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1 Introduction

Arsenic (As) is an extremely toxic metalloid that has attracted considerable attention

worldwide due to its harmful effects on humans, animals and plants. It is estimated that

millions of people around the world at risk of being affected by As contamination (Rahman

et al., 2017). As species mainly enters the soil through different routes, including surface

runoff of industrial As-containing wastewater, the application of pesticides containing As,

chemical fertilizers, organic fertilizers and other human activities (Boulanger et al., 2019).

In addition, natural factors such as volcanic movement, flooding, chemical weathering also

contribute to excessive As levels in the soil (Huq et al., 2020). The As that enter the soil

can accumulate in crops and enter the human body through the food chain, leading to the

development of diseases including skin, lung and bladder cancer (Palansooriya et al., 2020;

Palma-Lara et al., 2020).

As in the environment can be found in both inorganic and organic forms, while the

inorganic forms, including arsenate, As(V) and arsenite, As(III), are the predominant

forms in soils, and studies have found that As(III) has greater mobility and greater

toxicity than As(V) (Gao et al., 2022; Gorny et al., 2015; Lee et al., 2019). Changes in the

form and valence of As in soil directly affect its bioavailability and toxicity, and thus its

environmental risk. Therefore, it is important to conduct environmental risk assessment of

As in soil to safeguard soil health. Two commonly used approaches of environmental risk

assessment include the ground accumulation index method and potential ecological risk

assessment method. However, they all based on the detection of concentrations of As by

traditional analytical methods such as inductively coupled plasma emission spectrometry

(ICP-OES) (Henry and Thorpe, 1980) and atomic absorption spectrometry (AAS) (Aggett

and Aspell, 1976). These methods usually require expensive instruments and specialized

personnel to pre-treat and analyze the samples. In addition, they are unable to reflect

the bioavailability of As (Bereza-Malcolm et al., 2015). Therefore, streamlining this risk

assessment process is essential for the rapid identification of environmental risks of As

in soil.
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In recent years, whole-cell bioreporter (WCB) technology

has been used for the assessment of the bioavailability of heavy

metals in the environment and consequently to evaluate their

environmental risks (Huang et al., 2024). WCB is a living

genetically engineered bacterial, which can sense target chemicals

and generate electrochemical or optical signals that can be detected,

and determine the bioavailability or toxicity of pollutants (Dhyani

et al., 2022). In addition, it has been reported that WCB can both

assess the bioavailability of As in the environment and differentiate

the different forms of As (Yoon et al., 2016b). The application

of WCB technology, as reviewed herein, represents a progressive

shift toward more sensitive, cost-effective, and ecologically relevant

environmental risk assessment.

2 Construction principles of WCB for
detecting As bioavailability

WCB technology, by harnessing the biological responses of

microbial systems, offers a direct measure of As bioavailability and

its potential risks. Generally, As-WCBs were constructed based

on sensing element from As-resistance operon ars and reporter

genes (Kaur et al., 2015). Bacteria such as E. coli, Pseudomonas,

and Staphylococcus aureus are often selected as host strains of As-

WCB because they carry genes with specific resistance mechanisms

to As, exhibiting As resistance (Bereza-Malcolm et al., 2018). ars

operon has been found in above-mentioned bacteria and known

as the optimal microbial As detoxification system (Ordóñez et al.,

2005). Hedges and Baumberg (1973) and Mobley et al. (1983)

found that the plasmid R773 in Escherichia coli (E. coli) can help

strains acquire As resistance, and further research on the R773

plasmid revealed the existence of a gene cluster, the ars operon,

conferring As resistance. ars operon contains five co-transcribed

genes (arsRDABC), arsR is identified as As regulatory gene, and

the encodes regulatory protein ArsR which controls the basal

expression level ensuring that the expression level of As resistance

operon in different environments is within a certain range (Arik

et al., 2023). Since it plays an important role in regulation of

intracellular As levels, ArsR regulatory protein from bacterial origin

has been often deployed in WCB technology for determination

of environmental As contamination. When the sample does

not contain As(III), ArsR binds to the binding site (ABS) of

the promoter of ars operon (ParsR), inhibiting its expression

(Valenzuela-García et al., 2023). Reversely, in the presence of

As(III), As(III) binds to ArsR and changes its conformation,

relieving ArsR inhibition of ParsR, which is shown in Figure 1

(Yoon et al., 2016b). The ArsRBC proteins in the ars operon

regulated by the ArsR protein cooperate to form a regulatory

mechanism for As transport and maintain the balance of As in the

cell. Although ArsR only responds to As(III), As-WCB can also

respond to As(V) because sensing strains containing chromosome-

encoded arsRBC operons produce moderate resistance to As and

arsenate is reduced to arsenite in bacterial cells (Elcin and Öktem,

2019). Apart from ArsR, ArsC reduces As(V) to As(III), ArsB

excretes As(III) from cells using the potential drive on the cell

membrane, and the structural gene arsA, which codes for the As

ATPase subunit ArsA, and the regulatory gene arsD, which codes

for the arsenite chaperone that transports As(III) to the ArsAB

transporter complex (Irvine et al., 2017; Yang et al., 2011; Yu et al.,

2021).

In addition to the ars operon, As-WCB developed using the

nikA promoter of the nik operon in E. coli also specifically

detects As. Similar to the mechanism of action of the ars operon,

As(III) interacts with residues (His79 and His92) on NikR, and

the conformational change in NikR may lead to its release from

the promoter region of the nik operon, which would increase the

transcription of the reporter gene for the detection of As(III) in soil

(Yoon et al., 2016a).

