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Introduction: Residue incorporation is a crucial aspect of anthropogenic land 
management practices in agricultural fields. However, the effects of various 
returning strategies on the soil microbiota, which play an essential vital role in 
maintaining soil health, remains largely unexplored.

Methods: In a study conducted, different residue management strategies were 
implemented, involving the application of chemical fertilizers and residues that 
had undergone chopping (SD), composting (SC), and pyrolysis (BC) processes, 
with conventional fertilization serving as the control (CK).

Results and discussion: Using metagenomic sequencing, the analysis revealed that 
while all residue returning strategies had minimal effects on the diversity (both α 
and β) of microbiota, they did significantly alter microbial functional genes related to 
carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling, as well as the presence 
of antibiotic resistance genes (ARGs) and pathogens. Specifically, chopped residues 
were found to enhance microbial genes associated with C, N, P, and S cycling, while 
composted residues primarily stimulated C and S cycling. Furthermore, all residue 
treatments resulted in a disruption of relationships among nutrient cycles, with 
varying degrees of impact observed across the different management strategies, 
with the sequence of impact being SD < SC < BC. Moreover, the residue additions 
resulted in the accumulation of ARGs, while only SC caused an increase in certain 
pathogens. Finally, through analyzing the correlation network among indices that 
exhibited active responses to residue additions, potential indicators for functional 
changes in response to residue additions were identified. This study further offered 
recommendations for future cropland management practices aimed at enhancing 
soil health through microbiomes.
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Introduction

Soil health has been broadly defined as the ongoing capacity of a living soil to support and 
sustain plant, animals and humans (Doran, 2002; Tahat et  al., 2020). The presence of 
microbiota is necessary for maintaining soil health. The soil microbiome plays a crucial role 
in enhancing crop yield, safeguarding and nourishing plants, and providing essential 

OPEN ACCESS

EDITED BY

Qin Qin,  
Shanghai Academy of Agricultural Sciences, 
China

REVIEWED BY

Jeanette M. Norton,  
Utah State University, United States
Hanlin Zhang,  
Shanghai Academy of Agricultural Sciences, 
China

*CORRESPONDENCE

Yulan Zhang  
 ylzhang@iae.ac.cn  

Lijun Chen  
 ljchen@iae.ac.cn

RECEIVED 13 September 2024
ACCEPTED 30 December 2024
PUBLISHED 21 January 2025

CITATION

Jiang N, Chen Z, Ren Y, Xie S, Yao Z, Jiang D, 
Zhang Y and Chen L (2025) How do various 
strategies for returning residues change 
microbiota modulation: potential implications 
for soil health.
Front. Microbiol. 15:1495682.
doi: 10.3389/fmicb.2024.1495682

COPYRIGHT

© 2025 Jiang, Chen, Ren, Xie, Yao, Jiang, 
Zhang and Chen. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 21 January 2025
DOI 10.3389/fmicb.2024.1495682

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1495682&domain=pdf&date_stamp=2025-01-21
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1495682/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1495682/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1495682/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1495682/full
mailto:ylzhang@iae.ac.cn
mailto:ljchen@iae.ac.cn
https://doi.org/10.3389/fmicb.2024.1495682
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1495682


Jiang et al. 10.3389/fmicb.2024.1495682

Frontiers in Microbiology 02 frontiersin.org

ecosystem services such as climate regulation, water purification, and 
erosion prevention (Choi et al., 2017; Bahram et al., 2018). Moreover, 
the soil microbiome plays an essential role in driving soil processes, 
including the cycling of carbon (C), nitrogen (N), phosphorus (P), 
sulfur (S), and other nutrients, and further determines fertility 
evolution (Fierer, 2017; Wang et al., 2024). Indigenous microbiomes 
have been shown to be  effective in combating soil-borne plant 
pathogens, thereby facilitating their establishment or persistence 
(Schlatter et  al., 2017; Banerjee and van der Heijden, 2022). An 
imbalance in the composition and function of microbial communities 
results in a decline in soil health (Tahat et al., 2020). Regrettably, an 
ideal soil microbiome for maintaining healthy soils may not exist, just 
like the high variation observed in the gut microbial community of 
healthy humans (Falony et al., 2016; Fierer et al., 2020). Therefore, 
understanding the microbial taxa and their functional characteristics 
is crucial for monitoring changes in soil health in response to shifts in 
soil conditions (Fierer et al., 2020).

