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Objective: By extracting early chest CT radiomic features of COVID-19 patients, 
we explored their correlation with laboratory indicators and oxygenation index 
(PaO2/FiO2), thereby developed an Artificial Intelligence (AI) model based 
on radiomic features to predict the deterioration of oxygenation function in 
COVID-19 patients.

Methods: This retrospective study included 384 patients with COVID-19, whose 
baseline information, laboratory indicators, oxygenation-related parameters, 
and non-enhanced chest CT images were collected. Utilizing the PaO2/FiO2 
stratification proposed by the Berlin criteria, patients were divided into 4 groups, 
and differences in laboratory indicators among these groups were compared. 
Radiomic features were extracted, and their correlations with laboratory 
indicators and the PaO2/FiO2 were analyzed, respectively. Finally, an AI model 
was developed using the PaO2/FiO2 threshold of less than 200  mmHg as the 
label, and the model’s performance was assessed using the area under the 
receiver operating characteristic curve (AUC), sensitivity and specificity. Group 
datas comparison was analyzed using SPSS software, and radiomic features 
were extracted using Python-based Pyradiomics.

Results: There were no statistically significant differences in baseline 
characteristics among the groups. Radiomic features showed differences in 
all 4 groups, while the differences in laboratory indicators were inconsistent, 
with some PaO2/FiO2 groups showed differences and others not. Regardless of 
whether laboratory indicators demonstrated differences across different PaO2/
FiO2 groups, they could all be  captured by radiomic features. Consequently, 
we  chose radiomic features as variables to establish an AI model based on 
chest CT radiomic features. On the training set, the model achieved an AUC 
of 0.8137 (95% CI [0.7631–0.8612]), accuracy of 0.7249, sensitivity of 0.6626 
and specificity of 0.8208. On the validation set, the model achieved an AUC of  
0.8273 (95% CI [0.7475–0.9005]), accuracy of 0.7739, sensitivity of 0.7429 and 
specificity of 0.8222.

Conclusion: This study found that the early chest CT radiomic features of 
COVID-19 patients are strongly associated not only with early laboratory 
indicators but also with the lowest PaO2/FiO2. Consequently, we developed an 
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AI model based on CT radiomic features to predict deterioration in oxygenation 
function, which can provide a reliable basis for further clinical management and 
treatment.
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1 Introduction

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and has become 
a global pandemic threatening worldwide health (Sudre et al., 2021). 
SARS-CoV-2 infection can affect multiple organs and presents a 
variety of clinical symptoms (Wang et al., 2023). In the pathogenesis 
of COVID-19, a key factor is the dysregulation of immune 
inflammation (Xu et  al., 2020). SARS-CoV-2 primarily enters 
respiratory epithelial cells by binding to angiotensin-converting 
enzyme 2 (ACE-2), triggering an immune inflammatory responses 
that results in varying degrees of damage to the alveolar epithelium, 
formation of hyaline membranes, and lung consolidation (Camporota 
et al., 2022; Caso et al., 2020; Qin et al., 2023). Therefore, the clinical 
symptoms of patients infected with COVID-19 exhibit significant 
heterogeneity; some patients are asymptomatic or exhibit only mild 
upper respiratory symptoms, while others may develop respiratory 
distress, potentially progressing to Acute Respiratory Distress 
Syndrome (ARDS) (Poston et al., 2020). The lungs are the organs most 
affected early and severely by COVID-19, and the rapid deterioration 
in respiratory function due to lung damage is a major cause of the high 
mortality rate in COVID-19 patients (Torres-Castro et  al., 2021; 
Huang et al., 2020).

Clinically, the PaO2/FiO2 is used to represent oxygenation 
function and serves as a reliable predictor of acute lung injury 
(Matsubara et  al., 2024). Since oxygenation dysfunction is an 
independent risk factor for progression to severe/critical COVID-19, 
deterioration in the PaO2/FiO2 provides an important basis for early 
clinical identification of worsening conditions in COVID-19 patients 
(Zhang et al., 2021). However, some critically ill patients may have 
mild clinical manifestations early in the disease, which do not 
correspond to the degree of oxygenation dysfunction due to severe 
lung damage (Tobin et al., 2020). Several laboratory indicators, such 
as lymphocytes, neutrophils, and pro-inflammatory cytokines, have 
been studied for predicting disease worsening and severe outcomes in 
COVID-19 patients (Del Valle et al., 2020; Zhao et al., 2020). Although 
these indicators reflect the immune-inflammatory status after SARS-
CoV-2 infection, they are not directly indicative of oxygenation 
function and the extent of lung damage. Research by Fatima N et al. 
suggested a good correlation between early chest CT images and the 
PaO2/FiO2 in COVID-19 patients, indicating that chest CT can 
effectively assess the extent of lung damage and has potential for 
predicting severe cases of COVID-19 (Fatima et  al., 2023; Liu 
F. et al., 2020).

