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Genome-wide CRISPR library screening technology is a gene function research

tool developed based on the CRISPR/Cas9 gene-editing system. The clustered

regularly interspaced short palindromic repeats/CRISPR-associated genes

(CRISPR/Cas) system, considered the third generation of gene editing after

zinc finger nucleases (ZFN) and transcription activator-like effector nucleases

(TALEN), is widely used for screening various viral host factors. CRISPR libraries

are classified into three main categories based on the different functions

of Cas9 enzymes: CRISPR knockout (CRISPR KO) library screening, CRISPR

transcriptional activation (CRISPRa) library screening, and CRISPR transcriptional

interference (CRISPRi) library screening. Recently, genome-wide CRISPR library

screening technology has been used to identify host factors that interact with

viruses at various stages, including adsorption, endocytosis, and replication. By

specifically modulating the expression of these host factors, it becomes possible

to cultivate disease-resistant varieties, establish disease models, and design and

develop vaccines, among other applications. This review provides an overview

of the development and technical processes of genome-wide CRISPR library

screening, as well as its applications in identifying viral host factors in livestock

and poultry.
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CRISPR/Cas9, library screening, gene editing, viral host factors, antiviral

1 Introduction

Genome-wide CRISPR library screening has been widely employed in antiviral immune
response research, animal disease modeling, and drug target screening. Whole-genome
CRISPR screening starts by designing an sgRNA library targeting the entire genome,
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which is introduced into target cells with a Cas9-expressing vector
via lentiviral or other methods. After applying a selective challenge,
cells from both control and challenged groups are collected.
High-throughput sequencing then analyzes sgRNA enrichment or
depletion, identifying host factors linked to the challenge (Shalem
et al., 2015). Currently, the Genome-wide CRISPR screening
technique is widely used to screen for host cytokines that interact
with viral infections (Munir et al., 2024; Peng et al., 2024; Yang
and Zhang, 2023). This technology can be applied to identify
host factors involved in various stages of viral processes, such as
adsorption, endocytosis, and replication. Subsequently, these host
factors can be targeted to design antiviral drugs and vaccines, as well
as to develop disease-resistant livestock and poultry breeds. This
review provides a brief overview of the principles and processes
of whole-genome screening technologies based on the CRISPR/Cas
system, and their applications in identifying host factors of livestock
and poultry viruses.

2 Gene editing technology
development

The evolution of gene editing technologies has primarily
involved the advancements of zinc finger nucleases (ZFNs),
transcription activator-like effector nucleases (TALENs), and
CRISPR/Cas9. All three contain a DNA-binding component
that specifically recognizes and binds to certain gene fragments,
as well as a nuclease component that cuts the DNA double
strand. Each technology was used for gene editing during their
respective periods.

2.1 ZFN

ZFN, developed in 1996, is composed of zinc finger proteins
(ZFP) that target specific DNA sequences, and the FokI restriction
enzyme that cleaves DNA (Kim et al., 1996). It pioneered a new
era of targeted gene editing as the first-generation gene editing tool.
However, ZFN is challenging to apply in practice due to its complex
and costly design and validation process.

2.2 TALEN

TALEN, developed in 2010, consists of transcription activator-
like effector (TALE) proteins and the nuclease FokI (Boch et al.,
2009; Christian et al., 2010; Moscou and Bogdanove, 2009). TALEN
works similarly to ZFN as the second generation of gene editing
tools. However, TALEN is simpler to design and construct, offering
more target sites and is more stable in application. In 2012, it was
recognized as one of the top ten technological breakthroughs of the
year.