The global population is estimated to reach 8.9 billion by the year 
2050, resulting in high demands for agricultural products (Lichtfouse 
et al., 2009). The expansion of intensive agriculture globally to address 
food demands has led to soil degradation and environmental 
challenges in certain agroecosystems which has negatively impacted 
the soil microbiome and overall soil health (Bahram et al., 2018; Zhu 
and Penuelas, 2020). For example, long-term fertilization regimes 
excluding the return of organic materials have led to notable 
alterations in the microbiome composition, hastened nutrient cycling 
processes like C and N biotransformation, and resulted in further C 
and N loss (Hallin et al., 2009; Zhu and Penuelas, 2020; Yang et al., 
2022). Alternatively, the prolonged use of chemical fertilizers has been 
found to diminish the diversity and functionality of P-cycling 
microbial communities, consequently decreasing their capacity to 
supply P for plant uptake (Chen et al., 2017; Chen et al., 2019). Hence, 
the significance of crop residue management as a key component of 
sustainable agriculture is progressively gaining global attention due to 
its dual benefits of enhancing soil health and increasing crop yield 
(Turmel et al., 2015; Tahat et al., 2020). These outcomes are contingent 
upon the diversity of microbial communities and their associated 
functional genes (Guerra et al., 2021).

Undoubtedly, various strategies for returning residues have diverse 
effects on soil microorganisms. Both the original and composted residue 
offer distinct complex substrates for soil microorganisms to mineralize, 
leading to the eventual availability of nutrients (Hartmann and Six, 2023). 
The extended application of crop residues, whether integrated into the soil 
or maintained on the soil surface, significantly enhances the microbial 
processes involved in C sequestration (Govaerts et al., 2009; Turmel et al., 
2015), N provision (Wu et  al., 2021a; Yuan et  al., 2022), and P 
transformation (Chen et al., 2017; Wu et al., 2021b) in comparison to 
conventional fertilization practices. The composted residue undergoes a 
microbe-mediated, thermophilic, and aerobic fermentation process, 
leading to partial humification similar to the natural decomposition of 
recalcitrant components in soils (Sánchez et al., 2017). In this case, the 
composted residues provide more stable organic matter and host a diverse 
microbial community in contrast to the original residues, consequently 

establishing a distinct soil function (Sánchez et al., 2017; Hartmann and 
Six, 2023). The soil microbial community exhibited immediate changes 
following the addition of composted residue, with a notable increase 
observed in species involved in the degradation of organic matter rather 
than in P-turnover bacteria (Kraut-Cohen et al., 2023; Pu et al., 2023). 
Composted residues have been observed to have a reduced impact on 
microbial communities compared to original residues in previous studies 
(Maltais-Landry et al., 2015; Pu et al., 2023). Additionally, they have shown 
the potential to suppress soil-borne diseases (Tilston et al., 2002). Unlike 
the aforementioned residue returning strategies, the utilization of crop 
residue post-pyrolysis (i.e., biochar) results in a rich recalcitrant C content, 
with up to 97% of the biochar C being recalcitrant, and thereby enhancing 
C sequestration and facilitating nutrient retention through ion adsorption 
(Wang et  al., 2016; Hartmann and Six, 2023). As a result, biochar is 
frequently used to improve soil health, but its effects on the soil 
microbiome can be inconsistent or contradictory due to the diverse soil 
types and properties of biochar in different studies (Li et  al., 2020; 
Hartmann and Six, 2023). Some studies have indicated that the application 
of biochar can influence soil properties and subsequently impact soil 
microbial communities (Jindo et al., 2012; Song et al., 2019). Conversely, 
other research has shown a reduction in fungal diversity in response to 
high pH caused by biochar application (Kamble et al., 2014; Li et al., 2020). 
Recent studies on the effects of crop residue returning have predominantly 
concentrated on microbial diversity or specific aspects of microorganisms, 
often neglecting the functional roles of these microbes. Consequently, 
further investigation on the microbiome is required to scrutinize the 
varying effects of crop residue return strategies on soil health.

Here, we present a metagenomics analysis of the soil microbiome 
under conventional mineral fertilizers and three residue returning 
strategies, including chopped maize straw, its derived compost, and 
biochar. Different strategies for returning residues contain different C 
sources, nutrients or microbial species, thus we hypothesized that 
returning residues can enhance soil health by increasing the microbial 
potential to: (1) recycle nutrients and energy with all residue returns; 
(2) decompose organic matter in both original and composted residue 
treatments; (3) suppress pathogens following the returning of 
composted residues; and (4) promote the mineralization of soil 
organic matter with the addition of biochar. Furthermore, as a result 
of the extensive shotgun sequencing, a substantial volume of novel 
data is produced, revealing the potential microbial genes and pathways 
present in soils that could play a role in soil health.

Materials and methods

Site description and soil sampling

The field trial was conducted at the National Field Observation 
and Research Station of Shenyang Agro-ecosystems in the Liaohe 
Plain of northeast China (N41°31′, E123°24′). The region experiences 
a temperate, humid, continental monsoon climate characterized by an 
average temperature ranging from 7.0 to 8.1°C, a frost-free period 
lasting between 153 and 180 days, and annual precipitation levels 
between 575 and 684 mm. The soil is categorized as meadow brown 
soil according to Soil Taxonomy, with a soil pH of 5.72, 0.45 g of P kg−1 
dry soil, and 1.10 g N kg−1 dry soil.