Currently, semi-quantitative chest CT scoring systems have been 
developed to predict the severity and clinical outcomes of COVID-19 
patients. However, these systems require radiologists to visually assess 
all chest CT images, which introduces considerable human error and 
prevents precise assessment (Wasilewski et al., 2020). Additionally, 

manual annotation of all infected areas for training leads to a 
substantial workload, making routine application challenging (Arian 
et al., 2023). To improve the sensitivity of COVID-19 assessment, 
AI-assisted quantitative analysis of chest CT is emerging as a new 
trend (Shaikh et al., 2021). Limited existing AI studies have extracted 
features such as lung lesion volume, inflammation area, and lesion 
density from chest CT images, with sample sizes generally around 100 
cases, which limits comprehensive assessment of lung damage (Zhang 
et al., 2020; Pu et al., 2021; Pang et al., 2021). There is a pressing need 
to extract more lung features from larger samples to develop AI 
models that meet clinical needs for predicting severe lung damage in 
COVID-19 patients. Currently, researches based on AI primarily focus 
on employing AI techniques to analyze the different imaging findings 
presented in chest CT images of COVID-19 patients in order to 
predict disease severity and prognosis (Arian et al., 2023; Cai et al., 
2020). There is a lack of comparative studies regarding oxygenation 
function and chest CT images using AI.

Therefore, this study will analyze the early chest CT radiomic 
features of COVID-19 patients using the PaO2/FiO2 as a stratification 
standard, exploring the correlation between early laboratory 
indicators, early chest CT radiomic features, and the PaO2/FiO2. 
We aim to establish an AI model to predict the extent of lung injury 
and deterioration in oxygenation function, providing a reliable basis 
for the early clinical management and treatment of 
COVID-19 patients.

2 Methods

2.1 Study subjects and clinical data

This retrospective study included patients admitted to our hospital 
from January 1, 2023, to June 1, 2024, with a diagnosis of novel 
coronavirus infection.

Inclusion criteria:

 1 Diagnosed with novel coronavirus infection upon admission 
(National Health Commission, 2023).

 2 Underwent CT examination on the day of admission and 
multiple blood gas analyses during the hospital stay.

 3 Aged ≥18 years.

Cases that may interfere with this study or where obtaining 
imaging data is challenging will be excluded, including:

 1 Patients requiring mechanical ventilation.
 2 Pregnant patients or those with end-stage cancer.
 3 Patients with concurrent pulmonary diseases such as 

pneumothorax, pulmonary edema, or mediastinal emphysema.

https://doi.org/10.3389/fmicb.2024.1495432
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kong et al. 10.3389/fmicb.2024.1495432

Frontiers in Microbiology 03 frontiersin.org

 4 Patients with severe cardiac or renal dysfunction.
 5 Patients with incomplete clinical data (Patients with incomplete 

laboratory indicators relevant to this study).
 6 Patients with failed image acquisition (Cases with poor image 

quality or missing key frames during the CT imaging process).

A total of 384 patients were ultimately included in the study. The 
flowchart for the inclusion and exclusion of patients is shown in 
Figure 1.

Relevant clinical and laboratory data from the included patients 
will be collected, including: Baseline Characteristics: Age, sex, BMI, 
smoking history, and comorbidities. Blood Gas Analysis and PaO2/
FiO2: Blood gas analysis results (partial pressure of oxygen, PaO2), 
oxygen concentration (FiO2), and calculation of the PaO2/FiO2, with 
the lowest PaO2/FiO2 during hospitalization recorded. Laboratory 
Indicators on Admission Day: White blood cell count, neutrophil 
count and percentage, lymphocyte count and percentage, platelet 
count, C-reactive protein (CRP), D-dimer, lactate dehydrogenase 
(LDH), interleukin-6 (IL-6), ferritin, liver function indicators (AST, 
ALT), and cardiac indicators (B-type natriuretic peptide (BNP), 

troponin). Composite indicators such as the neutrophil-to-
lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and 
systemic immune-inflammation index (SII) = platelet count × NLR 
were also calculated.