2.3 CRISPR/Cas9

CRISPR/Cas9 was officially introduced in early 2013, consists
of an sgRNA that targets specific DNA sequences and the

Cas9 enzyme that cleaves DNA. CRISPR/Cas systems were first
discovered in Escherichia coli in 1987 (Ishino et al., 1987) and later
linked to the immune system of the bacteria (Barrangou et al.,
2007). One type of this system (CRISPR/Cas9) was adapted into
a gene editing tool. Unlike the earlier systems (ZFN and TALEN),
which required the construction of specific binding proteins for
each editing site, the CRISPR/Cas9 system directs the Cas9 nuclease
to the editing site by an approximately 20-nucleotide (nt) sgRNA
that is complementary to the target sequence. CRISPR/Cas9 has
accelerated the advancement of genome-wide library screening
techniques due to its simple design and exceptional gene editing
capabilities.

3 CRISPR library screening related
systems

CRISPR screening systems are classified into two principal
categories based on the different Cas enzymes employed and the
resultant gene-editing effects: CRISPR knockout screening systems
and CRISPR transcriptional regulation screening systems. The
transcriptional regulation screening system further includes the
CRISPR interference (CRISPRi) screening system and the CRISPR
activation (CRISPRa) screening system (Figure 1A). Currently, all
three systems are employed in library screening to study gene
functions.

3.1 CRISPR knockout screening system

The CRISPR/Cas9 knockout system primarily consists of the
Cas9 protein, which performs the cutting function, and the
sgRNA, which guides the Cas9 protein to the editing site. After
reaching the editing site, the two strands of DNA are cleaved
by the HNH and RuvC domains of the Cas9 protein, resulting
in a double-strand break (DSB). This break triggers the cell’s
endogenous DNA repair mechanisms, which repair the broken
DNA through end joining (EJ) or homology-directed repair (HDR).
EJ is the main repair mechanism in cells following gene knockout
by the CRISPR/Cas9 system (Xue and Greene, 2021). This
process repairs the broken double strand by randomly recruiting
deoxyribonucleotides, leading to base pair insertions or deletions
that alter the original gene sequence, thereby achieving the goal
of gene knockout (Nambiar et al., 2022). Genome-wide CRISPR
knockdown screening creates a diverse cell library with single-
gene knockouts by co-transfecting sgRNAs and Cas9 vectors into
cells, which cause gene disruption and trigger the cell’s EJ repair
mechanism to alter the original gene sequence.

3.2 CRISPR transcriptional regulatory
screening system

The CRISPR transcriptional regulation system primarily
consists of dead Cas9 (dCas9) that carries transcriptional
regulatory elements and sgRNA that provides guidance. dCas9
is engineered from Cas9 and lacks the ability to cleave DNA

Frontiers in Microbiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1498641
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1498641 November 18, 2024 Time: 16:16 # 3

Hu et al. 10.3389/fmicb.2024.1498641

FIGURE 1

(A) Three types of CRISPR library screening systems: The CRISPR KO system consists of sgRNA and Cas9 protein. After the HNH and RuvC domains
cleave the DNA, the broken DNA is repaired through end joining (EJ) or homology-directed repair (HDR). CRISPRi and CRISPRa systems are derived
from the CRISPR KO system. In these systems, the HNH and RuvC domains of Cas9 are deactivated, resulting in dCas9, which loses its cutting ability.
dCas9 forms a complex with transcriptional repression domains (¬KOX1 KRABKOX1 KRAB-MeCP2®ZIM3 KRAB) or transcriptional activation
domains (¯SAM°VPR±SunTag) and combines with sgRNA to create the CRISPRi or CRISPRa systems. (B) Two types of CRISPR library screening
workflows: Both processes mainly consist of four steps. First, sgRNA is designed and synthesized, followed by cloning the sgRNA into a single- or
dual-plasmid system to create an sgRNA library. Next, the sgRNA library is introduced into cells via lentiviral transduction, knocking out the target
genes. After antibiotic selection (as the sgRNA plasmid carries an antibiotic resistance gene), an sgRNA cell library is formed. Then, based on the
experimental goals, selective pressure is applied to the cell library, and the surviving cells are collected. Finally, high-throughput sequencing,
combined with bioinformatics analysis, is used to identify sgRNAs that are significantly enriched (positive selection) or depleted (negative selection)
before and after treatment.

