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Invasive pneumococcal disease (IPD) is a major cause of morbidity and mortality 
worldwide, particularly in the pediatric population (children and infants), with 
high rates of hospitalization and death. This study aimed to create and validate 
a classifier for Streptococcus pneumoniae serotyping using Fourier-transform 
infrared (FT-IR) spectroscopy as a rapid alternative to the classical serotyping 
technique. In this study, a database comprising 76 clinical isolates, including 18 
serotypes (predominantly serotypes 19A, 6C, and 3) of S. pneumoniae from pediatric 
patients with IPD, was tested at a tertiary pediatric hospital in southern Brazil during 
2016–2023. All isolates were previously serotyped using the Quellung reaction, 
and 843 FT-IR spectra were obtained to create a classification model using artificial 
neural network (ANN) machine learning. After the creation of this classifier, internal 
validation was performed using 384 spectra as the training dataset and 459 as the 
testing dataset, resulting in a predictive accuracy of 98% for serotypes 19A, 6, 3, 
14, 18C, 22F, 23A, 23B, 33F, 35B, and 9N. In this dataset, serotypes 10A/16F, 15ABC, 
and 7CF could not be differentiated and were, therefore, grouped as labels. FT-IR 
is a promising, rapid, and low-cost method for the phenotypic classification of 
S. pneumoniae capsular serotypes. This methodology has significant implications for 
clinical and epidemiological practice, improving patient management, monitoring 
infection trends, and developing new vaccines.
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1 Introduction

Streptococcus pneumoniae colonizes the mucosal surfaces of the 
human upper respiratory tract, causing opportunistic, non-invasive, 
and invasive infections. Invasive pneumococcal disease (IPD) is a 
severe condition with high morbidity and mortality rates worldwide, 
notably affecting children under 5 years of age (Weiser et al., 2018). 
Vaccination is the most effective way to protect the general population 
from IPD (Lages et al., 2020). There are differences in the distribution 
of pneumococcal serotypes among patients with IPD worldwide 
(Silva-Costa et al., 2018). To date, 106 different capsular serotypes 
have been described and categorized (Ganaie et al., 2020; Ganaie et al., 
2023b; Ganaie et al., 2021; Ganaie et al., 2023a; Manna et al., 2024). 
However, only a few pneumococcal serotypes cause the vast majority 
of IPD cases worldwide, and different vaccines have been developed 
to target these prevalent serotypes (Ganaie et al., 2020; Qian et al., 
2021). The first vaccine developed to control pneumococcal infections, 
the 23-valent pneumococcal polysaccharide, was introduced in 1983. 
However, due to the increase in penicillin-resistant pneumococci and 
also the observation that non-conjugate vaccines produced 
unsatisfactory results in children under 2 years of age, the first 
pneumococcal conjugate vaccine (PCV), including seven 
pneumococcal serotypes (PCV7, serotypes 4, 6B, 9 V, 14, 18C, 19F, and 
23F), was developed and authorized for use in children in the USA in 
2000 (Rappuoli et al., 2019; Jarovsky and Berezin, 2023). Two new 
second-generation conjugate vaccines with additional serotypes, 
PCV10 (additional serotypes 1, 5, and 7F) and PCV13 (additional 
serotypes 3, 6A, and 19A), were licensed based on their non-inferior 
immunogenicity to PCV7 (Jarovsky and Berezin, 2023). Following the 
worldwide use of PCVs, the emergence of IPD due to non-vaccine 
serotypes and the development of new vaccines with a higher valency 
has emerged: PCV15, which adds serotypes 22F and 33F, has been 
approved for use in children and adults, and the PCV20 vaccine, 
which covers five more serotypes compared to PCV15 (8, 10A, 11A, 
12F, and 15 B), was recently approved by the National Health 
Surveillance Agency (Agência Nacional de Vigilância Sanitária - 
ANVISA) (Jarovsky and Berezin, 2023; Kfouri et al., 2023; ANVISA 
AN de VS, 2023). The surveillance of circulating serotypes in the 
population is crucial for evaluating the impact of vaccination 
programs and understanding the distribution of circulating serotypes 
involved in IPDs (Bardach et al., 2024). In the literature, two main 
approaches to investigating pneumococcal capsular types are 
characterized, these being serological and molecular methods (Abdul 
Rahman et al., 2023). Molecular techniques include real-time PCR 
with amplification of the lytA gene, microarray using chips to detect 
and distinguish serotypes and whole genome sequencing (WGS) 
(Swarthout et al., 2021; Abdul Rahman et al., 2023; Donkor, 2013; 
Velusamy et al., 2020). The Quellung reaction, in which antisera are 
used and tested sequentially with pools of antisera until a positive 
reaction is observed in the identified pneumococcus strain, is 
considered the gold standard for identifying serotypes (Habib et al., 
2014; Novais et  al., 2019). The IR Biotyper® system, a Fourier 
transform infrared spectroscopy (FT-IR)-based method, shows 
promise for capsular typing (Novais et al., 2019). IR spectroscopy 
provides a molecular fingerprint based on the absorption of infrared 
light (4,000–500 cm−1) by carbohydrates, lipids, proteins, and 
lipopolysaccharides (Muchaamba and Stephan, 2024). Specifically, the 
region of interest for capsular typing of Streptococcus pneumoniae 

