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The subseafloor crustal 
biosphere: Ocean’s hidden 
biogeochemical reactor
Alberto Robador *

Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States

Underlying the thick sediment layer in ocean basins, the flow of seawater through 
the cracked and porous upper igneous crust supports a previously hidden and 
largely unexplored active subsurface microbial biome. Subseafloor crustal systems 
offer an enlarged surface area for microbial habitats and prolonged cell residence 
times, promoting the evolution of novel microbial lineages in the presence of steep 
physical and thermochemical gradients. The substantial metabolic potential and 
dispersal capabilities of microbial communities within these systems underscore 
their crucial role in biogeochemical cycling. However, the intricate interplay between 
fluid chemistry, temperature variations, and microbial activity remains poorly 
understood. These complexities introduce significant challenges in unraveling 
the factors that regulate microbial distribution and function within these dynamic 
ecosystems. Using synthesized data from previous studies, this work describes how 
the ocean crustal biosphere functions as a continuous-flow biogechemical reactor. 
It simultaneously promotes the breakdown of surface-derived organic carbon 
and the creation of new, chemosynthetic material, thereby enhancing element 
recycling and ocean carbon productivity. Insights gained from the qualitative 
analysis of the extent of biogeochemical microbial activity and diversity across the 
temperature and chemical gradients that characterize these habitats, as reviewed 
herein, challenge traditional models of global ocean carbon productivity and 
provide the development of a new conceptual framework for understanding the 
quantitative metabolic potential and broad dispersal of the crustal microbial biome.
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Introduction

The biogeochemical role of microbes deeply buried beneath the seafloor is far more 
important than presumed possible 80 years ago (Zobell and Anderson, 1936; Zobell, 1938). 
Over the past decades, comprehensive studies of subseafloor sedimentary microbes have 
revealed not only cell abundances that match previous estimates in seawater and in surface 
sediments (Kallmeyer et al., 2012) but most importantly, have demonstrated the viability of 
these microbes (Morono et al., 2011; Trembath-Reichert et al., 2017; Imachi et al., 2019) and 
their essential role in operating and maintaining global biogeochemical cycles (Parkes et al., 
2014). We now understand that beneath the sediment layer, fluids moving through the basaltic 
ocean crust hold a similar amount of organic carbon, stored within living prokaryotic biomass 
(~1.6 Gt C, Bar-On et al., 2018). The volume of the ocean crust biosphere represents nearly 
2% of the volume of the oceans (Johnson and Pruis, 2003). Conditions along the active fluid 
flow paths that characterize this habitat indicate that the crustal biosphere is the most favorable 
of deep-subsurface habitats and is likely a very active site of element cycling (Johnson et al., 
2006). Furthermore, this aquifer is hydrothermally active and interactions with the overlaying 
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sediments and ocean seawater facilitate the free exchange of fluid, 
chemicals, biological material, and heat, which likely have a large 
impact on the variability of seawater chemical composition and global 
biogeochemical cycling (Edwards et al., 2011).

The upper crustal reservoir as a 
sub-surface microbial biosphere

Basaltic ocean crust is formed at the axis of spreading mid-ocean 
ridges (MORs, Figure 1). As new ocean floor is formed and moves 
away from the spreading center, it is cooled by the interaction with 
seawater. Aging crustal porewaters remain generally isolated within 
buried upper oceanic basement, subjected to increasing temperatures 
as plates move away from spreading ridges. The accumulation of 
overlaying sediments on the MOR flanks and ocean basins prevents 
continued advective heat loss and results in strong hydrothermal 
gradients, which drive the rapid—on the order of m/day (Neira et al., 
2016)—and largely lateral flow of low temperature (~5–65°C) fluids. 
Local circulation patterns are largely controlled by differences in 
pressure between cool (recharging) bottom seawater and warm 
(discharging) crustal fluids occurring at permeable igneous outcrops 
that penetrate the thick sediment cover (Winslow and Fisher, 2015; 
Winslow et  al., 2016; Lauer et  al., 2018). In contrast to the 