Frontiers in Microbiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1498641
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1498641 November 18, 2024 Time: 16:16 # 4

Hu et al. 10.3389/fmicb.2024.1498641

due to the simultaneous inactivation of its RuvC and HNH
nuclease domains. However, it can still bind to the target
gene sequence under the guidance of sgRNA (Qi et al., 2013).
Both CRISPRi and CRISPRa regulate transcription through
the use of dCas9 combined with corresponding transcriptional
interference or activators. In CRISPRi, dCas9 is combined with
the transcriptional repression domain KRAB, which is guided by
sgRNA to the transcription start site (TSS) of the target gene,
thereby blocking transcription and inhibiting gene expression
(Gilbert et al., 2013). Initially, the KOX1 KRAB domain, which
was fused to dCas9, exerted its transcriptional repression function
by recruiting the methyl transferase SETB1 to methylate histone
H3K9 (Iyengar and Farnham, 2011). Subsequently, researchers
conducted a comprehensive comparison of various KRAB domain
combinations and identified that the KOX1 KRAB-MeCP2 and
ZIM3 KRAB domains exhibited more pronounced inhibitory
effects (Alerasool et al., 2020; Yeo et al., 2018).

Similar to CRISPRi, CRISPRa involves the combination of
dCas9 with the transcriptional activation domain VPR (Perez-
Pinera et al., 2013), which is guided by sgRNA to the TSS
locus to facilitate transcription of the target gene. To enhance
transcriptional regulation efficiency, research shows that increasing
the number of transcriptional activators by combining the tripartite
transcriptional activator VPR (VP64-p65-RTA) or multiple copies
of the GCN4 activation recruitment domain (SunTag) with dCas9
can improve transcriptional activation efficiency (Chavez et al.,
2015; Kampmann, 2018). Additionally, sgRNA can be modified
by fusing it with the MS2 stem-loop, which then combines with
the dCas9-VP64 fusion protein to form the SAM system. This
system can also enhance transcriptional activation by recruiting the
MS2-p65-HSF1 fusion protein (Konermann et al., 2015).

Currently, CRISPRi and CRISPRa library screenings are widely
applied in fields such as drug target identification (Hazan et al.,
2024; Kurata et al., 2018; Saito et al., 2023), drug resistance (Li
et al., 2021; Poulton et al., 2024), virology (Heaton et al., 2017; Li
et al., 2023), non-coding RNA (Bester et al., 2018; Halasz et al.,
2024), functional genomics (Alda-Catalinas et al., 2020; Tian et al.,
2019; Wang Y. et al., 2024), and receptor-ligand interactions (Yang
L. et al., 2024).

4 Genome-wide CRISPR library
screening technology process

CRISPR library screening involves two main steps: the
construction of the sgRNA cell library and the screening of target
factors (Shalem et al., 2014). sgRNAs can be designed with tools
such as Cas-OFFinder (Bae et al., 2014), sgRNA.Scorer 2.0 (Chari
et al., 2017), and CRISPR-offinder (Zhao et al., 2017). Currently,
there are nearly complete libraries in various fields (Chulanov
et al., 2021). The sgRNA and Cas9 plasmid usually delivered into
target cells via lentivirus to construct a cell library, which can be
categorized into arrayed and pooled libraries depending on the
selected screening targets and focus areas (Yang C. et al., 2024).
Based on different research objectives, the constructed cell library
is subjected to screening factors such as drugs, viruses, harmful
substances, or adverse environmental conditions. Subsequently,
control cells and cells that survived under selective conditions

are collected. The abundance of sgRNA in cells before and
after treatment is assessed through high-throughput sequencing
combined with bioinformatics analysis. Comparative analysis then
identifies factors that are significantly enriched (positive selection)
or significantly depleted (negative selection) (Figure 1B).