focuses on carbohydrates, primarily characterized by absorbent 
properties (C-O stretching and O-H bending, 1,300–800 cm−1). This 
method has demonstrated potential for serotyping various bacteria. 
FT-IR has been previously reported in the literature as an effective 
serotyping technique for S. pneumoniae, with comprehensive 
validation of the method (Burckhardt et al., 2019; Passaris et al., 2022). 
This study aimed to create a database and validate a local classifier for 
pneumococcal serotyping using FT-IR spectroscopy, on isolates 
exclusively from pediatric patients, as a quick and easy-to-perform 
alternative to the Quellung reaction.

2 Materials and methods

2.1 Study design

This was a retrospective longitudinal study of 76 clinical isolates 
of S. pneumoniae from pediatric patients diagnosed with IPD admitted 
between 2016 and 2023 to Hospital Pequeno Príncipe, a 372-bed 
academic pediatric hospital in Curitiba, Paraná, southern Brazil. All 
isolates were stored in sheep blood with 20% glycerol at −80°C 
(Figure 1A).

2.2 Bacterial identification

Bacterial colonies were cultivated on 5% sheep blood Columbia 
agar base (CBAB 5%) (NEWPROV, Pinhais - PR, Brazil) at 37°C in an 
atmosphere of 5% CO2 for 24 h. Identification was carried out using 
matrix-assisted laser desorption ionization time-of-flight mass 
spectrometry (MALDI-TOF MS) (Bruker Daltonics GmbH, Bremen, 
Germany) on a Microflex LT Bruker MALDI-TOF MS with 
flexControl v3.4 software (Bruker Daltonics GmbH, Bremen, 
Germany) (Figure  1B). Confirmation was achieved by standard 
methods (WHO, 2011) species were identified by the susceptibility on 
the optochin test and on sodium deoxycholate (bile salt) solution.

2.3 Streptococcus pneumoniae serotyping

Serotyping was carried out at the Instituto Adolfo Lutz (IAL) of 
the National Reference Laboratory for Bacterial Meningitis and 
Invasive Pneumococcal Infections of the Brazilian Ministry of Health. 
S. pneumoniae was serotyped using pneumotest-latex agglutination 
and the Quellung reaction using antisera, both from Staten’s Serum 
Institute (Copenhagen, Denmark) and according to the manufacturer’s 
instructions. Non-typeable (NT) isolates identified by Quellung were 
also verified by the deduction of serotypes/serogroups using sequential 
multiplex PCR for 41 serospecificities, following the gene targets and 
protocols described by the Centers for Disease Control and 
Prevention, Atlanta, GA, United States (Carvalho et al., 2010).

