequences of the isolates here studied are presented with their isolation codes (CMRP4988, CMRP4992, CMRP5055, 
CMRP5050, CMRP5059, CMRP4983, and CMRP4993) highlighted in bold.
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reaching 79 mm in diameter after 7 days at 25°C; reverse brown. 
In flat OA, aerial mycelium with fluffy texture in the center, white 
on the surface, colonies reaching 79 mm in diameter; reverse light 
yellow. In the flat MEA, aerial mycelium with cotton texture, 
white to pale yellow on the surface, colonies reaching 73 mm 
diameter; reverse yellow to brown forming concentric rings 
(Figure 6).

Specimen examined: Brazil, Serra do Amolar, Pantanal, Mato 
Grosso do Sul (18°15′37.8”S 57°27′37.4”W), endophytic species 
isolated from petiole of Vochysia divergens (popular name Cambará), 
February 2019, C. Glienke. Holotype: UPCB 98095 (Herbarium of the 
Department of Botany code, Federal University of Paraná), ex-type 
culture CMRP4997 (Microbiological Collections of Paraná Network 
at Federal University of Paraná).

Notes—Endophytic isolate of a medicinal plant in Brazil.

3.1.1.1.2 Clade 2 Diaporthe sojae species complex part 1: 
Diaporthe vochysiae (CMRP4977, CMRP4978, CMRP4994, 
CMRP4996, CMRP5036, and CMRP5220) and Diaporthe 
infertilis (CMRP5061)

Based on phylogenetic analysis of the Diaporthe sojae partial 
species complex using multiple alignments of the partial sequences of 
ITS, tef1, tub2, and his3 (comprising 2,273 characters), these six 

strains clustered with the type strain of D. vochysiae LGMF1583 
(Supplementary Figure S5; Supplementary Table S14). This type strain 
was isolated by our group as an endophyte of V. divergens from the 
Pantanal Biome, however, from a different region than the Serra do 
Amolar (Noriler et al., 2019).

Moreover, based on the same phylogenetic tree, one strain 
CMRP5061 was clustered with the type strain (CBS 230.52) and two 
other representative strains (CBS 19939 and CPC 203.22) of the 
species Diaporthe infertilis (Supplementary Figure S5).

3.1.1.1.3 Clade 3 Diaporthe sojae species complex part 2: 
Diaporthe cerradensis (CMRP4985)

Based on the phylogenetic analysis of the Diaporthe sojae partial 
species complex based on the multiple alignment of ITS and tef1 
partial sequences the strain CMRP4985 belongs to D. cerradensis 
species (Supplementary Figure S6; Supplementary Table S15).

3.1.1.1.4 Clade 4 Diaporthe rudis species complex: Diaporthe cf. 
heveae 1 (CMRP4989, CMRP5038)

Bayesian Inference analysis of the Diaporthe rudis species complex 
based on the alignment of tef1 partial sequence revealed strains 
CMRP4989 and CMRP5038 clustered with CBS 852.97 Diaporthe cf. 
heveae 1 (Supplementary Figure S7; Supplementary Table S16). This 

FIGURE 5

Frequency of endophyte isolates identified of each genus or family. Number of endophytes of each genus and family isolated from leaves, petioles, or 
both of plant Vochysia divergens in the present study. This result considers the molecular identification of each phenotype representative isolates. The 
color of each dot represents the host tissue origin of each genera/family, the isolates that came only from leaves are indicated in yellow, the ones from 
petiole only are indicated in blue, and the green dots mean that the isolates came from both plant tissues.
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species still needs to be better resolved, as there is also Diaporthe cf. 
heveae 2, which belongs to a completely different clade (Gomes 
et al., 2013).

3.1.1.1.5 Clade 5 Diaporthe arecae species complex: Diaporthe 
podocarpi-macrophylli (CMRP4990)

Bayesian Inference analysis of the Diaporthe arecae species complex 
based on the alignment of tef1 partial sequence showed the strain 
CMRP4990 clustered with the CGMCC 3.18281 D. podocarpi-
macrophylli type strain and another representative strain (LC6229) from 
the same species (Supplementary Figure S8; Supplementary Table S17).