Prior to 2010, the region was subjected to conventional tillage 
practices with uninterrupted maize cultivation for over three decades, 

Abbreviations: CK, Without addition of organic matter; BC, The addition of biochar 

converted from maize straw; SC, The addition of composted maize straw; SD, 

The addition of chopped maize straw; ARGs, Antibiotic resistance genes.
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during which the aboveground portions of maize straws were 
eliminated post-harvest. From 2010 to 2014, maize cultivation 
persisted without the application of fertilizers to achieve optimal 
uniformity in soil fertility. Four treatments, each with four replicates 
(4.95 m × 30 m), were organized following a complete randomized 
block design in April 2015. The treatments included: (1) conventional 
tillage (CK), involving the removal of maize straws; (2) the application 
of biochar derived from maize straws on-site (BC); (3) the application 
of composted maize straws (SC); (4) the direct addition of chopped 
maize straws on-site (SD). The quantity of maize straws remained 
consistent across all treatments, approximately totaling 6,000 kg ha−1 
y−1. The efficiency of charring and decomposition was estimated at 
around 30% based on dry weight measurements, with the application 
rate of biochar or compost being approximately 2000 kg ha−1 y−1. The 
properties of additives were previously documented (Supplementary  
Table S1) (Pu et al., 2023). All treatments involved the application of 
NPK fertilizers (urea: 180 kg N ha−1; P2O5: 75 kg ha−1; K2O: 
75 kg ha−1), following by tilling the fields to incorporate the additives 
into the soil (Pu et al., 2023).

Soil samples (0–10 cm depth) were obtained post-harvest in 
October using a 5 cm diameter auger. For each plot, five soil cores 
were randomly collected and combined into a composite sample, 
which was promptly homogenized using a 2-mm sieve. A fraction of 
each soil sample was stored at −80°C for DNA extraction, and another 
fraction was subjected to air drying for further analysis.

DNA extraction and metagenomic 
sequencing

Sixteen soil samples were subjected to metagenomic sequencing. 
For each sample, genomic DNA was extracted from 1.0 g of fresh soil 
using the FastDNA® Spin Kit for soil (Qbiogene, CA, United States) 
following the manufacturer’s protocol. The concentration and purity 
of DNA were determined using the TBS-380 fluorometer and 
Nanodrop2000 spectrophotometers, respectively. Paired-end 
sequencing was conducted using an Illumina Hiseq Xten platform 
(Illumina Inc., San Diego, CA, USA) at Majorbio Bio-Pharm 
Technology Co., Ltd. (Shanghai, China) with the HiSeq X Reagent Kit 
following the guidelines provided by the manufacturer.1

Metagenomic assemble and functional 
annotation

Adaptor sequences were removed from both the 3′- and 5′-ends 
of Illumina reads using SeqPrep.2 Sequences with a length shorter than 
50 bp, a quality value below 20, or containing N bases were removed 
using Sickle.3 The clean sequences were then assembled using 
MEGAHIT (Li et al., 2015b), and contigs that were more than 300 bp 
were retained for further analyses. Open reading frames (ORFs) were 
predicted using MetaGene (Noguchi et al., 2006), and were further 
clustered at 95% identity level with 90% coverage using CD-HIT (Fu 

1 www.illumina.com

2 https://github.com/jstjohn/SeqPrep

3 https://github.com/najoshi/sickle

et al., 2012). The longest ORF in each cluster was extracted to compose 
the non-redundant (nr) gene catalog, and the number of reads 
mapping to genes was calculated in each sample using SOAP2 
(Li et  al., 2009). All nr genes were searched against the National 
Center for Biotechnology Information (NCBI) database to reveal the 
taxonomic information using BLASTP (Version 2.2.28+) with an 
e-value cutoff of 1e−5(Altschul et al., 1997). Kyoto Encyclopedia of 
Genes and Genomes (KEGG) annotations were also performed using 
BLASTP against the KEGG database4 (Xie et al., 2011) with an e-value 
cutoff of 1e−5. All analyses were performed on marker abundances 
normalized to reads per kilobase per million reads (RPKM).

Taxonomic annotation

We use clean sequences for taxonomic annotation. First, the each 
of the clean sequences was aligned against UniRef100 using 
DIAMOND (Buchfink et al., 2015) with parameter e-value 1e−5, and 
the top 10% of alignment results are selected for downstream analysis. 
Second, from species to phylum, a taxon is selected for each sequence 
if more than 50% alignment results support it. Finally, the abundance 
of a taxon is the sum of all sequences supporting it and is normalized 
by the total sequences for each sample.

