Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.
Sec. Infectious Agents and Disease
Volume 15 - 2024 | doi: 10.3389/fmicb.2024.1493849
This article is part of the Research Topic Recent advances in Campylobacter research View all 10 articles

Pleiotropic cellular responses underlying antibiotic tolerance in Campylobacter jejuni

Provisionally accepted
  • 1 Seoul National University, Seoul, Republic of Korea
  • 2 University of Minnesota Twin Cities, St. Paul, United States

The final, formatted version of the article will be published soon.

    Antibiotic tolerance enables antibiotic-susceptible bacteria to withstand prolonged exposure to high concentrations of antibiotics. Although antibiotic tolerance presents a major challenge for public health, its underlying molecular mechanisms remain unclear. Previously, we have demonstrated that Campylobacter jejuni develops tolerance to clinically important antibiotics, including ciprofloxacin and tetracycline. To identify cellular responses associated with antibiotic tolerance, RNA-sequencing was conducted on C. jejuni after inducing antibiotic tolerance through exposure to ciprofloxacin or tetracycline. Additionally, knockout mutants were constructed for genes exhibiting significant changes in expression levels during antibiotic tolerance. The genes involved in protein chaperones, bacterial motility, DNA repair system, drug efflux pump, and iron homeostasis were significantly upregulated during antibiotic tolerance. These mutants displayed markedly reduced viability compared to the wild-type strain, indicating the critical role of these cellular responses in sustaining antibiotic tolerance. Notably, the protein chaperone mutants exhibited increased protein aggregation under antibiotic treatment, suggesting that protein chaperones play a critical role in managing protein disaggregation and facilitating survival during antibiotic tolerance. Our findings demonstrate that various cellular defense mechanisms collectively contribute to sustaining antibiotic tolerance in C. jejuni, providing novel insights into the molecular mechanisms underlying antibiotic tolerance.

    Keywords: Campylobacter jejuni, antibiotic tolerance, RNA-sequencing, Protein chaperones, Gene Expression

    Received: 09 Sep 2024; Accepted: 06 Nov 2024.

    Copyright: © 2024 Cho, Kim, Hur, Ryu and Jeon. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Byeonghwa Jeon, University of Minnesota Twin Cities, St. Paul, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.