5 CRISPR library screening for host
factor identification in livestock and
poultry viruses

Viral diseases in livestock and poultry are major factors
affecting economic production. The complex interactions between
viruses and host cells complicate disease treatment, making the
identification of host factors involved in viral interactions a
critical challenge for precision therapeutics. With advancements
in CRISPR gene-editing technology, CRISPR library screening has
been applied to identify key antiviral host factors in livestock and
poultry. Studies have confirmed that CRISPR library screening
can successfully identify host factors that interact with viruses at
multiple stages, including adsorption, endocytosis, and replication
(Table 1). These host factors provide valuable insights into the
molecular-level prevention and treatment of viral diseases.

5.1 Host factor in the virus adsorption
phase

Viral adsorption to host cells is the first critical step in entry,
which is driven by interactions between viral particles and specific
cell surface receptors. Genome-wide CRISPR library screening
has proven effective in identifying these key receptors and host
factors involved in viral adsorption. The low-density lipoprotein
receptor (LDLR) has been recognized as a receptor for various
alphaviruses (Zhai et al., 2024). A study demonstrated that LDLR
can serve as a low-affinity receptor for EEEV through CRISPR
knockout screening, with the virus binding to cells by interacting
with the LA domain of LDLR (Ma et al., 2024). Sialic acid
receptors (SA) are carbohydrate molecules widely distributed on
the surface of host cells and have been identified as specific
receptors for various animal and human viruses (Everest et al.,
2022). Solute carrier family 35 member A1(SLC35A1), a CMP-
sialic acid transporter (cytidine 5′-monophosphate), participates in
the synthesis of sialic acid receptors on the cell surface. CRISPR
library screening identified SLC35A1 as a host factor affecting
the adsorption of various viruses (Han et al., 2018; Wang et al.,
2023, 2022). Similarly, studies have revealed that host factors
involved in membrane function regulation, such as solute carrier
family 35 member B2 (SLC35B2) and heparan sulfate proteoglycan
pathway-related genes (HSPGs), also influence viral adsorption
(Thamamongood et al., 2020; Zhao et al., 2020). Additionally,
CRISPR activation library screening has revealed that β-1,4-N-
acetylgalactosaminyl-transferase 2 (B4GALNT2) can reduce viral
adsorption by competing with the virus for binding to sialic acid
receptors (Heaton et al., 2017). Thus, the use of CRISPR library
screening can identify host factors that act as viral receptors, aid in
receptor synthesis, or compete with the virus for receptor binding.

Frontiers in Microbiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1498641
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1498641 November 18, 2024 Time: 16:16 # 5

Hu et al. 10.3389/fmicb.2024.1498641

TABLE 1 Identify host factors for livestock and poultry viruses using CRISPR library screening.

Virus Susceptible
animals

Cell line Gene
count

Candidate factor Main
factor

Effect References

EEEV Horse N2a 19,050 Sema5a, Olfr970, Ldlr, Ccp110, Svs2 LDLR Adsorption Ma et al., 2024

PDCoV Porcine LLC-PK 20,081 TMEM41B, SLC35A1, SNX10, VOPP1, PCSK6 SLC35A1 Adsorption Wang et al.,
2022

H5N1 Poultry A549 19,050 SLC35A1, CIC, IRX3, C2CD4C, TRIM23,
PIGN

SLC35A1 Adsorption Han et al., 2018

PEDV Porcine Vero E6 18,993 SLC35A1, TRIM2, PSD3, CENPQ, SLC7A11 SLC35A1,
TRIM2

Adsorption Wang et al.,
2023

SBV Ruminant HEK-293T 19,114 SLC35B2, OR5P3, PLEKHS1 SLC35B2 Adsorption Thamamongood
et al., 2020

JEV Porcine PK15 17,743 B3GAT3, GLCE, HS6ST1, SLC35B2 B3GAT3,
GLCE,
HS6ST1,
SLC35B2

Adsorption Zhao et al., 2020

PR8 Poultry A549 18,865 B4GALNT2, RIN2, TM9SF2 B4GALNT2 Adsorption Heaton et al.,
2017