3.1.1.2 The genus Phyllosticta (CMRP4971, CMRP4972, 
CMRP5048)

Phyllosticta together with Diaporthe was also the dominant genus 
with 50 isolates obtained as endophytes, but they were grouped into 
only three phenotypes. Based on a phylogenetic analysis using ITS and 
the partial sequences of tef1, act, and gapdh with 2038 characters and 
81 taxa (corresponding to the type and representative strains), these 
three phenotypes were identified as belonging to the species 
P. capitalensis (Supplementary Figure S9; Supplementary Table S18). 
In the same clade are the strains CMRP4583 and CMRP4660 isolated 
by Iantas et al. (2021) as endophytes of V. divergens and previously 
identified as P. capitalensis. Despite the low support of this branch 
(0.66 posterior probability), the identity was confirmed based on the 
nucleotide differences between P. capitalensis and P. paracapitalensis 
according to Guarnaccia et al. (2017).

Phyllosticta species usually have low morphological diversity, and 
as phenotypes were assigned based on morphology, we cannot be sure 

that all 50 Phyllosticta isolates belong to the P. capitalensis species, 
although we  sequenced the three most morphologically different 
strains (Supplementary Figure S1).

3.1.1.3 The genus Pseudofusicoccum (CMRP4982, 
CMRP4976, CMRP5047, and CMRP5219)

Pseudofusicoccum was one of the most abundant genera, with 44 
isolates obtained as endophytes in this study. Based on morphology, 
we  selected four strains for sequencing, and despite representing 
different phenotypes (Supplementary Figure S1), all were identified as 
P. stromaticum (Supplementary Figure S10; Supplementary Table S19). 
These isolates clustered with P. stromaticum CMRP4328 and 
P. stromaticum LGMF1608, both isolated by our group (Iantas et al., 
2021; Noriler et  al., 2018) as endophytes from Stryphnodendron 
adstringens and Vochysia divergens. Furthermore, an isolate previously 
identified as Pseudofusicoccum sp. LGMF1611 (Noriler et al., 2018) is 
also located in the same branch with high support, being currently 
identified as Pseudofusicoccum stromaticum.

3.1.1.4 Nemania primolutea CMRP4987
Due to the high bioactivities detected in the extract produced by 

this strain, the isolate of the genus Nemania was identified at the 
species level by multilocus analysis that comprised 2,868 pb of the 
partial sequences of ITS, act and tub2 of all type and representative 
strains with GenBank available sequences. The Bayesian Inference 
analysis (Figure  3; Supplementary Table S3) showed the strain 
CMRP4987 in the same branch (0.999 posterior probability) as the 
species N. primolutea (YMJ 91102001), sharing 96% similarity 
(identities = 540/565) and the strain CMRP4328 previously identified 

FIGURE 6

Diaporthe amolarensis (CMRP4997). (A–C) Colonies at 15 days on PDA, MEA, and OA, respectively. (D–E) Conidiomata sporulating on OA and MEA. 
(F) Conidiogenous cells. (G) Alpha conidia. (H) Beta conidia. Bars: (F–H) 20 μm.
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as N. primolutea with 99% similarity (identities = 586/589). Therefore, 
the CMRP4987 isolate was identified as N. primolutea.

3.1.1.5 The family Xylariaceae
Despite the low number of isolates obtained as endophytes in our 

study (6) belonging to the family Xylariaceae, we performed a more 
robust phylogenetic analysis due to the activity observed by secondary 
metabolites of the strains CMRP5050 and CMRP5059. Due to 
uncertainties regarding the taxonomic resolution within Xylariaceae 
sensu stricto, we decided to identify the isolates of this family according 
to Voglmayr et  al. (2018). A multilocus analysis was carried out, 
comprising 47 taxa and 5,647 characters of the partial sequences of 
ITS, LSU, rpb2, and tub3 of the strains used in the Voglmayr et al. 
(2018) study (Supplementary Table S4). The Bayesian inference 
analysis (Figure 4) showed that our endophyte isolates belong to the 
Xylariaceae sensu stricto family (Voglmayr et al., 2018), which also 
corresponds to Xylariaceae clade xy1 (Samarakoon et al., 2022).