Since most of the As sensing WCB are based on bacterial

cells, the type, culture, and number of host bacteria, as well as the

growth status of bacteria, may affect the detection performance

of WCB. For example, Wu et al. (2023) discovered that the

optimal assay stability was attained when WCB was incubated

at 30◦C until the exponential growth period and that selecting a

sample volume of 200 µl produced the highest luminescence or

fluorescence output. Therefore, on the basis of extensive research

on As-WCB construction, optimizing the detection environment

and promoting its practical applications will be the main research

target in this field.

3 Application of WCBs in assessing As
bioavailability

Cai and DuBow (1997) constructed the first WCB based on

the fusion of an As resistance operon and luciferase gene in E.

coli for the detection of chromate arsenate, which provided a good

research direction for the detection of As toxicity by WCB. Over

the next two decades, to enhance the sensitivity, specificity and

stability of As detection, researchers have developed the As-WCB

using different sensing and reporter elements. A novel As-WCB

constructed by fusing the nikA gene from nik operon in E. coli and

the green fluorescent protein encoding gene which selective only

for As among eight metals has been used for the determination of

As in soil (Yoon et al., 2016a). Pola-López et al. (2018) amplified the

As input signal by adding a T7 RNAP gene amplifier module within

the strain, significantly enhanced the sensitivity performance of

the WCB and successfully detected arsenate in the range of 5–140

µg/L with a response time as little as an hour. Chen et al. (2022)

combined an As-WCB based on the optimized ParsOC2 promoter

with a smartphone color recognition application to analyze As in

groundwater samples with a detection limit as low as 0.24 µg/L.

It is worth noting that As in the natural environment usually

exists in the form of As(III) or As(V), which are different in toxicity

[As(III) possesses a toxicity 60 times greater than As(V)]. They can

be easily transformed into each other when there is a change in the

redox potential, pH, and oxygen-enriched state, which poses a great

challenge to accurate assess the environmental risk of As in different

valence states (Pena et al., 2005). In a recent study, Elcin and Öktem

(2019) constructed As-WCB on the basis of arsR regulatory gene

of E. coli plasmid R773 and a green fluorescent reporter protein

using E. coli MG1655 host strain. The WCB can specifically assess

both As(III) and As(V) in phosphate-restricted medium and to

differentiate between the two on the basis of the response time at

10 ppb level.
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FIGURE 1

Schematic diagram of whole-cell bioreporter for As detection.

However, no matter how sophisticated genetic engineering

techniques are used, they can only be applied in the field outside

the laboratory if the WCBs are secured into a suitable platform and

become portable sensing devices. For this purpose, immobilization

methods that have been developed for WCB include lyophilization

(Bilal and Iqbal, 2019), agar (Huang et al., 2024) and calcium

alginate entrapment (Tohfegar and Habibi, 2023), and embedded

fiber-optics (Zhu et al., 2022). Elcin and Öktem (2020) immobilized

the As-WCB cells into agar hydrogels and alginate beads for a first-

step field application and reported that under optimal incubation

conditions, it could detect 10 µg/L and 200 µg/L of As(III) and

As(V) within 5 hour and 2 hour, respectively. In addition, it was

found in the experiment that adjusting the cell density of OD600

to 0.4 significantly improved the sensitivity of WCB. Arik et al.

(2023) used polycaprolactone (PCL) electrostatically spun fibers as

a support material to immobilize WCB, and found that the system

was able to be used in natural waters and sensitive only to As which

can rapidly detect As(III) in the range of 10–100 µg/L.

In addition, the coupling of WCB with other chemical methods

provides new ideas for the field application of WCB. Buffi et al.

(2011) attempted to immobilize WCB in agarose beads and

integrate them into a microfluidic chip for on-site monitoring of

As. Their study showed that the strain maintained performance

for up to 1 month when stored in the microfluidic chip at

−20◦C and was able to respond to arsenate within a concentration

bracket of 10–50 µg/L. In a recent study, Sánchez et al.

(2021) combined As-WCB with electrochemical measurements,

strains produced electrochemically detectable 4-aminophenol in

the presence of As(III). The system provides higher accuracy and

signal strength than traditional WCB detection methods and has

garnered regulatory clearance for field use in both Canada and

the United States. Soil systems are more complex than water

environment, research on As-WCB for soil on-site measurement

is relatively immature. Due to the attenuation of theWCB signal by

soil particles, the transmission of the optical signal from the WCB

is reduced, thus affecting the accuracy of the results. It has been

reported that many studies have neglected the weakening of the

WCB signal by soil, which can lead to orders of magnitude errors

in the results (Zhang et al., 2022). To date, there is no standard

to unify the method, which has brought some challenges for the

application of As-WCB in soil. However, in view of the intensity

of As contamination in soil, we believe that the development of

portable, low-cost, and highly sensitive in situ WCB for detecting

As bioavailability in soil will be a future direction.

4 Conclusions

The environmental contamination of As is highly complex

and its toxicity varies according to the different forms present

in the soil, making it particularly important to accurately assess

and differentiate the bioavailability of these forms of As. WCB

reflects the bioavailability of the As and has the potential to

discriminate between different forms of As. As yet, WCB has not

yet become a standard method for environmental risk assessment

of As contamination, and only a small number of WCB has

been commercialized. We believe that with continuous and in-

depth development, WCB is expected to become an effective

environmental risk assessment method for As contamination in

soil. As we advance, it becomes crucial to not only understand
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but also anticipate the ecological impacts of contaminants. WCB

technology emerges as a critical tool in this regard, facilitating a

more proactive approach to environmental management.
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