diffusion-dominated overlying sediments, the advective flow of 
hydrothermal fluids within the basaltic crust provides a pathway for 
the fast transport of solutes and particles including microbial cells, 
carbon and nutrients and generates small-scale variability in 
conditions supporting crustal biomes (Edwards et al., 2012a). The 
microbial biosphere, presumably located within the uppermost part 
of the igneous crust (Heberling et al., 2010), has likely been present 
since microbes first inhabited the oceanic crust around 3.5 billion 
years ago (Furnes et al., 2004). Quantitative knowledge of the extent 
of its metabolic potential and contribution to active global 
biogeochemical cycling, however, remains largely speculative (Orcutt 
et al., 2011b), as direct access to uncontaminated fluids in old ocean 
crust remains a major challenge.

Access “windows” to crustal biosphere

The active circulation of hydrothermal fluids between open 
surfaces of the reservoir and overlying seawater provides multiple 
access “windows” to the subseafloor biosphere and, therefore, the 
opportunity to obtain high integrity samples from this challenging 
environment (Figure 1, #1–4). Most studies of subseafloor crustal 
microbiology (Figure 1, #1) have focused on MOR spreading areas, 
i.e., hydrothermal vents (Thorseth et al., 2001; Edwards et al., 2003; 

FIGURE 1

Several key access “windows” provide entry points to the crustal biosphere: ❶ Hydrothermal vents at mid-ocean ridges (MORs), featuring both diffuse 
and focused high-temperature flows (up to ~400°C) and event plumes associated with seafloor eruptions; ❷ Warm water seeps (<150°C) found at 
exposed rocky discharge zones on seamounts; ❸ Borehole cores extracted from sediment and basement rock layers; and ❹ Borehole CORK 
(Circulation Obviation Retrofit Kit) observatories, installed in boreholes, which offer the most precise control over sample placement, depth, and 
quality. These observatories provide unparalleled access to discrete depths in deep basement environments, enabling in situ sampling and 
experimentation with the highest degree of accuracy.
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Lysnes et al., 2004), event plumes associated with seafloor eruptions 
(Meyer et al., 2013), and other settings where volcanism occurs (Fisk 
et  al., 2003; Santelli et  al., 2008). Active subseafloor microbial 
communities in venting fluids from MOR spreading axes are indicative 
of their local geologic setting and resultant geochemistry (Trembath-
Reichert et al., 2019). These communities, however, do not reflect 
conditions in other crustal environments. The high-temperature 
focused fluid flows that characterized these MOR field sites tap the 
deepest and hottest (400°C) sub-crustal zone and can be considered 
end members with respect to the range of conditions that determine 
the nature of subseafloor crustal biomes (Elderfield et al., 1999). Most 
of the upper oceanic crust remains relatively cool, with temperatures 
below 150°C (Mottl and Wheat, 1994). Additionally, MOR flanks 
contribute more substantially to the global output of the upper crustal 
reservoir compared to the hotter axial regions, which play a 
comparatively minor role (Mottl, 2003). Recent research supports this 
disparity, showing that while axial zones release high-temperature 
fluids from hydrothermal activity near magma chambers, the ridge 
flanks exhibit a significantly greater overall heat flux through 
widespread low-temperature hydrothermal circulation (Urabe 
et al., 2015).

Exposed rocky discharge seamounts along MOR flanks in the 
other hand, are characterized by warm (<150°C) diffuse water seeps 
(Wheat et al., 2017) and offer an alternative access to the near surface 
basement biosphere (Figure 1, #2). Important surveys in exiting fluids 
of both heat and chemical fluxes as well as microbial communities 
have shown a high diversity of microorganisms in a continuum of near 
seafloor to deep subsurface biosphere communities (Hara et al., 2005; 
Huber et al., 2006; Lee et al., 2015). However, due in part to their 
generally diffuse flow there is a high mixing rate with overlying 
sediments (Meyers et al., 2014; Zinke et al., 2018) and, consequently, 
these sites have been studied to relatively limited extent.

At present, drilling represents the only access into the upper 
crustal reservoir for older, heavily sedimented crust (Figure 1, #3). 
Reports on the phylogenetic distribution of microbial communities 
within drilled marine basalts have revealed a cosmopolitan 
community with many members but vastly different from that in 
crustal fluids (Mason et  al., 2007, 2009, 2010; Lever et  al., 2013; 
Goordial et al., 2021). The extraction of borehole rock cores has no 
control over the placement, depth and quality of the samples (Lever, 
2013), which leaves open the possibility of seawater or 
sediment contamination.