Two isolates were identified as Xylaria multiplex (CMRP4983) and 
Xylaria adscendens (CMRP4993) in the Xylariaceae sensu stricto. 
Three isolates (CMRP4988, CMRP4992, and CMRP5055) remain 
identified only at the family level because they did not cluster with any 
genus present in the analysis (Figure 4).

3.1.1.5.1 Xylaria arbuscula CMRP5050 and CMRP5059
The isolates CMRP5050 and CMRP5059 were selected for further 

analysis, due to the biological activity of their secondary metabolites. 
These two isolates are in the same branch (1 posterior probability) as 
the species X. arbuscula (CBS 126415 and HAST 89041211) (Figure 4). 
The strain CMRP5050 shares 95% similarity (identities = 511/538) 
and 95% similarity (Identities = 533/564) with CBS 126415 and HAST 
89041211, respectively, and CMRP5059 shares 99% similarity 
(identities = 530/537) and 98% similarity (identities = 554/563) with 
CBS 126415 and HAST 89041211, respectively.

3.2 Endophytic fungi from Serra do Amolar 
produce SMs bioactive against 
phytopathogenic fungi

In the antifungal activity screening test of the 91 extracts produced 
by the endophytes, most treatments exhibited low inhibition of 
C. abscissum, approximately 10%. However, a few extracts stood out, 
appearing as outliers in the density plot (Figure 7). Among the extracts 
with higher activity, we highlight four (red points) that demonstrated 
equal or greater growth inhibition than the commercial fungicide 
Carbendazim (yellow point): Diaporthe amolarensis CMRP4997 
(MGI: 96.65%), N. primolutea CMRP4987 (MGI: 92.99%), 
X. arbuscula CMRP5059 (MGI: 81.85%), and X. arbuscula CMRP5050 
(MGI: 48.67%) (Figure 7).

Based on these results, four extracts were further evaluated for 
their antifungal activity against the phytopathogenic fungi 
F. graminearum and P. citricarpa (Figure 8). Against P. citricarpa, the 
extract produced by strain CMRP5059 X. arbuscula stood out, 
showing the highest mycelial growth inhibition (MGI: 68.64%). 
Furthermore, the extracts produced by the strains CMRP5050 
(X. arbuscula) and CMRP4987 (N. primolutea) exhibited moderate 
activity against P. citricarpa, with MGI values of 55.38% and MGI: 
49.91%, respectively (Figure  8). The extract from CMRP5050 

(X. arbuscula) also demonstrated the highest inhibition rate against 
F. graminearum (MGI: 20.64%) (Figure 8). As the initial screening test 
was performed only against C. abscissum, we cannot infer about the 
antifungal activity of the non-evaluated extracts against P. citricarpa 
and F. graminearum. Therefore, it is possible that we could observe 
more active extracts against those two pathogens.

3.3 Cytotoxicity

The cytotoxicity of the crude extracts produced by the most 
interesting four endophytic fungi strains, Diaporthe amolarensis 
CMRP4997, Nemania primolutea CMRP4987, Xylaria arbuscula 
CMRP5059, and Xylaria arbuscula CMRP5050, were evaluated using 
A549 (non-small cell lung), PC3 (prostate), and HEL299 (human lung 
fibroblast). The extracts CMRP4997 and CMRP5059 displayed the 
highest cytotoxicity assays against all tested cell lines (with less than 10% 
cell viability). CMRP5050 demonstrated also high cytotoxicity in an 
assay against all three tested cell lines (~25% cell viability), and 
CMRP4987 showed low cytotoxicity against A549 and PC3, respectively, 
but was highly toxic against HEL299 (Supplementary Figure S41).