PRV Porcine PK15 20,598 SGMS1 SGMS1 Endocytosis Holper et al.,
2021

PEDV Porcine HEK-293T 20,914 OR52M1, GP1, MGEA5, ELTD1, PCKθ PKCθ Endocytosis Zhou et al., 2024

H5N1 Poultry A549 19,050 SLC35A1, IGDCC4, ZFAT, PACSIN2,
ZNF471, H5N1

IGDCC4 Endocytosis Song et al., 2021

VV Cow Hela 19,050 B2M, ITGB1, ACTG1, CSK, GMEMB1, GIT1,
PTPN12, TAOK1

B2M Endocytosis Matia et al., 2022

WSN Porcine PK15 and
C12

13,735 COG8, TNK2, PPP1R9A, RPS11, ZNF263,
SLC25A28

COG8 Endocytosis Zhou et al., 2021

H7N9 Poultry A549 19,050 CYTH2, TTC24, NANS CYTH2 Endocytosis Yi et al., 2022

TEGV Porcine PK-15 17,743 FUT8, TMEM41B, DYRK1A, MLST8,
B4GAT1

TMEM41B Replication Sun et al., 2021

TEGV Porcine PK-15 17,743 DYRK1A, FUT8, DYRK1A, MLST8, B4GAT1 DYRK1A Replication Fu et al., 2024

PRRSV Porcine PK-15 13,720 KXD1, PSMD3, LGALS2, UBB, F11R, VTN KXD1 Replication Jiang et al., 2022

JEV Porcine A549 19,050 EPHA2, NF2, TAAR5, ACSL3, COPG2,
ITGB1BP2

PRLHR Replication Liu et al., 2024

BoHV-1 Cow MDBK 21,165 FBXW11, TFDP1, CDC45, MCM2, VIPAS39,
VPS16, VPS18, GARP, EARP

GARP,
EARP

Replication Tan et al., 2023

SAPS-
Cov

Porcine Hela 19,050 ZD17, MYB, EFNA3, JPH3 ZD17 Replication Luo et al., 2021

PRRSV Porcine 3D4/21 – GPS2, MGAT5B, KCNC2, SMPDL3B, FGF10 SMPDL3B Replication Shen et al., 2023

ASFV Porcine WSL 20,598 SLA-DM, SLA-DMA, SLA-DMB,
RFXAP,CIITA

SLA-DM Antiviral
response

Pannhorst et al.,
2023

RV Porcine Hela 19,050 SLC35A1, GNE, CMAS, UGCG, FA2H, LATS2 STAG2 Antiviral
response

Ding et al., 2018

FMDV Porcine IBRS-2 16,886 TOB1, PLTP, FAM83D TOB1 Antiviral
response

Peng et al., 2024

PR8 Poultry HeLa 18,885 B4GALNT2, ATP6V1C1, B3GAT1, JADE3 JADE3 Antiviral
response

Munir et al.,
2024

VSV Porcine Hela 19,050 TOR4A, RDH12, DNLZ, SNX18, SLC25A23,
STON2, HIST1H2AH, C10orf120, GATA4

SLC25A23 Antiviral
response

Zhang et al.,
2023

PDCOv Porcine LLC-PK – CPSF2, HSP90AB1, SLC27A4,CCDC124,
TOMM6, EDIL3, SLC9A5, DCTN1

HSP90AB1 Antiviral
response

Zhao et al., 2024

−: Number of genes unknown.
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5.2 Host factor in the endocytosis phase
of viruses