The best opportunities for co-located and simultaneous 
microbiological in situ sampling and experimentation have been 
provided by Borehole Circulation Obviation Retrofit Kit (CORK) 
observatories installed at Ocean Drilling Program (ODP/IODP) 
boreholes (e.g. Edwards et al., 2014; Fisher et al., 2005; Fisher et al., 
2011) (Figure 1, #4). CORK’s critical attributes include the ability to 
penetrate through sediments into basement and isolate different 
horizons within the borehole, e.g., depth, degree of fracturing and 
differential flow rates. CORK observatories allow permanent access 
to samples through individual CORK installations as well as arrays of 
CORKs. Furthermore, in situ sampling and experimentation is 
possible using both downhole and seafloor fluid sampling systems. 
In downhole applications, flow-through osmotic pumping systems 
(FLOCS) represent an important technological advancement, 
providing a reliable fluid sampling solution. FLOCS are powerful 
steadfast osmotic pumps operating without any moving parts or 

electronics by bringing a reservoir of super-saturated salt solution to 
equilibrium (Orcutt et al., 2010; Edwards et al., 2012b). They are 
highly versatile and provide the pumping power to collect samples in 
manipulative experiments, such as colonization chambers that 
integrate various relevant mineral and control surfaces into the 
in-line flow path of the osmo-samplers (Orcutt et al., 2011a). On the 
other hand, technological advancements on seafloor applications, 
such as the GeoMICROBE sled (Cowen et  al., 2012), represent 
significant progress in the ability to conduct long-term monitoring 
and in-depth analysis of microbial and chemical processes deep 
beneath the ocean floor. This innovative autonomous sensor and 
accompanying fluid sampling systems were designed to extract large 
volumes of fluid from crustal aquifers for surface analysis, 
highlighting a leap forward in crustal research capabilities (Lin et al., 
2020). This article emphasizes investigations into the microbial 
community in the crustal subseafloor using borehole CORK 
observatories because they have yielded the most extensive 
knowledge on the crustal microbial biosphere (Orcutt et al., 2020) 
and stablished the foundation for present studies on the microbial 
community’s metabolic potential and role in global 
biogeochemical cycles.

Emerging crustal microbiology

Microbial communities in crustal fluids exhibit spatial 
heterogeneity (Jungbluth et  al., 2013) and inter-annual variability 
(Jungbluth et  al., 2014) reflecting the dynamic and diverse 
environments that characterize the hydrogeological active upper 
igneous crust. Shared distinct microbial lineages, however, are 
consistent with the inferred hydrogeologic connectivity of these 
systems and the idea of permanent residency in the crustal subseafloor 
(Jungbluth et  al., 2016). When analyzing datasets from different 
crustal habitats, the nature of the crustal environment (distinguished 
by either planktonic communities or mineral-attached communities), 
the prevailing redox conditions, and the geochemical evolution of 
these habitats collectively reveal patterns of global biogeographic 
distribution (Smith et al., 2016; Zhang et al., 2016b; Ramírez et al., 
2019; Orcutt et al., 2021). Time-course studies of the genetic makeup 
and evolutionary trajectories of recovered metagenome-assembled 
genomes (MAGs) in subsurface crustal fluids (Anderson et al., 2022) 
have shown rapid allele frequency shifts linked to gene flow and 
recombination between microbial populations, which are mainly 
associated with stochastic events such as dispersal and mixing of 
populations throughout the aquifer. Despite this dynamism, however, 
temporal and spatial trends reconstructed from MAGs (Tully et al., 
2018) have shown a significant amount of functional redundancy in 
the subseafloor microbial populations, which do not correspond to 
changes in the composition of the community over time. This implies 
global microbial functional stability in the ubiquitous crustal 
subseafloor biosphere.