3.4 HPLC-UV/MS analysis of selected 
fungal extracts

The bioactive extracts produced by the most interesting four 
endophytic fungi strains, Diaporthe amolarensis CMRP4997, Nemania 
primolutea CMRP4987, Xylaria arbuscula CMRP5059, and Xylaria 
arbuscula CMRP5050, have been subjected for chemical screening 
analysis including HPLC-UV and HPLC-MS analyses. The extracts 
generated from the small-scale fermentations of these fungal strains 
have been dissolved in MeOH and subjected to HPLC-UV/MS 
analysis and compared with our microbial natural products database 
(AntiBase) (Laatsch, 2017) for compound dereplication/identification. 
The HPLC-UV/MS analysis of the obtained extracts from these four 
fungal strains displayed several interesting UV/vis and MS peaks 
(Supplementary Figures S42–S66). The HPLC-UV/MS analysis of the 
extract produced by the fungal strain, Diaporthe amolarensis 
CMRP4997, displayed five major peaks [HPLC Rt = 12.91, 27.3, 30.62, 
31.25, and 32.45 min] with various UV/vis and molecular weights 
ranges (MW = 196–414 Daltons) (Supplementary Figures S42–S46). 
No mass and UV/vis match were found in the AntiBase search, which 
indicates the potential of this strain to produce new natural products. 
In the same manner, the HPLC-UV/MS analysis of the extract 
produced by the endophytic, Nemania primolutea CMRP4987, 
displayed several interesting peaks [HPLC Rt = 16.04 (MW 431), 21.83 
(MW 478) 22.53 (MW 325), 27.19 (MW 332), 29.29 (MW 666), 30.62 
(MW 290) and 31.26 min (no clear mass detected), 32.46 min (no 
clear mass detected)] with various UV/vis and molecular weights 
ranges (Supplementary Figures S47–S52). The two major LC-UV/MS 
peaks detected at 31.26 and 32.46 min in the fungal extract of Nemania 
primolutea CMRP4987 were the same as those peaks (31.26 and 
32.46 min) detected in the extract of Diaporthe amolarensis 
CMRP4997. AntiBase search for the LC-UV/MS peaks detected from 
this strain extract indicated no hits and suggests the potential of the 
endophytic fungus, Nemania primolutea CMRP4987, to produce new 
natural products.
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The HPLC-UV/MS metabolic profiles of the extracts produced 
by the two fungal strains, Xylaria arbuscula CMRP5059 and Xylaria 
arbuscula CMRP5050, indicate interesting compounds with 
diversity in their chemical structures (various UV/vis 
chromophores, with over 25 different major metabolites) 
(Supplementary Figures S53–S66). AntiBase search using the 
detected molecular weights and UV/vis resulted in the presence of 
several cytochalasin-analogs as well as halorosellinic acid analogs 
that match with MS and UV/vis, including 19,20-epoxycytochalasin 
C (MW 523), 19,20-epoxycytochalasin D (MW 523), cytochalasin 
N (MW 523), cytochalasin C (MW 507), cytochalasin D (MW 507), 
6,7-dihydro-7-oxo-cytochalasin C (MW 507), halorosellinic acid 
(MW 432), and 17-dehydroxyhalorosellinic acid (MW 416), all of 
them have been reported previously from fungi (Edwards et al., 
1989; Fujii et  al., 2000; Chinworrungsee et  al., 2001; 

Chinworrungsee et al., 2002; Chen et al., 2011; Wang et al., 2019; 
Figure  9). All the remaining LC-UV/MS peaks identified from 
these two fungal extracts did not match any UV/vis and mass data 
in AntiBase, which indicates the potential of these two fungal 
strains to produce interesting bioactive new natural products 
including new cytochalasins- and halorosellinic acid analogs. 
Based on the aforementioned LC-UV/MS and bioactivity data 
results, this study highlights that some of these selected strains 
including Xylaria arbuscula CMRP5059 and Xylaria arbuscula 
CMRP5050 are considered promising strains to produce new 
bioactive natural products, and have been selected for future 
studies (including scale-up fermentation, isolation, structure 
elucidation/compound identification, and bioactivities of the new 
bioactive compounds produced by these endophytic fungi) and will 
be published later.