Quality control measures for laboratory indicators include: all 
operators complied with operational procedures, with no human-
induced errors. The experimental instruments were all within their 
calibration periods. Reagents, quality control materials, and 
calibration standards for each indicator were all within their expiration 
dates and were properly stored. The laboratory environment’s 
temperature and humidity were maintained within acceptable ranges. 
During the experiments, all indicators passed quality control, with no 
random or systematic errors observed.

2.2 CT imaging protocol

Chest non-enhanced CT imaging was performed on the day of 
admission. All scans were conducted in the supine position with the 
patient in the inspiratory phase. The CT scans were performed using a 

FIGURE 1

Flowchart for inclusion and exclusion of patients.
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Philips Brilliance ICT 256-slice spiral CT scanner, with the scanning 
range extending from the lung apex to the level of the costophrenic angle. 
Scanning parameters commonly used in our center included: tube voltage 
of 120 kV, tube current adjusted automatically, matrix of 512 × 512, pitch 
of 1, conventional image thickness of 3.0 mm, and thin-slice images with 
1.0 mm intervals for 3D reconstruction.

2.3 Lung segmentation and features 
extraction

To reduce the interference of extrathoracic factors on the model, 
we developed a machine learning segmentation algorithm for lung 
segmentation. The image matrix values were first converted to 
attenuation values for CT images, and pixels with attenuation values 
less than −700 were used as a mask. After image erosion, only the 
largest connected domain was retained, and the mask was then 
expanded again to determine it as the region of interest (ROI) for the 
lungs, as shown in Figure 2.

Radiomic features were extracted using Python-based 
Pyradiomics. Prior to feature extraction, the segmented images were 
preprocessed to minimize the impact of contrast and brightness 
variations on the radiomic features. A total of 944 radiomic features 
were generated for each patient, based on first-order (n = 18), shape 
(n = 14), texture (n = 75), Gaussian Laplacian filters (n = 93), and 
wavelet filters (n = 744).

2.4 Machine learning

In clinical practice, patients with PaO2/FiO2 less than 200 mmHg 
are considered to have moderate to severe ARDS and usually require 

mechanical ventilation (Ranieri et  al., 2012; Qadir et  al., 2024). 
Therefore, we used PaO2/FiO2 200 mmHg as the grouping criterion, 
dividing patients into a mechanical ventilation group (PaO2/
FiO2 ≤ 200 mmHg) and a non-mechanical ventilation group (PaO2/
FiO2 > 200 mmHg). The machine learning models for this study, 
developed using the Python sklearn library, employed various 
machine learning methods to predict the aforementioned labels. 
Model performance was evaluated using the area under the receiver 
operating characteristic curve (AUC), sensitivity and specificity. 
Internal validation was used to assess the machine learning models. 
During model development, the entire dataset was randomly divided 
into training and validation sets, and five-fold cross-validation was 
used for model validation.

In this study, we  employed the Linear Discriminant Analysis 
(LDA) algorithm, a form of supervised learning, for dimensionality 
reduction and essential feature extraction. We  extracted over 900 
radiomic features for each patient in the study. By utilizing this 
algorithm, we aimed to reduce the number of features in the input 
data, enabling the representation of the output affecting labels with a 
minimal set of features. The fundamental concept is to project the 
training sample set onto a single line in such a way that the projection 
points of samples from the same class are as close together as possible, 
while the centers of the projection points from different classes are as 
far apart as possible (Xu et al., 2022).

2.5 Statistical analysis

Statistical analysis was performed using IBM SPSS 27.0 
software. All data were tested for normality; normally distributed 
quantitative data were described as mean ± standard deviation, 
while non-normally distributed quantitative data were described as 

FIGURE 2

Diagram of lung segmentation. Panels A1–A3 show chest CT cross-sectional images, while panels B1–B3 display the regions of interest (ROI) for the 
lungs identified by the machine learning model on chest CT. A1–B1 are axial CT images, A2–B2 are sagittal CT images, and A3–B3 are coronal CT 
images.
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median (interquartile range). The Kruskal-Wallis test was used for 
comparing multiple groups, and the Mann–Whitney U test was 
used for multiple comparisons among groups. Categorical data were 
described using frequencies (percentages) and compared using the 
chi-square (χ2) test. A p-value of <0.05 was considered statistically 
significant. Statistical plots were generated using Python-
based matplotlib.

