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Introduction: Irritable bowel syndrome (IBS) is a common chronic disorder of 
gastrointestinal function with a high prevalence worldwide. Due to its complex 
pathogenesis and heterogeneity, there is urrently no consensus in IBS research.

Methods: We collected and uniformly reanalyzed 1167 fecal 16S rRNA gene 
sequencing samples (623 from IBS patients and 544 from healthy subjects) from 
9 studies. Using both a random effects (RE) model and a fixed effects (FE) model, 
we calculated the odds ratios for metrics including bacterial alpha diversity, beta 
diversity, common genera and pathways between the IBS and control groups.

Results: Significantly lower alpha-diversity indexes were observed in IBS patients 
by random effects model. Twenty-six bacterial genera and twelve predicted 
pathways were identified with significant odds ratios and classification potentials 
for IBS patients. Based on these feature, we used transfer learning to enhance 
the predictive capabilities of our model, which improved model performance by 
approximately 10%. Moreover, through correlation network analysis, we found that 
Ruminococcaceae and Christensenellaceae were negatively correlated with vitamin 
B6 metabolism, which was decreased in the patients with IBS. Ruminococcaceae 
was also negatively correlated with tyrosine metabolism, which was decreased in 
the patients with IBS.

Discussion: This study revealed the dysbiosis of fecal bacterial diversity, 
composition, and predicted pathways of patients with IBS by meta-analysis and 
identified universal biomarkers for IBS prediction and therapeutic targets.
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1 Introduction

Irritable bowel syndrome (IBS) is a prototypical psychosomatic condition of the digestive 
system, closely related to psychological, social, and environmental factors (Ng et al., 2024). It is a 
disorder of the brain–gut axis characterized by frequent abdominal pain, bloating, flatulence, and 
changes in bowel habits—either constipation or diarrhea—which has an impact on quality of life 
compared to inflammatory bowel disease (IBD). The global prevalence of IBS is 4% but varies 
across different regions (Oka et al., 2020), and the prevalence of IBS is higher among women than 
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men (Sperber et al., 2021). There is still a lack of accurate diagnostic 
criteria for IBS, with no detectable anatomical, inflammatory, or 
biochemical pathology, and it is defined based on symptom criteria, 
including recurrent abdominal pain associated with changes in bowel 
habits. According to the Rome IV diagnostic criteria, IBS is classified into 
four types: IBS with predominant constipation (IBS-C), IBS with 
predominant diarrhea (IBS-D), IBS with mixed bowel habits (IBS-M), 
and IBS unclassified (IBS-U).

Globally, the incidence and prevalence of IBS are relatively high, 
resulting in increased medical costs and healthcare expenses (Zhen 
et  al., 2006; Ma et  al., 2021). The specific cause of the syndrome 
remains uncertain, despite being described more than a 100 years ago. 
Several factors and mechanisms may play a role in the pathogenesis 
of the syndrome (Chang and Talley, 2011). These include altered 
gastrointestinal motility, visceral hypersensitivity, post-infectious 
reactivity, brain–gut interactions, alteration in the fecal microbiome, 
bacterial overgrowth, food sensitivity, carbohydrate malabsorption, 
and intestinal inflammation, and all of these indicators have been 
studied as mechanisms involved in the pathogenesis of IBS (Occhipinti 
and Smith, 2012; Ng et  al., 2018). However, the diagnosis and 
treatment of IBS still pose challenges in clinical practice. Meanwhile, 
due to the physiological interactions between humans and their 
microbiome, many diseases are hypothesized to be associated with 
alterations in the “healthy” gut microbiota. These include metabolic 
disorders, inflammation and autoimmune diseases, neurological 
disorders, and cancer (Zhu et al., 2013; Turnbaugh et al., 2006; Son 
et  al., 2015; Wang et  al., 2012; Scheperjans et  al., 2015). Certain 
gut-related diseases such as obesity and IBD have been extensively 
studied in human cohorts and animal experiments, revealing 
significant and sometimes causal associations with the microbiota 
(Walters et  al., 2014). Gut microbe-induced immunomodulation 
strategies for therapeutic intervention of inflammatory diseases may 
be effective. Moreover, released SCFAs can potentially suppress the 
Th1 response by inhibiting the activation of nuclear factor kappa B 
(NF-kB), thereby reducing the production of inflammatory cytokines 
(Mukherjee et al., 2018). Previous studies have stimulated research on 
many complex diseases with unknown etiology, which are suspected 
to be  related to the microbiome (Kassinen et  al., 2007; Krogius-
Kurikka et al., 2009; Carroll et al., 2012; Rajilić–Stojanović et al., 2011; 
Jeffery et al., 2012). Increasing evidence highlights the crucial role of 
the gut microbiota in both health and IBS.

Some studies on the composition of the microbiota using 16S 
rRNA gene sequencing or shotgun metagenomics have shown that, in 
some cases, there is minimal association between changes in diversity 
and taxonomy with IBS (Labus et al., 2017; Tap et al., 2017; Jeffery 
et  al., 2020). Other studies have reported reduced diversity and 
taxonomic alterations, but these findings are inconsistent across the 
research (Durbán et al., 2012; Lo Presti et al., 2019). Recent research 
has shifted toward assessing the functional characterization of the 
microbiota through shotgun metagenomics or metabolomics 
(evaluating bacterial metabolites detected in feces), with the former 
assessing functional potential through microbial gene content. For 
instance, Mars et  al. combined multi-omics data from the gut 
microbiome, metabolome, host epigenome, and transcriptome in IBS, 
identifying subtype-specific and symptom-related microbial changes, 
such as purine metabolism (Mars et al., 2020). Su et al. compared the 
taxonomic and functional composition of the gut microbiota among 
942 participants with IBS-D, IBS-C, and IBS-U and 942 non-IBS 