FIGURE 7

Distribution of mycelial growth inhibition of phytopathogen Colletotrichum abscissum (CMRP704) After exposure to extracts produced by endophytes. 
Distribution of mycelial growth inhibition (in %) of the phytopathogen Colletotrichum abscissum in the presence of 100 μL of the extracts at 10 mg/mL 
obtained by the cultivation of 91 endophytic fungi. The outside points colored in red represent the extracts produced by the isolates D. amolarensis 
(Da) CMRP4997, N. primolutea (Np) CMRP4987, X. arbuscula (Xa) CMRP5059, and X. arbuscula (Xa) CMRP5050, which had higher inhibition activity 
than the Carbendazim (showed in yellow).
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4 Discussion

Considering the importance of discovering new bioactive 
compounds for agriculture applications, the potential of endophytes 
to produce novel natural products from an underexplored biome in 
Brazil combined with the need for microbial biodiversity 
conservation, we conducted a bioprospecting study on endophytic 
fungi of the medicinal plant V. divergens, from the Serra do Amolar 
to produce SMs with biological activity against phytopathogens. 
We  also acted on the ex situ conservation of the endophytes, 
preserving them in the CMRP Culture Collection of the 
TaxOnline Network.

The isolation data presented in this study indicate a high diversity 
of endophytic fungi associated with the medicinal plant V. divergens 
from the Serra do Amolar region of the Pantanal wetlands. 
Phylogenetic analysis revealed that we isolated at least 54 different 
species from 27 families and 32 genera and at least 19 new species of 
endophytic fungi. We consider this richness to be very high, given that 
we used only 18 plant specimens of the same species collected from 
the same region in the Pantanal Biome. The extensive fire that 
occurred in 2020 affected more than 90% of this environmental 
conservation region, with an estimated loss of 742,000 trees and 
approximately 17 million vertebrate animals, mainly reptiles (Pletsch 
et al., 2021). Some of the new species reported in this study, which 

FIGURE 8

Mycelial growth inhibition of phytopathogens Colletotrichum abscissum (CMRP704), Fusarium graminearum (LGMF1703), and Phyllosticta citricarpa 
(CMRP06) after exposure to extracts selected in screening test. Mycelial growth inhibition test plates (A) and mean of mycelial growth inhibition (in %) 
(B) of the phytopathogens C. abscissum (Ca), F. graminearum (Fg), and P. citricarpa (Pc) in presence of 100 μL of the extracts from strains Diaporthe 
amolarensis (Da) CMRP4997 (MGI: 12.16%), Nemania primolutea (Np) CMRP4987 (MGI: 13.40%), Xylaria arbuscula (Xa) CMRP5059 (MGI: 12.96%), and 
Xylaria arbuscula (Xa) CMRP5050 (MGI: 20.64%), compared to the controls (Methanol and Carbendazim).
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were isolated in 2019, may no longer be present in situ, however, were 
preserved ex-situ at the CMRP culture collection. This underscores the 
importance of isolating and preserving endophytes in culture 
collections, where they will be stored and available for future research 
(Smith and Ryan, 2008).