3 Results

3.1 Basic characteristics

A total of 384 patients were included in this study. Table 1 presents 
the clinical characteristics of the included patients. The median age of 
all patients was 71.00 (62.25, 78.00) years, and the median BMI was 
24.29 (22.19, 26.88). Among the patients, 227 (59.1%) were male and 
157 (40.9%) were female. A total of 105 patients (27.3%) had a history 
of smoking. The most common comorbidities among the included 
patients were hypertension, diabetes, and cardiovascular diseases. 
Based on the Berlin definition guidelines for ARDS (Ranieri et al., 
2012), patients were divided into four groups according to their PaO2/
FiO2: PaO2/FiO2 > 300 mmHg, PaO2/FiO2 200-300 mmHg, PaO2/FiO2 
100-200 mmHg, and PaO2/FiO2 ≤ 100 mmHg.

There were no statistically significant differences in sex, age, BMI, 
smoking history, or comorbidities among the four patient groups 
(p > 0.05). See Table 2.

As the PaO2/FiO2 decreases, the range and density of lung lesions 
in the chest CT images increase. In the PaO2/FiO2 > 300 mmHg group, 
patients exhibit a few scattered exudative lesions in the lungs (see 
Figures 3A1–A3). In the PaO2/FiO2 200-300 mmHg group, patients 
show fewer lung lesions, primarily ground-glass opacities (GGOs) with 
limited extent (see Figures 3B1–B3). In the PaO2/FiO2 100-200 mmHg 
group, patients have a larger number of lung lesions, including GGOs 
and some consolidation, with a more extensive distribution (see 
Figures  3C1–C3). In the PaO2/FiO2 ≤ 100 mmHg group, patients 
present with dense lung lesions, including diffuse consolidation, with 
widespread distribution throughout the lungs (see Figures 3D1–D3).

3.2 Analysis of differences in radiomic 
features across different PaO2/FiO2 groups

As shown in Figure 4, we compared the differences in radiomic 
feature expressions among different groups. There are significant 

TABLE 1 The clinical characteristics of the included patients.

Characteristics Statistical value

Cases number 384

Sex

Male 227 (59.1%)

Female 157 (40.9%)

Age 71.00 (62.25, 78.00)

BMI 24.29 (22.19, 26.88)

Smoking history

Yes 105 (27.3%)

No 279 (72.7%)

Comorbidity

Hypertension 184 (47.9%)

Diabetes 97 (25.3%)

Cardiovascular disease 76 (19.8%)

COPD 5 (1.3%)

Chronic kidney disease 23 (6.0%)

PaO2/FiO2 Grouping

>300 mmHg 106 (27.6%)

200-300 mmHg 127 (33.1%)

100-200 mmHg 119 (31.0%)

≤100 mmHg 32 (8.3%)

TABLE 2 Comparison of baseline characteristics among four groups of patients.

Characteristics >300  mmHg 
n  =  106

200-300  mmHg 
n  =  127

100-200  mmHg 
n  =  119

≤100  mmH 
n  =  32

Statistical 
value

p value

Sex χ2 = 3.927 0.269

Male 61 (59.1%) 68 (53.5%) 78 (65.5%) 20 (62.5%)

Female 45 (42.5%) 59 (46.1%) 41 (34.5%) 12 (37.5%)

Age 68.50 (60.00, 74.25) 71.00 (64.00, 78.00) 71.00 (63.00, 79.00) 72.00 (67.25, 76.75) H = 7.676 0.053

BMI 23.75 (22.15, 26.83) 24.77 (21.87, 27.17) 24.22 (22.22, 26.89) 25.23 (22.71, 26.73) H = 1.246 0.742

Smoking history χ2 = 4.201 0.241

Yes 25 (23.6%) 30 (23.6%) 39 (32.8%) 11 (34.4%)

No 84 (76.4%) 97 (76.4%) 80 (67.2%) 21 (65.6%)

Comorbidities

Hypertension 46 (43.4%) 58 (45.7%) 59 (49.6%) 21 (65.6%) χ2 = 5.278 0.153

Diabetes 20 (18.9%) 32 (25.2%) 32 (26.9%) 13 (40.6%) χ2 = 6.463 0.091

Cardiovascular disease 13 (12.3%) 27 (21.3%) 26 (21.8%) 10 (31.3%) χ2 = 6.920 0.074