Viral endocytosis is the second step in a virus’s infection
of host cells, primarily dependent on interactions between viral
proteins and host cell factors, and involves various intracellular
biological processes. By identifying the genes associated with
viral infection through CRISPR library screening, viral entry
and intracellular transport can be disrupted by regulating
gene expression, thereby inhibiting infection. Studies have
identified genes such as sphingomyelin synthase 1 (SMS1) and
Immunoglobulin Superfamily DCC Subclass Member 4 (IGDCC4),
which regulate transmembrane transport, as host factors that
facilitate the internalization of various viruses. Knockout of these
genes significantly reduces intracellular viral load (Holper et al.,
2021; Matia et al., 2022; Song et al., 2021). Additionally, CRISPR
library screening has revealed that oligomeric Golgi complex
8 (COG8) and guanine nucleotide exchange factor cytohesin 2
(CYTH2), which regulate intracellular vesicle transport, not only
promote influenza virus internalization but also assist in the
transport of viral components between cellular compartments,
thereby enhancing viral infection (Yi et al., 2022; Zhou et al.,
2021). Protein kinase Cθ (PKCθ), a specific member of the protein
kinase C family, primarily functions in immune and inflammatory
processes. However, a study discovered that PKCθ is also involved
in the internalization of porcine epidemic diarrhea virus (PEDV)
and can promote viral infection through the PKCθ-BOK-caspase3
mitochondrial apoptosis pathway (Zhou et al., 2024). Accordingly,
CRISPR library screening can also identify host factors involved in
viral internalization and intracellular transport.

5.3 Host factor for viral replication stages

Viral replication is dependent on the cell’s biological machinery,
with numerous cellular factors involved in this process. Genome-
wide library technology can be used to identify factors that
significantly impact viral replication. CRISPR library screening
has identified that transmembrane protein 41B (TMEM41B), the
endosome-associated recycling protein (EARP) complex and the
golgi-associated retrograde protein (GARP) complex, which are
involved in intracellular membrane regulation, can influence viral
replication. TMEM41B facilitates the formation of the double-
membrane vesicle (DMV) structures essential for the replication of
the transmissible gastroenteritis virus (TEGV), thereby promoting
the replication and transcription of the viral genome. GARP and
EARP assist in the assembly of the envelope protein VP8 of Bovine
herpesvirus 1 (BoHV-1) (Fu et al., 2024; Sun et al., 2021; Tan et al.,
2023). There is a close relationship between autophagy and lipid
metabolism, both of which significantly impact viral replication
(Wang et al., 2019). Several studies have demonstrated that genes
such as KXD1 and SMPDL3B promote the replication of viruses
like porcine reproductive and respiratory syndrome virus (PRRSV)
by enhancing autophagy or lipid degradation. In cells lacking
these genes, viral replication is inhibited (Jiang et al., 2022; Liu
et al., 2024; Shen et al., 2023; Yang et al., 2012). Additionally, zinc
finger DHHC-type palmitoyltransferase 17 (ZD17) has been shown
to facilitate the replication of SADS-CoV, and inhibition of its
palmitoylation activity results in suppressed viral replication (Luo

et al., 2021). Therefore, CRISPR library screening technology can
be employed to identify host factors that influence viral genome
replication or assembly.