2.4 Polysaccharide-based phenotypic 
typing with FT-IR spectroscopy

Polysaccharide-based phenotypic typing was conducted using the 
IR Biotyper® system (Bruker Daltonics, Germany), located at 
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FIGURE 1

Overview of practical sequential workflows of this study. (A) Steps involved in the selection and cryopreservation of clinical isolates included in the 
study. (B) Species identification using MALDI-TOF for the study isolates. (C) Workflow of IR Biotyper analysis. This figure was created by Biorender.com.
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Laboratório Central do Estado do Paraná (LACEN/PR). The selected 
bacterial isolates were first cultured on CBAB 5% (NEWPROV, 
Pinhais - PR, Brazil) at 37°C in 5% CO2 for 24 h. The obtained bacterial 
colonies were subsequently cultured on MHF agar (Mueller Hinton 
agar +5% horse blood +20 mg/L β-NAD, NEWPROV, Pinhais - PR, 
Brazil) and incubated at 37°C in 5% CO2. Suspensions of the bacterial 
isolates were prepared in IR Biotyper® suspension vials containing 
metal beads (IR Biotyper® kit, Bruker Daltonics GmbH, Bremen, 
Germany) according to the manufacturer’s instructions. Portions of 
the culture colonies were removed using a 1 μL disposable inoculation 
loop, and a homogeneous suspension was prepared in 50 μL of 70% 
ethanol. After homogenization, 50 μL of deionized water was added. 
The samples were then agitated at 1,350 rpm for 5 min (Thermomixer, 
Eppendorf, Hamburg, Germany). Subsequently, 15 μL of each sample 
were dispensed in quintuplicate onto a reusable 96-well silicon IR 
Biotyper® plate (Bruker Daltonics GmbH, Bremen, Germany), with 
each spot serving as a technical replicate. For database generation, 
each isolate was sub-cultivated for 2 or 3 days (biological replicates) to 
accommodate technical variability. Additionally, 10 μL of the two 
standards, IRTS1 and IRTS2 (IR Biotyper® kit, Bruker Daltonics 
GmbH, Bremen, Germany), were included in duplicate on each plate 
per run (Bruker, 2021; Figure 1C). One spot was left empty to measure 
the background after each spot. Spectra of poor quality, such as those 
with absorbance values outside the 0.4–2.0 window, were excluded 
from analysis, aiming to include at least 12–15 spectra of each isolate.

2.5 FT-IR spectra

Spectra were acquired (transmission mode between wave numbers 
4,000–500 cm−1) and processed by OPUS software V.8.2.28 (Bruker 
Optics, Germany) on an IR Biotyper® with the corresponding IR 
Biotyper® software V4.0 (Bruker Daltonics) for data analysis. Spectral 
splicing was performed by default settings to the polysaccharide region of 
1,300–800 cm−1. For spectral distance visualization, dendrograms were 
created using the Euclidean distance as the exploration method with the 
UPGMA linkage type (average). Scatter plots in both 2D and 3D were 
visualized using dimension reduction techniques, namely Principal 
Component Analysis (PCA) and Linear Discriminant Analysis (LDA). 
To correct for technical variance, LDA was employed as a preprocessing 
step, capturing 95% of the variance with a maximum of 30 principal 
components, with isolate ID serving as the target group for the 
visualization of the 2D and 3D scatter plots. The isolates were labeled 
according to the corresponding Quellung reaction outputs to compare the 
results of the two techniques.

2.6 Classifier creation with an artificial 
neural network (ANN) machine learning 
model to classify pneumococcal serotypes

Among the 76 S. pneumoniae isolates, 18 distinct serotypes were 
identified using Quellung serology (3, 6C, 7F, 7C, 9 N, 10A, 16F, 14, 15A, 
15B, 15C, 18C, 19A, 22F, 23A, 23B, 33F, and 35B). These same isolates 
were tested on the IR Biotyper® equipment to create a database for 
developing a classifier capable of distinguishing the different serotypes. 
All the spectra generated and stored in the newly created database were 
incorporated into the training data set. Additionally, two other 