COPD 1 (0.9%) 2 (1.6%) 2 (1.7%) 0 (0.0%) χ2 = 0.735 0.865

Chronic kidney disease 6 (5.7%) 7 (5.5%) 7 (5.9%) 3 (9.4%) χ2 = 0.727 0.867

https://doi.org/10.3389/fmicb.2024.1495432
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kong et al. 10.3389/fmicb.2024.1495432

Frontiers in Microbiology 06 frontiersin.org

FIGURE 3

Chest CT images of patients in different PaO2/FiO2 groups. A1–A3 are chest CT images of patients with PaO2/FiO2  >  300  mmHg; B1–B3 are chest CT 
images of patients with PaO2/FiO2 200-300  mmHg; C1–C3 are chest CT images of patients with PaO2/FiO2 100-200  mmHg; D1–D3 are chest CT 
images of patients with PaO2/FiO2  ≤  100  mmHg. A1–D1 show axial CT; A2–D2 show sagittal CT; A3–D3 show coronal CT. The red thin arrows indicate 
ground-glass opacities (GGOs) and interlobular septal thickening; the blue thick arrows indicate consolidation.

differences in the radiomic features among patients in different PaO2/
FiO2 groups (p < 0.05). Specifically, patients in the PaO2/
FiO2 ≤ 100 mmHg group show the most pronounced differences in 
radiomic features compared to the other three groups (Figures 4A–C). 
As the PaO2/FiO2 increases, the differences in radiomic features 
gradually decrease (Figures 4D–F).

3.3 Analysis of laboratory indicators across 
different PaO2/FiO2 groups

Comparing laboratory indicators across different PaO2/FiO2 
groups, we observed statistical differences in immune-inflammatory 
indicators, coagulation indicators, and cardiac-related indicators 
among the four groups (p < 0.05). However, no statistical differences 
were found in platelet counts and liver-related indicators (AST, ALT) 
(p > 0.05) (see Table 3).

To clarify the specific differences between groups, we performed 
pairwise post-hoc comparisons (see Figure 5). We found statistically 
significant differences in neutrophil percentage, lymphocyte 
percentage, LDH, NLR, SII, and troponin across different PaO2/FiO2 
groups (p < 0.05).

However, the differences in laboratory indicators such as white 
blood cells, neutrophils, lymphocytes, CRP, IL-6, ferritin, D-dimer, 
BNP, and PLR varied inconsistently among the PaO2/FiO2 groups. 
Specifically, differences in these indicators between the PaO2/
FiO2 ≤ 100 mmHg group and the PaO2/FiO2 200-300 mmHg group, 
as well as the PaO2/FiO2 > 300 mmHg group, were statistically 
significant (p < 0.05). Conversely, white blood cells, D-dimer, IL-6, 
and ferritin showed no significant differences between the PaO2/
FiO2 200-300 mmHg group and the PaO2/FiO2 > 300 mmHg group, 
or between the PaO2/FiO2 200-300 mmHg group and the PaO2/
FiO2 100-200 mmHg group (p > 0.05). Therefore, the direct 
correlation between laboratory indicators and PaO2/FiO2 is not 
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clear, and these indicators cannot accurately reflect the PaO2/
FiO2 status.

As shown in Figure  6A, correlation analysis between the 
aforementioned laboratory indicators and radiomic features reveals 
that changes in laboratory indicators are directly reflected in the 
patients’ chest CT images and are sharply captured by radiomic 
features. Among these radiomic features that can capture laboratory 
indicators, the majority show significant differences between different 
PaO2/FiO2 groups, regardless of whether the laboratory indicators 
themselves differ between the PaO2/FiO2 groups, as illustrated in 
Figure 6B.

3.4 Chest CT radiomic features model

In different PaO2/FiO2 groups, there are statistically significant 
differences in radiomic features. Additionally, regardless of whether 
laboratory indicators have differences between PaO2/FiO2 groups, they 
can be captured by radiomic features. Therefore, we selected only 
radiomic features as variables and established a chest CT radiomic 
features AI model. To efficiently and accurately predict whether 
COVID-19 patients require mechanical ventilation due to decreased 
PaO2/FiO2, we combined patients with PaO2/FiO2 ≤ 100 mmHg and 
100-200 mmHg into the mechanical ventilation group, and those with 
PaO2/FiO2 200-300 mmHg and > 300 mmHg into the non-mechanical 
ventilation group.