Driven by geochemical redox gradients created by the continued 
interaction of seawater with the basaltic rock at different spatial and 
temporal scales, microbes in these crustal environments have 
developed physiological and metabolic strategies to exploit the specific 
conditions of their environment. In young, oxic, and low-temperature 
crustal environments –key to most global hydrothermal fluid 
circulation in the ocean—the metabolic reconstruction of recovered 
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MAGs (Tully et al., 2018) has revealed microorganisms representative 
of heterotrophic and autotrophic lifestyles. These versatile microbes, 
however, are also poised to exploit hypoxic and anoxic conditions with 
alternative electron acceptors, i.e., nitrate and sulfate. Furthermore, 
complementary time-series metatranscriptomic data have confirmed 
that microbial communities in this environment are populated by 
motile mixotrophic and organotrophic bacteria active under both oxic 
and anoxic conditions (Seyler et al., 2021). In old, anoxic, and warm 
crustal environments –representative of situations that are common 
in all ocean basins where hydrothermal circulation is isolated from the 
deep ocean– the MAG of a versatile heterotrophic microbial 
population has been recovered capable of oxidizing reduced carbon 
species with nitrate, iron, and sulfur compounds as potential electron 
acceptors (Boyd et al., 2019). Comparative analysis of single-amplified 
genomes (SAGs) representative of other persistent lineages also 
suggests the heterotrophic potential of anaerobic crustal communities 
to respire organic carbon with sulfate and nitrate (Carr et al., 2019) 
and other external terminal electron acceptors such as iron and sulfur 
oxides consistent with the mineralogy of these environments (Booker 
et  al., 2023). Further genomic evidence has also identified MAGs 
representative of chemosynthetic microbial communities residing in 
mineral biofilms (Smith et al., 2019). These communities are sustained 
by water-rock reactions in a process involving the use molecular 
hydrogen to convert inorganic carbon from seawater into organic 
matter, with additional energy supplementation derived from amino 
acids or peptides present in the mineral-attached biofilms (Smith 
et al., 2021). Altogether, this suggests the presence of highly dynamic 
microbial communities capable of rapid adaptation to varying redox 
conditions within the basaltic crustal fluids. Moreover, the 
transcription of genes related to biofilm formation and motility 
suggests an adaptation for spatial relocation in response to 
environmental shifts, crucial for accessing diverse nutrient and 
energy sources.

The subseafloor crustal system as a 
continuous-flow biogeochemical 
reactor

The biogeochemical state of the subseafloor crustal reservoir is 
influenced by several factors. The age of the crust affects the 
geochemical extent of water-rock interaction, while the thermal state 
of the aquifer determines the nature and scale of metabolic reactions 
that can occur. Fluids along the flow paths of the hydrogeologically 
active upper oceanic crust exhibit a geochemical reaction consistent 
with a decline in the redox potential of oxidants and concentrations 
of organic material (Lin et al., 2012). By leveraging compositional 
geochemical data of basement fluids relative to bottom seawater, 
comprehensive thermodynamic modeling of diverse redox reactions 
has shown a geochemical shift toward lower free energy availability 
with increasing residence time and temperature (Robador et  al., 
2015). Despite this energetic constraint, direct heat measurements 
indicative of the change in enthalpy associated with total microbial 
activity have demonstrated the high metabolic potential of microbes 
to respire under oxic and anoxic conditions (Robador et al., 2016). 
This is observed in fluids characteristic of both young, oxygenated, 
and warm, highly reacted end-member areas of the upper oceanic 
crust, respectively. Furthermore, extensive studies have demonstrated 

the widespread potential of microbial activity in crustal fluids, with 
high rates of autotrophy and heterotrophy comparable to those found 
in surface environments (Meyer et al., 2016; Robador et al., 2016; 
Zhang et al., 2016a; Trembath-Reichert et al., 2021). These findings 
suggest that the upper crustal reservoir, functioning as a subsurface 
microbial biosphere, may be  as metabolically active as the 
overlying ocean.