machine-learning algorithms, a support vector machine with a radial 
basis function (RBF) kernel and another with a linear kernel, were 
evaluated. However, these algorithms failed to achieve a high classification 
accuracy (>95%) during development and were subsequently 
discontinued. Subsequently, the IR Biotyper® software’s machine learning 
algorithms were trained to process the spectra and build the classifier 
using an ANN, repeating this process over multiple cycles (300 cycles), 
and producing a confusion matrix to evaluate the accuracy of the resulting 
classification model. It was determined that it was not feasible to 
differentiate between serotypes 15ABC, 10A/16F, and 7CF; these were 
amalgamated into a single group for future classification models. 
Ultimately, the classifiers’ accuracy was tested through an internal 
validation trial utilizing all the generated spectra, which were split into 
two sets: a training dataset and a testing/validation dataset containing 384 
and 459 spectra, respectively. This process also produced a confusion 
matrix as an output file, which depicted the accuracy of the predicted 
outcomes in three colors (green, red, and yellow), confirming the 
reliability of the serotypes classified with our developed classifier.

3 Results

3.1 Distribution of identified serotypes

Of the 76 isolates, 48 (63.2%) were isolated from blood, 15 (19.7%) 
from pleural fluid, 11 (14.5%) from cerebrospinal fluid, one (1.3%) 
from ascitic fluid and one (1.3%) from thoracentesis fluid samples. 
Eighteen distinct serotypes were identified, of which serotypes 19A, 
6C, and 3 were the most prevalent (Figure 2). The three most prevalent 
serotypes [19A (gray), 6C (light pink) and 3 (green)] show the largest 
“clouds” in the 3D plot (Figure 2). In this plot, the first, second and 
third principal components are displayed, which already show some 
distinct clusters. For the further analysis, all 30 principal components 
were explored to see distinct clusters and therefore the possibility of 
distinguishing/differentiating all the serotypes measured. 
Supplementary Figure S1 shows a deviation plot of the spectra 
generated by the readings of the three prevalent serotypes in our study, 
displaying their spectral differences. The IR Biotyper® spectra for 
serotypes 19A, 6C, and 3 were analyzed using a deviation plot, which 
presents the median spectra of each serotype group along with their 
respective standard deviations displayed as a shade. In this deviation 
plot, the spectral differences between serotypes 19A, 6C, and 3 are 
shown, indicating that these can be differentiated using FT-IR. With 
the use of machine learning algorithm, which is incorporated in the 
IR Biotyper® software, a classification model could be made. The 
purpose of a classifier is to evaluate spectra without the need of 
manual exploratory data analysis. This means that when a classification 
model is applied in the software (automatically triggered for 
pneumococci), it immediately predicts the outcome of any unknown 
measured spectrum such as the serotype. The created pneumococci 
serotype classifier can then be  used in the future for automated 
serotype classification, during measurement of pneumococci isolates. 
Different serotypes can be  observed in the dendrogram 
(Supplementary Figure S2), where the serotypes are represented in 
different colors on the right vertical axis. The cutoff value (8.216) of 
the dendrogram was an automatically calculated cutoff value (based 
on Simpson’s diversity index × mean coherence), which was selected 
to visualize the different serogroups and observe the clustering of the 
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samples individually. The program has a limitation on the number of 
spectra (up to 500 spectra) to generate the dendrogram. To generate 
Supplementary Figure S2, the “average” function was used, which 
means that the spectra (both technical and biological representatives) 
are presented as “average spectra.” In this model, serotypes 9 N, 10A, 
16F, 7C, and 7F are not distinguishable in the dendrogram, but this 
case does not create a problem in our classification model. For a 
dataset consisting of a total of 843 spectra obtained in the study, the 
use of a dendrogram to visualize clustering may not be recommended 
due to the complexity of visualizing hierarchical relationships. 
Dendrograms are effective for smaller datasets. An alternative to 
overcome this limitation is to use dimension reduction techniques, 
such as LDA. By applying LDA, the informative features of the spectra 
are retained, simplifying the data and revealing patterns that would 
otherwise cannot be seen in the dendrogram.