The potential pathogens for both plants and animals are selected 
from the taxonomic annotation if a taxon is included in the pathogen-
host interactions database including 264 pathogens (Winnenburg 
et al., 2006).

Annotation of CNPS functional genes

The NPS functional genes were downloaded from NCycDB, PCycDB 
and SCycDB, respectively (Tu et al., 2019; Yu et al., 2021; Zeng et al., 2022). 
Then the sequences of NPS functional genes were merged using CD-HIT 
(Fu et al., 2012) with a 90% sequence identity threshold to create the 
non-redundant database. Clean sequences are aligned against the 
non-redundant database using DIAMOND with parameter e-value 1e−5. 
The carbohydrate active enzyme (CAZyme) was annotated using 
DIAMOD against CAZyDB provided by dbCAN2 with default parameters 
(Huang et al., 2017). The abundance values of the CAZymes were assigned 
by counting the clean sequences from each sample which hit them. The 
KEGG Orthology (KO) information of carbon cycling functional genes is 
further extracted based on the KEGG pathways related to carbon 
metabolism. Clean sequences are aligned against the UniRef100 using 
DIAMOND and the annotation of the C functional genes are obtained if 
the hits of UniRef100 have KO number related the carbon metabolism 
pathways of KEGG.

Antibiotic resistance genes analysis

The annotation and abundance of antibiotic resistance genes are 
made using the ARGs-OAP pipeline v3.2.4 (Yin et  al., 2022). 
Specifically, the clean sequences were initially searched for ARGs 

4 http://www.genome.jp/keeg/
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against SARG database version 3.0 by BLAST + (version 2.12.0), 
employing the following parameters: similarity ≥ 80%, e-value ≤ 1e − 7 
and query coverage ≥ 75%. Subsequently, the abundance of ARGs was 
determined by the ratio of ARG copies to 16S rRNA copies, utilizing 
the ARGs-OAP method (Li et al., 2015a).

Statistical analysis of sequencing data

The Kruskal Wallis test (p < 0.05) was employed to examine 
differences in the abundance of phyla, genera, KO, and enzymes 
utilizing the agricolae package in R.5 The Bray–Curtis similarity of 
both taxonomic composition and KO composition was assessed 
through Principal Component Analysis (PCA) using the vegan 
package in R. Spearman correlations were calculated using the Hmisc 
package in R. The correlation networks were further established when 
the |Spearman correlation coefficient (r)| > 0.6 and a p value <0.05. 
The networks were modularized and visualized using the Cytoscape 
(version 3.10.2) (Bader and Hogue, 2003; Shannon et  al., 2003; 
Assenov et al., 2008).

Results

Taxonomic distribution of the 
metagenomes

Shotgun metagenomic sequencing yielded a total of 238.24 Gb 
clean data, averaging 14.89 Gb per sample. The assembly of contigs for 
each sample varied between 598,234 and 882,061, resulting in the 
prediction of a total of 14.35 million ORFs. The details of sequencing 
are outlined in Supplementary Table S2.

PERMANOVA analysis indicated that there were no significant 
differences in microbial profiles across the various treatments 
(R2 = 0.19, p = 0.50). The predominant domain was Bacteria (95.2–
95.9%), followed by Archaea (0.57–0.92%), Eukaryota (0.37–0.84%) 
and Viruses (0.02–0.12%). A significant decrease in the relative 
abundance of Archaea was observed in treatments with residue inputs 
compared to CK (One-way ANOVA with Duncan test, p < 0.05).

Among the 163 phyla identified, Proteobacteria (33.4% ± 1.2%), 
Actinobacteria (17.3% ± 2.64%), Acidobacteria (15.5% ± 1.37%), and 
Chloroflexi (6.88% ± 0.69%) were found to be dominant (the relative 
abundance >5%), followed by Gemmatimonadetes (4.71% ± 0.42%), 
Bacteroidetes (3.40% ± 0.57%), Planctomycetes (3.26% ± 0.32%), 
Verrucomicrobia (2.81% ± 0.29%), Candidatus Rokubacteria 
(1.93% ± 0.57%), Cyanobacteria (0.97% ± 0.14%), Firmicutes 
(0.86% ± 0.04%), Nitrospirae (0.82% ± 0.10%), and Thaumarchaeota 
(0.50% ± 0.10%).

The results of the one-way ANOVA with Duncan’s test suggested 
a significant decrease in the relative abundance of two archaeal phyla 
Crenarchaeota and Thaumarchaeota, one eukaryotic phylum 
Bacillariophyta, and two bacterial phyla Cyanobacteria and 
Candidatus_Peregrinibacteria significantly decreased under all 
residue treatments when compared to the CK treatment. Conversely, 

5 version 3.6.2, http://www.r-project.org

the relative abundance of the eukaryotic phylum Endomyxa 
exhibited an opposite trend (Figure  1). In addition, there was a 
notable increase in the relative abundance of two bacterial phyla 
Acidobacteria and Candidatus_Cerribacteria in SD and SC, 
respectively. Conversely, the relative abundance of the bacterial 
phylum Armatimonadetes was significantly decreased in the SC 
(Figure 1).