Additionally, the rate at which fluid flows through the crust 
influences the replenishment of reactants and the removal of 
byproducts, thus affecting the concentration of chemical species. 
During the geochemical evolution of fluids, redox species are 
removed, further shaping the chemical composition. This 
geochemical evolution of crustal fluids strongly suggests in situ 
microbial consumption within the basement (Orcutt et al., 2013; 
Robador et al., 2015). However, sediment pore water data from near 
sediment-basement interface (Elderfield et al., 1999) indicate that 
deep sediments must also serve as a sink for basement electron 
acceptors, which diffuse into the overlaying depleted sediments. This 
dynamic exchange supplies essential electron acceptors, such as 
oxygen and sulfate, to deeper sediment layers, which is crucial for 
sustaining microbial metabolisms within the sediment. Deep 
sediment porewater profiles demonstrate that oxygen diffuses upward 
from the underlying basalt and nitrate accumulates in the overlying 
sediments (Ziebis et al., 2012). This observation strongly implicates 
the process of nitrification as both an autotrophic sink of porewater 
oxygen and a source of nitrate, which, in turn, may support 
heterotrophy via denitrification where oxygen is absent and, 
potentially, autotrophic growth via methanogenesis. Furthermore, 
diffusion of sulfate from crustal fluids into overlying sediments, can 
form a transition zone where sulfate meets in situ-produced methane, 
thereby stimulating microbial heterotrophic respiration, i.e., 
anaerobic methane oxidation coupled to sulfate reduction (Engelen 
et al., 2008; Fichtel et al., 2012, 2015). These microbial processes, in 
turn, accelerate the breakdown of organic carbon deposits. 
Concurrently, the sediments supply electron donors, including 
dissolved organic carbon (DOC), to the basement ecosystem. Higher 
sediment pore water DOC likely diffuses into the basement, making 
it a sink for both seawater and sediment DOC. This reciprocal 
exchange results in the alteration of DOC compounds with respect 
to seawater (LaRowe et  al., 2017) and underscores the complex 
interplay between geochemical processes and microbial life in deep 
subsurface crustal environments, driving both the degradation and 
the recycling of organic materials (Shah Walter et al., 2018; Lin et al., 
2019). The ocean crustal biosphere, therefore, functions to 
simultaneously degrade surface-derived organic carbon and to export 
new, chemosynthetic material (McCarthy et  al., 2011; Lin et  al., 
2015). As such, the ocean crustal biosphere acts as a biogeochemical 
reactor, facilitating the transformation and transport of elements 
through various states and locations. By breaking down organic 
carbon from surface sources and synthesizing new materials through 
chemosynthesis, it promotes element recycling and enhances ocean 
carbon productivity. Given that the entire volume of seawater is 
estimated to cycle through the ocean crust approximately every 
100,000 years (Johnson and Pruis, 2003), this continuous-flow 
biogeochemical reactor plays a crucial role in driving the cycling of 
key elements, supporting diverse microbial communities, and 
sustaining essential ecological processes in the ocean. The complex 
interactions and metabolic activities within the ocean crustal 
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biosphere underscore its critical role in maintaining the balance of 
both oceanic and global biogeochemical cycles.

Conclusion

The subseafloor crustal system plays a crucial role in the 
biogeochemical cycling within mid-ocean ridge flanks by 
redistributing mass and energy between deep sediments and basement 
aquifers and back into the ocean. Although quantitative estimates of 
microbial contributions to global biogeochemical cycles are limited by 
difficult access and sparse sampling, the widespread metabolic 
potential of this biosphere suggests that incorporating the crustal 
system into current global biogeochemical models will be crucial for 
accurately representing the full ocean carbon cycle. The ocean crustal 
biosphere plays a dual role, capturing the intricate processes of carbon 
degradation and synthesis occurring beneath the ocean floor. 
Recognizing its impact on global biogeochemical cycles will allow for 
a more comprehensive understanding of carbon mineralization and 
recycling, enhancing the accuracy of predictions related to ocean 
productivity and ecological dynamics. Moreover, studying the ocean 
crustal biosphere has significant implications for astrobiology, as it 
serves as an analog for potential life on other planetary bodies (Jones 
et  al., 2018). Understanding how microbial life thrives in these 
extreme conditions on Earth offers valuable insights into the potential 
for life in similar environments elsewhere in the solar system and 
beyond. This connection highlights the broader importance of 
studying these systems, not only to improve our biogeochemical 
models but also to advance our search for life beyond Earth.
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