These results corroborate the findings of previous studies that also 
isolated endophytes from the plant V. divergens (Noriler et al., 2018; 
Iantas et al., 2021). Noriler et al. (2018) isolated 777 endophytic fungi 
from leaves and petioles of the plant V. divergens, also collected in the 
Pantanal, but in a different region, approximately 260 km from the 
sample collection area of this study, near the Miranda River. The 
isolates belonged primarily to the Phylum Ascomycota, although 
some were Basidiomycota. The class Sordariomycetes was dominant, 
similar to what was observed in the present study, with Diaporthales 
being the most dominant order among main orders. In addition, as in 

the present study, Diaporthe was the most dominant genus. The genus 
Diaporthe belongs to the family Diaporthaceae and comprises 
hundreds of species (Chepkirui and Stadler, 2017), being recently 
considered a paraphyletic genus (Gao et  al., 2017). This genus is 
distributed worldwide and its species are able to colonize a wide range 
of hosts in various associations, occurring as endophytes, plant 
pathogens, and saprobes (Udayanga et al., 2012; Gomes et al., 2013). 
Among endophytic fungi, the genus Diaporthe is one of the most 
commonly isolated from various host plants and is frequently 
associated with the production of secondary metabolites with diverse 
biological activities (Chepkirui and Stadler, 2017; Gomes et al., 2013). 
Most of the bioactive SMs recently described from isolates of this 
genus were obtained from endophytes associated with medicinal 
plants (Chepkirui and Stadler, 2017), with some recent studies 
demonstrating antifungal activity against citrus phytopathogens such 
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as C. abscissum and P. citricarpa (Tonial et al., 2017; Noriler et al., 
2018; Savi et al., 2020; Iantas et al., 2021). Investigations of this study 
support the findings of high antifungal activity obtained by Diaporthe 
amolarensis, which was also reported as a new species.

Over the years, due to the need to explore compounds from 
natural sources, our group has conducted numerous bioprospecting 
studies, reporting the production of SMs of endophytic 
microorganisms (Savi et al., 2015; Gos et al., 2017; Noriler et al., 2018; 
Savi D. C. et al., 2019). In this study, we report four extracts produced 
by endophytic fungi that inhibited the mycelial growth of the 
phytopathogen C. abscissum: Diaporthe amolarensis CMRP4997 
(MGI: 96.65%), N. primolutea CMRP4987 (MGI: 92.99%), Xylaria 
arbuscula CMRP5059 (MGI: 81.85%), and X. arbuscula CMRP5050 
(MGI: 48.67%). The first three extracts inhibited the mycelial growth 
of the phytopathogen levels higher than the positive control, the 
fungicide Carbendazim. C. abscissum is the causal agent of postbloom 
fruit drop (PFD), a disease that affects citrus production (Silva et al., 
2017), in which necrotic lesions on the petals and premature fruit drop 
and calyx retention are the main symptoms (Pinho et al., 2015). In 
Brazil, PFD causes significant production losses, especially in the state 
of São Paulo, where much of citrus cultivation is concentrated (Pinho 
et al., 2015; Silva et al., 2017). Therefore, finding endophytic isolates 
that produce SMs active against this pathogen is of great importance. 
Additionally, studying endophyte extracts at the compound level can 
help to characterize the biological activity observed in the crude 
extract, and provide knowledge for a future application of 
these compounds.

In addition to the good results observed against C. abscissum by 
the extract of Diaporthe amolarensis CMRP4997, those obtained with 
the metabolites of the isolates Nemania primolutea CMRP4987, 
Xylaria arbuscula CMRP5059, and X. arbuscula CMRP5050 also 
showed promising activities. These three isolates belong to the family 
Xylariaceae, known as an important source of SMs with biological 
activity (Petrini, 1986; Stadler, 2011; Kuhnert et al., 2014). Members 
of the Xylariaceae family are normally of cosmopolitan distribution 
and are mainly endophytes, although can also be  found as 
phytopathogens. However, little is known about the species 
N. primolutea and X. arbuscula and their bioactive metabolites. The 
species N. primolutea was described by Ju et al. (2005) been isolated 
from a dead trunk of Artocarpus communis in Taiwan. To date, few 
studies have demonstrated the biological activity of isolates of this 
species, such as antibacterial (Tan et al., 2020) and lignolytic (Idris 
et  al., 2019) activities. Recently, a study from our group reported 
antifungal activity from extracts of this species, with mycelial growth 
inhibition of C. abscissum (MGI: 80%), and P. citricarpa (MGI: 76%), 
as well as inhibition of symptoms development in citrus flowers and 
leaves (Iantas et  al., 2021). X. arbuscula species was described by 
Saccardo (1878), and recently, it was related to the production of the 
compound cytochalasin B. This compound is a mycotoxin with 
various biological activities including nuclear cell extrusion, inhibition 
of HIV-1 protease, and antibiotic and cytotoxic effects, and was also 
related to the symbiotics endophyte/host interaction (Amaral, 2009; 
Amaral et al., 2014; Amaral et al., 2017). All these data support the 
results presented in this study and reaffirm the diverse biological 
potential of the SMs produced by those strains, especially those 
isolated from medicinal plants from Brazilian biomes.