Functional distribution of the 
metagenomes

Pairwise comparisons showed that the significant differences in 
functional profiles were primarily driven by SD (Figure 2A), though 
there was a significant association between functional profiles and 
microbial profiles (Figure 2B).

Functional genes involved in the cycling of 
C, N, P, S

Likewise, significant differences in genetic profiles of N, P, and S 
cycling were also predominantly influenced by SD, whereas genetic 
profiles of C cycling exhibited similarity across all treatments 
(Figure 3).

A total of 97 subfamilies of C cycling exhibited significant 
differences between treatments (Figure 4A), with over 72% of them 
being classified under Glycoside Hydrolases (GHs). Within these 
GHs, 42.9% were found to contain Carbohydrate-Binding Modules 
(CBMs), while 17.1% were found to contain Carbohydrate 
Esterases (CEs).

A total of 16 genes of N cycling exhibited significant differences 
among the treatments (Figure 4B). More than 56% of these processes 
pertain to organic degradation and synthesis, encompassing genes 
such as ureC, ureB, nmo, asnB, glnA, etc., followed by nitrification 
(amoC, amoB, and hao), denitrification (narJ), and assimilatory 
nitrate reduction (nasA).

A total of 29 gene families of P cycling exhibited significant 
differences between the treatments (Figure 4C). Approximately 39.3% 
of these genes involving in crucial microbial processes related to the 
regulation, transportation, and absorption of P sources from the 
environment, including organic phosphoester hydrolysis, P 
transporters, and two-component systems. The other processes were 
accountable for cellular P metabolic pathways involved in the synthesis 
of organic P compounds, including the pentose phosphate pathway, 
phosphonate and phosphinate metabolism, phosphotransferase 
system, purine metabolism, pyrimidine metabolism, and 
pyruvate metabolism.

Significant differences were detected in 38 genes related to S 
cycling among the treatments (Figure 4D). Among these genes, there 
were 12 organic sulfur transformation genes and eight linkages 
between inorganic and organic S transformation genes, followed by S 
oxidases system, S oxidation, and S reduction, etc.

Additionally, the application of all residue additions led to 
significant alterations in the relationships between C, N, P, and S 
cycling, characterized by a decrease in clustering coefficient, 
average number of neighbors, and network density (Supplementary  
Table S3). The CK, BC, SC, and SD treatments contained four, one, 
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two, and two modules, respectively, representing 94, 26, 48, and 
41% of nodes in each module (Figure 5). In contrast to CK, which 
harbored significant correlations between C, N, P, and S cycling, the 
predominant distribution included C, N, and S cycling in SD, C and 
S cycling in SC, and C, P, and S cycling in BC (Figure 5).

Antibiotic resistance genes

A total of 26 antibiotic resistance genes were identified among the 
samples. When comparing BC to CK, significant increases in 
chloramphenicol, multidrug, pleuromutilin_tiamulin, and 
sulfonamide were observed. Conversely, significant increases in 
multidrug and puromycin were noted in SC (Figure 6).

Potential pathogens

A total of 58 pathogens were identified across the samples. When 
compared to CK, significant increases in Colletotrichum, Cronobacter, 
and Yersinia were detected in SC, significant decreases in Leptospira 
and Phytophthora were observed in BC, and a significant decrease in 
Listeria was found in SD (Figure 7).

Correlations between microbiomes with 
changes in response to residue additions

Significant and strong correlations were observed among the 
indices that were altered in response to residue additions 

FIGURE 1

The specific phyla that exhibited significant differences across different treatments. Different lowercase letters indicate the significant differences 
between treatments as identified by one-way ANOVA with Duncan’s test (p < 0.05). CK, without addition of organic matter; BC, the addition of biochar 
converted from maize straw; SC, the addition of composted maize straw; SD: the addition of chopped maize straw. The letters “A,” “B,” and “E” in 
brackets indicate the archaeal, bacterial and eukaryotic domains, respectively.
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(Supplementary Figure S1). The correlation network comprised 195 
nodes and 2,461 edges. Within this network, two genes associated 
with P cycling (nrdB and ppd), one gene associated with N cycling 
(asnB), one gene associated with S cycling (metC), and one gene 
associated with C cycling (GH102) were identified as playing 
important roles (Figure 8). Three modules were identified, consisting 
of 51 nodes and 1,090 edges (Figure 8B, group1), 9 nodes and 26 edges 
(Figure 8C, group2), and 11 nodes and 30 edges (Figure 8D, group3). 
In addition to C, N, P, and S cycling genes, Group1 included the 
bacterial phylum Acidobacteria besides C, N, P, and S cycling, Group2 
included archaeal phylum Thaumarchaeota, pathogen Colletotrichum, 
and antibiotics resistance gene chloramphenicol (Figure 8).