On the training set, the model’s AUC was 0.8137 (95% CI 
[0.7631–0.8612]), with an accuracy of 0.7249, sensitivity of 0.6626, 
and specificity of 0.8208. On the validation set, the model’s AUC 
was 0.8273 (95% CI [0.7475–0.9005]), with an accuracy of 0.7739, 

sensitivity of 0.7429, and specificity of 0.8222, as shown in 
Figure 7.

4 Discussion

This study is the first to use machine learning methods to 
segment lung ROIs and extract radiomic features from early chest CT 
images of over 380 COVID-19 patients. We utilized these radiomic 
features as intermediate variables to explore the direct and indirect 
correlations between laboratory indicators and PaO2/FiO2, thereby 
validating the assessment capability of CT—one of the most 
commonly used imaging modalities for COVID-19—of the overall 
physiological and pathological state represented by laboratory 
indicators. Finally, we developed an AI model based on early chest 
CT radiomic features of COVID-19 patients to predict whether 
mechanical ventilation would be  required due to a decrease in 
PaO2/FiO2.

SARS-CoV-2 infection can trigger a robust immune response 
(Gallais et al., 2021). Early immune response in COVID-19 plays a 
protective role in viral clearance, whereas an excessive immune 
response can release an overabundance of pro-inflammatory cytokines 
and chemokines, leading to cytokine storms and systemic immune 
cascade reactions, which in turn alter laboratory immune-
inflammatory indicators and coagulation indicators (Alzaabi et al., 
2021; Chen, R. et al., 2020). Additionally, exacerbated and dysregulated 
immune responses can cause multi-organ damage, with the lungs 
being among the earliest and most severely affected organs (Chen 
N. et al., 2020). Researches by Liu and Fu et al. have demonstrated that 
laboratory indicators can be used to predict the overall deterioration 

FIGURE 4

Comparison of radiomic features between different PaO2/FiO2 groups via volcano plot. There are significant differences in radiomic feature expressions 
between different PaO2/FiO2 groups (A–F). Patients in the PaO2/FiO2 ≤  100  mmHg group show the most pronounced differences in radiomic features 
compared to the other three groups (A–C). The differences in radiomic features between the PaO2/FiO2 100-200  mmHg group and the PaO2/FiO2 
200-300  mmHg group, as well as the PaO2/FiO2 ≥  300  mmHg group, are notable (D,E). There are differences in radiomic features between the PaO2/
FiO2 200-300  mmHg group and the PaO2/FiO2 ≥  300  mmHg group, but the differences are small (F). In the figure, blue points and red points represent 
significant differences, while gray points indicate no difference. A higher number of points indicates a greater degree of difference.
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TABLE 3 Differential analysis of laboratory indicators among four groups of patients.

Laboratory indicators >300  mmHg n  =  106 200-300  mmHg n  =  127 100-200  mmHg n  =  119 ≤100  mmHg n  =  32 Statistical value p value

Immune-inflammatory indicators

White blood cell count (109/L) 6.52 (5.14, 8.69) 7.00 (4.83, 9.12) 7.20 (5.48, 9.98) 8.44 (6.45, 12.51) H = 13.649 0.003

Neutrophil percentage (%) 69.90 (62.85, 80.60) 76.50 (68.40, 85.30) 80.20 (71.70, 87.60) 86.70 (79.93, 91.13) H = 45.212 <0.001

Neutrophil count (109/L) 4.60 (3.40, 6.30) 5.10 (3.20, 7.00) 5.90 (4.10, 8.10) 7.55 (5.10, 11.23) H = 27.300 <0.001

Lymphocyte percentage (%) 19.30 (11.03, 26.53) 14.80 (8.50, 20.30) 10.30 (5.90, 16.90) 5.75 (3.48, 12.15) H = 55.444 <0.001

Lymphocyte count (109/L) 1.20 (0.70, 1.53) 0.90 (0.60, 1.40) 0.80 (0.50, 1.10) 0.55 (0.40, 0.90) H = 28.781 <0.001

CRP (mg/L) 15.55 (5.46, 48.01) 25.40 (9.60, 62.00) 38.90 (9.70, 87.30) 71.99 (27.21, 100.87) H = 23.440 <0.001

LDH (U/L) 270.00 (21.75, 301.00) 297.00 (242.00, 309.00) 301.00 (280.00, 343.00) 341.00 (287.25, 430.25) H = 37.108 <0.001

IL-6 (pg/mL) 7.12 (2.39, 16.27) 11.55 (3.17, 20.35) 12.90 (3.95, 27.02) 16.85 (7.65, 30.82) H = 16.268 <0.001