3.2 Classification and validation of 
pneumococcal serotypes

From the spectra obtained from 76 isolates representing 14 distinct 
serotypes (Table  1), a classifier was developed using all available 
machine learning algorithms in the IR Biotyper® software. Among 
these algorithms, the Artificial Neural Network (ANN) machine 
learning demonstrated the highest possible accuracy. Upon creating 
the classifier, the confusion matrix immediately displayed the model’s 
classification accuracy. However, with the initial classifier 
differentiating all 14 serotypes, the accuracy threshold of >95% was not 
achieved due to misclassifications between serotypes 10A, 16F, 7C, 7F, 
15A, 15B, and 15C, which was also visually evident in the 3D scatter 
plots from the LDA. For example, the confusion matrix showed that 
serotype 10A (actual class, vertical axis) was predicted as serotype 16F 
(predicted class, horizontal axis), indicating that these two serotypes 
could not be distinguished within this dataset. As a result, serotypes 

10A and 16F were merged into a single label, 10A/16F, in the classifier. 
Similarly, serotypes 7C and 7F, as well as 15B and 15C, were combined. 
As a result, to create our final classifier, from the 76 isolates tested, 843 
spectra were generated, classifying 11 distinct serotypes and three 
serogroups (Table 1), achieving an accuracy of 100% after 300 training 
cycles of the ANN (Figure 3A). The classifier was then ready for use, 
but before implementation, an internal validation was conducted to 
assess its robustness. Consequently, the entire dataset was partitioned 
into two groups: Group  1, the training set with “reduced” data, 
encompassed 384 spectra (Figure  3B); Group  2, used to test and 

FIGURE 2

Representation of IR Biotyper results as a 3D scatter plot (LDA with 30 PCs accounting for 97.8% of the variation) from 843 spectra.

TABLE 1 Analysis includes Streptococcus pneumoniae isolates.

Serotypes Number of 
isolates

Number of 
spectra

19A 38 304

6C 11 143

15ABC 6 78

3 4 72

10A/16F 3 54

7CF 2 36

33F 2 26

23B 3 24

18C 1 18

22F 1 18

23A 1 18

35B 1 18

9 N 1 18

14 2 16

Groupings of serotypes into their respective classification groups include 10A with 16F; 7C 
with 7F; and 15A, 15B, and 15C.
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FIGURE 3

Classification and validation of pneumococcal serotypes. (A) Confusion matrix demonstrating the classifier’s creation from 843 spectra using ANN over 
300  cycles, achieving 100% accuracy. The vertical axis displays trained labels (actual class), and the horizontal axis shows predicted classes by the 
classifier model. (B) IR Biotyper result represented as a 3D scatter plot from the classifier creation training dataset, involving 384 spectra from 39 
isolates representing all 18 serotypes (LDA with 30 PCs/97.7% variance). Colors and shapes differentiate serotypes and isolates, respectively. (C) IR 
Biotyper result represented as a 3D scatter plot from the classifier creation validation dataset, involving 459 spectra from 48 isolates representing all 18 
serotypes (LDA with 30 PCs/98.2% variance). Colors and shapes differentiate serotypes and isolates, respectively.
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validate the classifier, included 459 spectra (Figure 3C). Isolates in the 
training dataset displaying variance in their respective serotypes were 
selected. Following the 300-cycle training of the neural network, model 
using these two groups, an accuracy of 98% was achieved (Figure 4).

4 Discussion

IPD is of particular concern in the pediatric population because of its 
associated high morbidity and mortality rates. The serological types of 
S. pneumoniae demonstrate different clinical and epidemiological 
characteristics, and their accurate identification is crucial for the proper 
management of the disease and formulation of vaccine strategies (Croney 
et  al., 2013; Thadchanamoorthy and Dayasiri, 2021). In this study, 
we  observed that serotypes 19A, 6C, and 3 were circulating in our 
hospital. Serotype 19A has been reported as one of the most common 
serotypes isolated from IPDs and is associated with a high mortality rate, 
especially in the pediatric population in various medical centers (Lyu 
et al., 2024; Shoji et al., 2018). In Brazil, the PCV10 vaccine was introduced 
into the childhood National Immunization Program in 2010 and is still 
available for administration to children up to 1 year of age in the primary 
scheme of two doses (2 and 4 months) plus a booster (12 months) to 