Discussion

The impact of residue additions on 
functional profiles outweighed that on 
microbial communities

The study investigated the effects of residue application over a 
five-year period on the diversity of microbial communities in soil. 
While overall α and β diversity remained largely unaffected, certain 
populations, including Archaea, Cyanobacteria, Peregrinibacteria, and 
Bacillariophyta, experienced a significant reduction in abundance 
when exposed to added residue. These microorganisms are vital for 
the carbon cycle in soil, especially in challenging or oligotrophic 
environments. For instance, Cyanobacteria are crucial for oxygenic 
photosynthesis and carbon fixation (Knoll, 2008; Sánchez-Baracaldo 
et al., 2022). Likewise, archaeal, peregrinibacterial, and bacillariophytal 
populations also possess highly efficient pathways for carbon fixation 
(Wrighton et al., 2016; Shnyukova and Zolotariova, 2017; Baker et al., 

2020). Conversely, the relative abundance of Endomyxa increased 
with residue addition, aligning with prior research indicating its 
responsiveness to organic inputs (Zhao et al., 2019; Fiore-Donno et al., 
2020). In summary, microorganisms thriving in low-nutrient 
environments exhibited a significant decline in abundance following 
residue additions, while the opposite trend was observed for other 
microbial populations.

In contrast to the microbial communities, the functional profiles 
were significantly driven by the incorporation of chopped residues. 
Previous studies have demonstrated that chopped residues have a 
greater impact on soil functions in comparison to composted or 
pyrolyzed residues, affecting soil respiration (Huang et al., 2018), root 
exudates (Sun et al., 2020), and P cycling (Chen et al., 2017; Pu et al., 
2023). The study confirmed the enhancement of C, N, P, and S cycling 
with chopped residue addition. Furthermore, composted residues 
were found to particularly promote C and S cycling. These 
observations can be attributed to the high carbon concentration in 
crop residues, where approximately 45% of the dry-weight biomass 
consists of carbon in forms such as lignin, cellulose, and hemicellulose 
that require decomposition by microorganisms (Blanco-Canqui and 
Lal, 2009; Ntonta et al., 2022). Consequently, genes associated with 
Glycoside Hydrolases, which aid in breaking down of plant cells and 
releasing fermentation products and CO2 (Vuong and Wilson, 2010), 
exhibited increased activity in decomposing organic matter. Genes 
related to the degradation of organonitrogen, organosulfur, and 
organophosphorus compounds were also upregulated. For example, 
the relative abundance of P cycling genes responsible for phosphate 
ester hydrolysis (such as phoA, opd, ugpQ, etc.) and energy capture 
and use (such as ushA, pps, pcdK, etc) increased under chopped or 
composted residue inputs. Alternatively, N and S cycling associated 
with amino acid metabolism (including ureC, ureB, gln, nmo, etc.) and 
organosulfur transformation (including comC/D/E, dmsB/A, mddA, 

FIGURE 2

The functional profiles (A) across the treatments and their correlations with microbial profiles as determined by Bray-Curtis distance matrices (B), The 
result of pairwise comparison CK, without addition of organic matter; BC, the addition of biochar converted from maize straw; SC, the addition of 
composted maize straw; SD: the addition of chopped maize straw. The pairwise ANOSIM R statistics calculated between treatments 
(Permutations = 999) are as follows: All: R2 = 0.678 p = 0.079, CK-BC: R2 = 0.025 p = 0.918, CK-SC: R2 = 0.054 p = 0.523, CK-SD: R2 = 0.518 p = 0.057, 
BC-SC: R2 = 0.051 p = 0.848, BC-SD: R2 = 0.599 p = 0.030, SC-SD: R2 = 0.421 p = 0.087. R2 indicates dissimilarities among the treatments.
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dddP, etc.) increased following the addition of chopped or composted 
residues. Both genetic and functional diversity serve as indicators of 
soil health (Arias et  al., 2005). Our results suggested that soil 
functional diversity exhibited greater sensitivity to different strategies 
of returning straws compared to genetic diversity.