Ferritin (ng/mL) 316.50 (226.48, 514.48) 387.00 (241.10, 537.50) 486.40 (267.00, 573.50) 537.50 (367.95, 705.13) H = 18.150 <0.001

NLR 3.6667 (2.4152, 7.5000) 4.8889 (3.2500, 10.0000) 7.7500 (4.4444, 15.5000) 14.0417 (6.4560, 24.5000) H = 53.106 <0.001

PLR 184.7802 (117.3438, 291.2500) 202.5000 (146.1905, 350.0000) 283.3333 (173.3333, 410.0000) 294.1667 (204.5000, 512.5000) H = 27.752 <0.001

SII 763.0833 (464.8472, 1605.5000) 1147.0000 (540.5714, 2141.6667) 1515.5556 (854.0000, 2908.8889) 2527.0000 (1205.5130, 6080.9583) H = 41.347 <0.001

Coagulation indicators

platelet count (109/L) 200.00 (149.75, 258.00) 199.00 (142.00, 261.00) 207.00 (148.00, 287.00) 179.00 (141.00, 257.75) H = 1.426 0.699

D-dime r (μg/L) 180.00 (96.75, 425.50) 215.00 (133.00, 499.00) 264.00 (160.00, 486.00) 599.00 (257.75, 2818.75) H = 29.910 <0.001

Liver-related indicators

AST (U/L) 21.50 (16.00, 31.75) 22.00 (15.00, 33.00) 24.00 (17.00, 35.00) 27.00 (22.00, 44.00) H = 7.235 0.065

ALT (U/L) 23.00 (16.00, 37.50) 27.00 (18.00, 43.00) 28.00 (18.00, 42.00) 34.00 (18.50, 50.75) H = 4.934 0.177

Cardiac-related indicators

BNP (pg/mL) 50.15 (17.28, 82.03) 69.00 (16.30, 100.31) 80.30 (35.30, 122.00) 67.25 (33.93, 146.40) H = 16.990 <0.001

Troponin (μg/L) 0.0056 (0.0038, 0.0088) 0.0072 (0.0041, 0.0113) 0.0089 (0.0058, 0.0160) 0.0120 (0.0077, 0.0345) H = 36.531 <0.001

The values in bold indicate that the p-values are less than 0.05, meaning there are significant differences among the four groups of data with statistical significance.
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FIGURE 5

Heatmap of differences in laboratory indicators between pairs of PaO2/FiO2 groups. The x-axis represents laboratory indicators, and the y-axis 
represents pairwise comparisons between PaO2/FiO2 groups. Differences were analyzed using the Mann–Whitney U test. The bar in the figure indicates 
the p-value (0–1), with p <  0.05 indicating statistical significance and p >  0.05 indicating no statistical significance.

FIGURE 6

Texture feature map showing the correlation between laboratory indicators and radiomic features. In pairwise comparisons of different PaO2/FiO2 
groups, different laboratory indicators are directly captured by the intensity of radiomic features (A). Radiomic features that both capture laboratory 
indicators and show differences between different PaO2/FiO2 groups are illustrated in (B).
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FIGURE 7

The ROC curves for the training and validation sets.

and adverse outcomes in COVID-19 patients (Fu et al., 2020; Liu 
J. et al., 2020). However, to date, there have been no studies directly 
predicting the degree of lung injury and oxygenation function through 
the analysis of changes in laboratory indicators. To address this, 
we explored whether multiple laboratory indicators directly correlate 
with the PaO2/FiO2. Results showed that while there are overall 
differences in laboratory indicators across four different PaO2/FiO2 
groups, the differences are inconsistent when comparing pairwise 
groups. For example, white blood cell count, CRP, IL-6, and ferritin 
were statistically significant between the PaO2/FiO2 ≤ 100 mmHg 
group and the PaO2/FiO2 200-300 mmHg group, but there were no 
statistical differences between the PaO2/FiO2 200-300 mmHg group 
and the PaO2/FiO2 > 300 mmHg group. These results suggest that 
laboratory indicators alone do not fully and accurately assess 
oxygenation function and the extent of lung damage in COVID-19 
patients. Therefore, more appropriate assessment indicators are 
needed clinically.