The bioactive metabolites produced by the four most promising 
endophytic fungi strains were subjected to chemical screening 

analysis, including HPLC-UV and HPLC-MS. These analyses revealed 
several UV/vis and MS peaks, indicating the production of 
compounds with great chemical structural diversity. An AntiBase 
search for the LC-UV/MS peaks detected from some of these 
metabolites indicated no hits, suggesting that these endophytic fungi 
may produce new natural products.

Furthermore, we  evaluated the cytotoxic activities of the four 
most promising extracts against A549 (non-small cell lung), PC3 
(prostate), and HEL299 (human lung fibroblast) cell lines. The crude 
extracts produced by Diaporthe amolarensis CMRP4997 and Xylaria 
arbuscula CMRP5059 displayed high cytotoxicity across all tested cell 
lines. The high activity of the extract from Nemania primolutea 
CMRP4987 against HEL299 suggests that the antifungal activity 
against the phytopathogens observed may be  related to the high 
cytotoxicity against the cancer cell lines. In contrast, the crude extract 
of CMRP4987 showed promising antifungal activity, but only low or 
moderate cytotoxicity, indicating a potentially different mechanism of 
antifungal action (Supplementary Figure S41). Because all biological 
evaluations were conducted using crude extracts, the detected 
cytotoxic activity may not be caused by the same pure compounds, 
which produce the antifungal activity, particularly as the LC-UV/MS 
data of the crude extracts indicate that these extracts may produce 
different classes of chemical structures.

Although no extract demonstrated strong activity against 
F. graminearum, the causal agent of Fusarium head blight (FHB), the 
observed rates of mycelial growth inhibition rates are not negligible, 
given the difficulty in controlling this pathogen. The best result 
obtained in this study against this pathogen was achieved with the 
extract produced from the fermentation of the X. arbuscula 
CMRP5050 (MGI: 23.0%). Additionally, a common strategy for 
managing this pathogen is the search for compounds that reduce the 
production of mycotoxins, called anti-mycotoxigenic (Pagnussatt 
et  al., 2014), which should be  an approach in future studies. 
Furthermore, it is important to note that the present study is the first 
to demonstrate the antifungal activity of extracts produced by an 
endophyte of the genus Xylaria against the phytopathogens 
C. abscissum, P. citricarpa, and F. graminearum.

In conclusion, this study highlights the Serra do Amolar as an 
important region of the Pantanal in Brazil, with a rich diversity of 
endophytes, including the newly described species D. amolarensis. 
Furthermore, extracts from four endophytic fungi demonstrated 
promising SMs with biological activity against phytopathogens, 
such as C. abscissum, P. citricarpa, and F. graminearum and should 
be further explored (scale-up fermentation, isolation of compounds, 
and purification) to identify bioactive new natural products and 
their mode of action. Finally, a significant contribution of this study 
was the ex situ conservation of the Serra do Amolar biodiversity, 
supporting future research and potential biotechnological 
applications of these endophytes. Such studies add value to Brazilian 
biodiversity and underscore the importance of conserving 
these biomes.
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