Decoupling of organic carbon and nutrient 
cycling with the addition of residues

Moreover, our findings indicated that the combination of chemical 
fertilizer and various residue treatments reduced the connectivity and 

density of modules between nutrient cycles in comparison to 
conventional fertilizers. Specifically, C, N, P, and S cycling exhibited 
significant correlations under conventional fertilization within four 
modules. The addition of chopped residues led to the formation of two 
modules related to the cycling of C, N and S. Composted residues 
resulted in two modules associated with C and S cycling, while 
pyrolyzed residues maintained a single module focusing on C, P, and S 
cycling. The accumulation of C during the decomposition of soil organic 
matter and crop residues is closely coupled with the enrichment of other 
nutrients like N, P, and K due to fertilization (Crowther et al., 2019; Mo 
et al., 2024). Studies have suggested that the soil organic C stock may 
become decoupled from the phosphorus stock with increased organic 

FIGURE 3

The functional profiles of carbon (A), nitrogen (B), phosphorus (C), and sulfur (D) cycling across the treatments based on Bray-Curtis distance matrices. 
CK, without addition of organic matter; BC, the addition of biochar converted from maize straw; SC, the addition of composted maize straw; SD: the 
addition of chopped maize straw. For each group, an ellipse was constructed with a confidence level of 0.95. The pairwise ANOSIM R statistics 
calculated between treatments (Permutations = 999) are shown as follows: (A) All: R2 = 0.318 p = 0.172, CK-BC: R2 = 0.043 p = 0.824, CK-SC: 
R2 = 0.053 p = 0.657, CK-SD: R2 = 0.464 p = 0.088, BC-SC: R2 = 0.025 p = 0.942, BC-SD: R2 = 0.399 p = 0.089, SC-SD: R2 = 0.286 p = 0.148; (B) All: 
R2 = 0.317 p = 0.180, CK-BC: R2 = 0.026 p = 0.827, CK-SC: R2 = 0.028 p = 0.766, CK-SD: R2 = 0.425 p = 0.092, BC-SC: R2 = 0.013 p = 1.000, BC-SD: 
R2 = 0.448 p = 0.081, SC-SD: R2 = 0.345 p = 0.109; (C) All: R2 = 0.441 p = 0.044, CK-BC: R2 = 0.025 p = 0.918, CK-SC: R2 = 0.054 p = 0.523, CK-SD: 
R2 = 0.518 p = 0.057, BC-SC: R2 = 0.051 p = 0.848, BC-SD: R2 = 0.599 p = 0.030, SC-SD: R2 = 0.421 p = 0.087; (D) All: R2 = 0.146 p = 0.673, CK-BC: 
R2 = 0.020 p = 1.000, CK-SC: R2 = 0.054 p = 0.768, CK-SD: R2 = 0.179 p = 0.291, BC-SC: R2 = 0.040 p = 0.944, BC-SD: R2 = 0.156 p = 0.372, SC-SD: 
R2 = 0.147 p = 0.376.
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FIGURE 4

Gene families exhibiting notable differences in reads between treatments for carbon (A), nitrogen (B), phosphorus (C), and sulfur (D) cycles. CK: 
without addition of organic matter; BC: the addition of biochar converted from maize straw; SC: the addition of composted maize straw; SD: the 

(Continued)
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matter input or climate changes (Delgado-Baquerizo et al., 2013; Feng 
et  al., 2019; Li et  al., 2022). The coupling or decoupling of organic 
carbon and other nutrients has been attributed to microbial functions, 
although empirical evidence is limited.

The study outcomes offered insights into addressing the intricate 
coupling between nutrient cycles. Moreover, the research suggested 
that implementing different residue return strategies may cause 
diverse decoupling scenarios. On the one hand, residue introduction 

addition of chopped maize straw. The lowercases indicate the significant difference between treatments one-way ANOVA with Duncan’s test 
(p < 0.05). GH, Glycoside hydrolases; CBM, Carbohydrate-binding modules; CE, Carbohydrate esterases; AA, Auxiliary activities; PL, Polysaccharide 
lyases; GT, Glycosyl transferases.

FIGURE 4 (Continued)

FIGURE 5

The correlation network of caron (gray), nitrogen (red), phosphorus (blue), and sulfur (green) cycling in CK (A), SD (B), SC (C), and BC (D). The edges 
indicate significant relationships between two nodes. The sizes of nodes and names are ordered according to the clustering coefficient. The tables 
display the gene counts related to nutrient cycling within each module. CK, without addition of organic matter; BC, the addition of biochar converted 
from maize straw; SC, the addition of composted maize straw; SD, the addition of chopped maize straw.
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disrupted the inherent linkages of microbial-mediated C, N, and P 
cycling, potentially increasing leakages and losses from the system 
(Recous et  al., 2019). The decoupled of soil nutrient cycles can 

negatively affect the provision of essential ecosystem services, 
including primary production and organic matter decomposition, 
both of which are defined as primary metrics of soil health 

FIGURE 6

Antibiotic resistance genes (defined as the ratio of antibiotic resistance gene copies to 16S rRNA copies) that exhibit significant differences among the 
treatments. CK, without addition of organic matter; BC, the addition of biochar converted from maize straw; SC, the addition of composted maize 
straw; SD, the addition of chopped maize straw. Sum: the total of antibiotic resistance genes. The lowercases indicate the significant difference 
between treatments one-way ANOVA with Duncan’s test (p < 0.05).