We subsequently focused on early chest CT images to analyze 
their correlation with the PaO2/FiO2. We  found significant 
differences in radiomic features among different PaO2/FiO2 groups, 
particularly in the patients with PaO2/FiO2 ≤ 100 mmHg, whose 
radiomic features showed a very significant difference compared to 
the other three groups. Thus, the radiomic features derived from 
non-contrast chest CT images may provide a valuable tool for 
predicting the PaO2/FiO2. Furthermore, we conducted a correlation 
analysis between radiomic features and laboratory indicators, 
revealing significant correlations between them. Notably, even 
laboratory indicators that were not directly related to the PaO2/FiO2 
showed a strong association with the radiomic features, indicating 
that these features may also serve as accurate reflections of the body’s 
inflammatory response level.

This study is the first to extract radiomic features from early 
chest CT scans of over 380 COVID-19 patients, using the PaO2/FiO2 
as the stratification criterion. We established an AI model based on 
early chest CT radiomic features, which achieve an accuracy of 
0.8 in predicting stratification for the PaO2/FiO2 above and below 
200 mmHg. Although AI-driven quantitative analysis of CT scans 
has shown promise in assessing clinical classifications, predicting 
disease progression, and evaluating sequelae in COVID-19 patients, 
the current research often relies on radiologists visually assessing 
and manually annotating CT images (Salahshour et  al., 2021; 
Tanaka et al., 2023; Wasilewski et al., 2020). This heavy workload 

limits the ability to evaluate large samples, and reducing human 
error remains a significant challenge. Furthermore, studies utilizing 
AI technology for CT imaging primarily focus on identifying and 
analyzing specific features such as lesion volume, inflammatory 
area, or lesion density (Pang et al., 2021; Alilou et al., 2023; Chung 
et al., 2021). This narrow focus may lead to incomplete assessments 
and, similarly, suffers from issues related to high error margins and 
low accuracy.

This study departs from traditional visual assessment methods by 
disruptively applying computer programming languages to extract 
over 900 radiomic numerical features from CT images, including 
first-order, shape, texture, Gaussian Laplacian filters, and wavelet 
filters. Using machine learning for training and validation, 
we  ultimately selected the feature parameter combinations most 
strongly correlated with the PaO2/FiO2 to construct a CT-AI model 
for lung assessment, achieving high accuracy and specificity in 
predicting oxygenation function. Clinically, patients with an PaO2/
FiO2 below 200 mmHg generally require mechanical ventilation 
(Qadir et al., 2024). Santus P and Zhou W have confirmed that an 
PaO2/FiO2 < 200 mmHg at admission is independently associated 
with higher mortality, which can help clinicians identify high-risk 
patients early in their hospital stay (Santus et al., 2020; Zhou et al., 
2021). Therefore, we selected PaO2/FiO2 200 mmHg as the threshold 
value in clinical practice, dividing patients into two groups: the 
mechanical ventilation group (including the PaO2/FiO2 ≤ 100 mmHg 
group and the PaO2/FiO2 100–200 mmHg group) and the 
non-mechanical ventilation group (including the PaO2/FiO2 
200–300 mmHg group and the PaO2/FiO2 > 300 mmHg group). The 
results indicate that this model can predict stratification tasks with an 
accuracy of 0.8 for determining whether the PaO2/FiO2 is above or 
below 200 mmHg. This capability can assist clinicians in automatically 
identifying high-risk patients through early admission CT scans, 
effectively guiding the monitoring of critically ill patients, the need 
for increased oxygen supplementation, and decisions regarding 
mechanical ventilation.

This study does have some limitations. First, it is a single-center 
study, lacking multi-center data to further validate these 
conclusions. Second, the study only explored the AI model’s ability 
to predict the lowest PaO2/FiO2 during hospitalization, lacking 
comprehensive monitoring throughout the patient’s disease course, 
the further model can be established for dynamic monitoring and 
the prediction of the long COVID-19 in the future. Third, we used 
only the PaO2/FiO2 as the primary parameter for assessing 
COVID-19 severity, without considering other complications that 
may arise during the disease course. Finally, given the high 
heterogeneity of COVID-19, future research will further explore 
their corresponding mechanism and the impact of genetic 
susceptibility on the PaO2/FiO2.

5 Conclusion

This study found that the early chest CT radiomic features of 
COVID-19 patients show a strong correlation with early laboratory 
indicators and the lowest PaO2/FiO2. Therefore, we established an AI 
model based on the early chest CT radiomic characteristics of 
COVID-19 patients, which can be used to predict the deterioration of 
oxygenation function in COVID-19 patients, providing a basis for 
selecting further clinical management and treatment measures.
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