5.4 Host factor in cellular antiviral
responses

Viral infections trigger immune responses, while viruses
counteract these defenses through evasion mechanisms. CRISPR
library screening helps identify key factors in the antiviral immune
response. The interferon system is a critical components of the
antiviral response. Upon recognizing a viral infection, the body
activates the interferon pathway, stimulating interferon production
and inducing an antiviral state. On one hand, interferons limit viral
spread by inhibiting viral replication or promoting cell apoptosis;
on the other hand, they enhance immune responses against viral
infection by promoting antigen presentation (Chiang and Liu,
2018; Schneider et al., 2014). The cGAS-STING signaling pathway
plays a vital role in type I interferon (IFN-I) production. cGAS
recognizes cytosolic DNA and activates STING, which moves
to the Golgi apparatus and triggers the JAK-STAT and NF-κB
signaling cascades, promoting IFN production (Wang and Fish,
2019). CRISPR screening has identified stromal antigen 2 (STAG2)
as a factor involved in maintaining genomic stability. Its loss
leads to DNA damage and an increase in cytoplasmic DNA,
thereby activating the cGAS pathway to counteract infections
by various rotaviruses (RV), vesicular stomatitis virus (VSV),
chikungunya virus (CHIKV), and two strains of influenza A virus
(Ding et al., 2018). Additionally, CRISPR screening identified jade
family PHD zinc finger 3 (JADE3) and Transducer of ERBB2.1
(TOB1) as host factors that influence viral infection. JADE3
activates the NF-κB signaling pathway, promoting the production
of the antiviral protein IFITM3, thereby inhibiting influenza virus
infection (Munir et al., 2024). In contrast, TOB1 suppresses
the phosphorylation of STATs by JAKs, inhibiting downstream
interferon-stimulated gene (ISG) expression and facilitating foot-
and-mouth disease virus (FMDV) infection (Peng et al., 2024).
Mitochondrial antiviral signaling protein (MAVS) represents
another key pathway involved in IFN-I production. After viral
recognition by RIG-I-like receptors (RLRs), the MAVS pathway
is activated to promote IFN-I expression (Wang J. et al., 2024).
CRISPR library screening identified SLC25A23, a mitochondrial
membrane adenine nucleotide transporter, which interacts with
Trim31, to prevent the ubiquitination and activation of MAVS.
This inhibits downstream IFN-I activation, assisting in vesicular
stomatitis virus (VSV) infection (Zhang et al., 2023).

Moreover, viruses can evade host immune defenses to promote
infection. Heat shock protein 90α family class B member 1
(HSP90AB1) plays roles in protein regulation and signal pathway
modulation. A study found that HSP90AB1 interacts with the
C-tail domain of the nucleocapsid (N) protein of porcine
deltacoronavirus (PDCoV), preventing its degradation through the
proteasome pathway (Zhao et al., 2024). Research in wild boar
lung (WSL) cells has also demonstrated that the deletion of genes
related to non-classical class II porcine leukocyte antigen DM (SLA-
DM), which are involved in immune regulation, inhibits different
strains of African swine fever virus (ASFV), suggesting that these
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genes assist in viral immune evasion (Pannhorst et al., 2023). Thus,
CRISPR library screening technology can be utilized to identify host
factors that either combat viral infections or assist in viral immune
evasion.

6 Summary and prospect

In conclusion, cellular factors in host cells that interact with
viruses at various stages can be identified by utilizing an sgRNA
library and Cas9 enzymes with distinct functions. In fact, the
process by which certain viruses infect different hosts is similar,
and different species may share the similar host factors as viral
receptors. For example, SLC35A1 serves as a receptor for viral
attachment in both swine and poultry (Han et al., 2018; Wang
et al., 2022). Conversely, antiviral host factors show significant
species-specific differences among various livestock and poultry
breeds. Studies have shown that pigs with a knockout of interferon-
stimulated gene 15 (ISG15) are more susceptible to pseudorabies
virus, whereas susceptibility to the virus is not increased in other
species (Dzimianski et al., 2019; Liu et al., 2022).

Additionally, CRISPR library screening is primarily applied
in livestock and poultry for identifying virus-host interaction
factors, with applications in breeding disease-resistant varieties,
establishing disease models, and designing vaccines. Currently,
the most advanced development is PRRS-resistant pigs, which
are now available commercially (Burger et al., 2024). Research
on other antiviral livestock and poultry is also making progress
(Idoko-Akoh et al., 2023; Li et al., 2024). Vaccine development
leverages insights into viral infection mechanisms and employs
gene editing to adjust viral virulence, as seen in the African swine
fever vaccine (Bhujbal et al., 2022). Animal disease models are
primarily established by knocking out virus-resistance genes to
create disease-susceptible models, enabling studies of pathogenesis
(Lin et al., 2022; Shrock and Guell, 2017). Moreover, as technology
advances, related applications will continue to expand.
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