FIGURE 7

Pathogens (defined as the ratio of pathogen copies to 16S rRNA copies) that exhibit significant differences among the treatments. CK: without addition 
of organic matter; BC, the addition of biochar converted from maize straw; SC, the addition of composted maize straw; SD, the addition of chopped 
maize straw. The lowercases indicate the significant difference between treatments one-way ANOVA with Duncan’s test (p < 0.05).

FIGURE 8

The correlation network among the indices that were changed in response to residue additions. The edges indicate significant relationships between 
two nodes. The sizes of nodes and names are ordered according to clustering coefficient. (A) Correlation network among all the changed indices. 
Modules labeled Group1-Group3 in (A) are depicted in (B,D), respectively.
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(Delgado-Baquerizo et al., 2013; Pérez-Guzmán et al., 2021). This 
suggested the demand for a more innovative approach to achieve 
balanced fertilization (Jiang et al., 2021; Mo et al., 2024). On the other 
hand, S cycling maintained closely linked to C cycling across all 
residue treatments, highlighting its essential roles in photosynthetic 
processes, nitrogen utilization or protein biosynthesis (Chaudhary 
et al., 2023). This association presented promising opportunities for 
leveraging S cycling in future carbon sequestration approaches.

All residue returning strategies led to ARGs 
enrichment while composted residues 
caused increased pathogens

The utilization of crop residues appeared to have a beneficial effect 
on reducing the presence of antibiotic residues and pathogens in soil, 
thereby enhancing soil health to some extent compared to the use of 
manure (Urra et al., 2019; Lu et al., 2021). However, our findings 
indicated that the application of residue amendments, particularly 
pyrolyzed residues, resulted in an enrichment of antibiotic resistance 
genes such as chloramphenicol, multidrug, pleuromutilin_tiamulin, 
sulfonamide, and puromycin. On one hand, the addition of residues 
provided nutrients for microbial growth, leading to an increase in the 
abundance of specific ARGs (Zhuang et al., 2021). On the other hand, 
residue additives may lead to the accumulation of ARGs in soil while 
decreasing their presence in plants (Shao et al., 2022), necessitating 
further investigation.

Furthermore, it is noteworthy that only composted residues led to 
an increase in the presence of pathogens such as Colletotrichum, 

Cronobacter, and Yersinia. Species from these genera have been 
identified as plant pathogens as well as potential human pathogens 
(Cornelis, 1998; Hyde et al., 2009; Forsythe, 2018), underscoring the 
importance of addressing this issue in future research.

Last but not least, it is important to noted that this study relied on 
metagenomic data obtained from a single sampling event. Future 
research should also focus on establishing the relationships between 
these findings and the actual phenomena through long-term 
continuous monitoring.

Conclusion

Strong and significant correlations were identified among the 
significantly changed indices, leading to the formation of three 
distinct modules within the network. It is anticipated that 
modularity will rise with the specificity of links (Olesen et al., 
2007). Acidobacteria exhibited a strong association with 50 genes 
related to C, N, P, and S cycling. Similarly, Thaumarchaeota, 
chloramphenicol, and the pathogen Colletotrichum displayed 
high connectivity with six genes involved in the cycling of C, N, 
P, and S. Therefore, these indices could serve as potential 
indicators of functional changes, in addition to key nodes such as 
nrdB and ppd, asnB, metC, and GH102 in response to 
residue inputs.

In general, as illustrated in Figure 9, there was a notable increase in 
microbial capacity for C, N, P, and S cycling in response to chopped or 
composted residues, with a moderate level of decoupling between these 
processes. Both the newly added residues and the existing soil organic 

FIGURE 9

A comprehensive overview of the various indices studied across the treatments. CK, without addition of organic matter; BC, the addition of biochar 
converted from maize straw; SC, the addition of composted maize straw; SD, the addition of chopped maize straw. The lowercases indicate the 
significant difference between treatments one-way ANOVA with Duncan’s test (p < 0.05). the symbol “+” in the subsequent table signifies significant 
changes in each treatment.
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matter would undergo mineralization processes, which may surpass the 
necessary levels, potentially resulting in nutrient loss and depletion. 
Pyrolyzed residues exhibited minimal effect on microbial nutrient cycling, 
but displayed a high level of decoupling between these cycles. When 
considering ARGs and pathogens collectively, future research on soil 
health should prioritize the investigation of (1) variations in nutrient 
availability due to a heightened potential for mineralization, P cycling for 
optimal fertilization, and the presence of ARGs in soils under chopped 
residues; (2) N and P cycling for balanced fertilization, the presence of 
ARGs in soils, and pathogens in the context of composted residues; (3) N 
cycling for balanced fertilization and the presence of ARGs in soils in 
relation to pyrolyzed residues.
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