complete the scheme (Brasil, Ministério da Saúde, 2023). However, the 
PCV10 vaccine does not cover serotypes 19A, 6C, and 3, which may 
explain the prevalence of isolates belonging to these serotypes recovered 
in our series. Data related to PCV10 vaccination coverage in the state of 
Paraná in 2023 were approximately 92,752% in the primary scheme doses 
and 82, 77% in the complete scheme with a booster dose. In 2023, the 
pneumonia and meningitis surveillance bulletin reported 345 serotype 
19A isolates in Brazil, with 44.6% (n = 154/345) identified in patients aged 
<5 years (SIREVA, 2023). Notably, serotype 3 remains highly prevalent, 
even in countries that have incorporated high-valence PCVs, including 
serotype 3 in their formulation (PCV13, PCV15, and PCV20) (Bertran 
et al., 2024). This prevalence is attributed to the capsule synthesis pathway, 
where modifications in glycosidic bonds lead to thicker capsules, forming 
mucoid colonies. Furthermore, S. pneumoniae serotype 3 produces and 
releases capsules during cell growth, which inhibits antibody opsonization. 
Clinically, this can result in vaccination failures, resistance to phagocytosis, 
and subsequent respiratory infections (Choi et  al., 2016; Paton and 
Trappetti, 2019; Yang et al., 2021). The Quellung reaction, performed at 
the reference laboratory IAL in Brazil, remains the gold standard for 
serological typing of S. pneumoniae strains, despite its limitations such as 
the variety, quantity, and cost of antisera required, typically restricted to 
reference centers with the necessary expertise. Conversely, the FT-IR 

FIGURE 4

Confusion matrix for the internal validation of the classifier, showing 98% accuracy. The vertical axis displays trained labels (class recall  =  sensitivity), and 
the horizontal axis shows predicted classes (class precision  =  specificity), by the classifier model. Green for compatible spectra; Red for spectra 
crossings; Yellow for uncertain.
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serotyping method offers a promising alternative, significantly reducing 
the time to obtain results compared to traditional methods and at a lower 
cost. The IR Biotyper® software facilitates immediate, real-time 
classification of 34 distinct serotypes of S. pneumoniae using the Bruker 
Classifier included with the IR Biotyper® 4.0 software However, it is 
important to note that this classification model was developed by 
manufacturers using isolates grown on Columbia blood agar with a smear 
protocol after UV inactivation (Passaris et al., 2022). In this study, we were 
use IR Biotyper® suspension vials for sample preparations. In the context 
of this project, a custom classifier was developed specifically to predict 
serotypes in real-time in  local circulating serotype analysis of 
pneumococcal samples in Paraná, Brazil. This classification model, with 
ANN machine learning integrated into the IR Biotyper® software, 
achieved an accuracy is 98%, based on the training dataset. Furthermore, 
the IR Biotyper® software allows users to retrain the classifier by 
modifying its training dataset, providing flexibility to update and improve 
its predictive model, thus increasing its robustness. In summary, the IR 
Biotyper® is proving to be  a promising tool for the phenotypic 
classification of S. pneumoniae serotypes. Validation of this technology 
will make it possible to monitor circulating serotypes in cases of IPD with 
a quick turnaround time and low cost, with a positive impact on clinical 
and epidemiological aspects, vaccine production, and patient 
management. In addition, it allows for the expansion of this technology 
to other medical and research centers that are not restricted to reference 
laboratories. One limitation is that, for some of the serotypes we found, 
we only had one isolate. According to the IR Biotyper® software manual, 
it is recommended to have several spectra per isolate from independent 
cultivations. For this reason, we  increased the number of spectra, 
including technical and biological variations, for classifier training and 
internal validation to classify them accurately. In the future, it is necessary 
to include more of these less prevalent isolates to re-train the classifier 
model and increase the sensitivity and specificity of the model for these 
serotypes. However, this did not affect our study because these were not 
the most prevalent serotypes in our setting. For the bacterial suspension 
protocol proposed by the manufacturer, a high biomass is required in this 
suspension, which can be  a challenge for S. pneumoniae. It is also 
important to note that this classification model should be tested with an 
external validation set, which is a recommended step before implementing 
it in routine diagnostic use. Considering that this is a phenotypic test, it is 
important to consider and include precautions that must be taken to 
obtain reproducible results, such as following the manufacturer’s culture 
medium respecting the same composition and the recommended 
incubation temperature.
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