controls, based on 16S sequencing data. They found that, compared to 
participants with IBS-C, those with IBS-D or IBS-U exhibited 
significantly reduced bacterial diversity. Distinct bacterial signatures 
were associated with different IBS subtypes, and the related functional 
changes were relevant to the pathogenesis of IBS (Su et al., 2023). 
Jacobs et al. collected fecal samples from 318 patients with IBS and 177 
healthy controls for 16S rRNA sequencing and found that IBS is 
associated with alterations in microbial community functions, such as 
a significant increase in the abundance of Bacteroides in patients with 
IBS (Jacobs et  al., 2023). Although these studies have reported 
significant changes in gene content and metabolites, the specific 
features vary across studies. Overall, unlike other gastrointestinal 
diseases, such as IBD, there has not been a strong functional microbial 
signature consistently associated with IBS diagnosis.

To further understand the functional characteristics of the gut 
microbiota in IBS, we collected and analyzed a dataset consisting of 1,167 
samples, including 623 patients with IBS and 544 healthy controls without 
gastrointestinal diseases. This dataset was used for a meta-analysis of the 
gut microbiota, including compositional assessment through 16S rRNA 
gene sequencing and functional assessment. Modeling analysis was 
performed based on the aforementioned results, resulting in a well-
performing machine learning model for discrimination (Gong et al., 
2022; Wirbel et al., 2021).We also utilized transfer learning models to 
achieve better results on other datasets (Xu et al., 2023).

2 Methods

2.1 Literature search and study selection

Based on the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) standard (Page et al., 2021), the following 
keywords were selected to search the literature included in the NCBI 
PubMed databases before December 2022: (microorganism OR microbe 
OR germ OR microbiome OR microbiota OR gut OR intestinal) AND 
(feces OR fece OR stool) AND (irritable bowel syndrome OR IBS).

The raw data and metadata for the included cohorts in the study 
were downloaded from the Sequence Read Archive (SRA), a public 
repository for sequencing data. The sequencing methods used in these 
studies included Illumina sequencing and 454 sequencing. 
We excluded studies that focused on culture and qPCR techniques or 
were only abstracts from conference papers. Studies without controls 
or with fewer than five patients were also excluded. In addition, any 
studies that did not provide publicly available sequences or metadata 
were excluded. The reuse of these published data in our meta-analysis 
adhered to all relevant ethical regulations. Finally, we collected 1,167 
fecal samples from seven previously published studies (Zhuang et al., 
2018; Belkova et al., 2020; Zhu et al., 2019; Liu et al., 2020; Pozuelo 
et al., 2015; McDonald et al., 2018; Vork et al., 2021). Figure 1 displays 
the detailed status of the data collection.

2.2 Data processing

The raw sequence data and metadata were obtained from the 
Sequence Read Archive (SRA) at the NCBI. Each dataset was imported 
and assembled in Unoise3 as single-end or paired-end reads for either 454 
or Illumina sequencing (Edgar, 2016). To avoid biases introduced by 
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different bioinformatics analysis pipelines, the raw sequence data were 
preprocessed. Clean, high-quality reads were obtained through sequence 
merging and quality control. First, when Fast Length Adjustment of SHort 
Reads (FLASH V1.2.11) was used to assemble the paired-end reads for 
the V3-4 region (Magoč and Salzberg, 2011), the -x 0.15 option was 
selected to control the maximum mismatched base pairs ratio in the 
overlap area, and the -M 150 or -M 250 option was selected to control the 
maximum length of the overlap area. Then, cutadapt (V1.13) was used to 
trim and filter the sequence data processed by FLASH (Martin, 2011), 
including removing adapter sequences and discarding sequences with 
fewer than the specified number of bases. Denoising was performed using 
Unoise3, an algorithm that generates zero-radius operational taxonomic 
units (zOTUs) by directly denoising without clustering. Subsequently, the 
resulting representative sequence set was aligned and classified using the 
SILVA database (silva_132_97). Samples with less than 15,000 zOTUs 

were discarded. Using the 16S rRNA gene sequencing data and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) orthology, we performed 
Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt2) analysis for the functional prediction of 
the microbiota in the intestine (Douglas et al., 2020). The America dataset 
contains a large number of samples, so the samples were split into two 
datasets based on nationality, and the healthy controls were matched 1:1 
based on the information about the patients with IBS. The comprehensive 
details of the datasets are presented in Table 1.

2.3 Community analysis

Based on the OTU tables derived from each study, alpha diversity 
analysis, beta diversity analysis, and species composition analysis were 

FIGURE 1

Description of the selection of the included studies following a PRISMA flow diagram.
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performed within each dataset. Alpha diversity indices (such as 
evenness, observed OTUs, and Shannon Index) were analyzed using 
the Wilcoxon test (Segata et al., 2011; Thomas et al., 2019; Wu et al., 
2021). Principal coordinates analysis (PCoA) based on the Bray–
Curtis distance at the genus level was used for beta diversity to 
visualize the differences in the microbial community structure across 
the samples. Significance tests for beta diversity indices were 
conducted using permutational multivariate analysis of variance 
(PERMANOVA) with 10^4 permutations in the vegan R package 
(Oksanen et al., 2013). Finally, a meta-analysis of the bacterial alpha 
diversity and beta diversity indices, microbial taxa, and pathways 
across the seven studies was performed using the “metafor” package 
(version 2.4–0) to assess consistency using both a random effects (RE) 
model and the fixed effects (FE) model (Viechtbauer, 2010).The 
analysis was performed in the R environment (version3.6.3). The 
co-occurrence network of the microbes was constructed with the 
Pearson correlation coefficient. The topological coefficients of the 
network were calculated using the R package” igraph.”

2.4 Model construction and evaluation

With the aim of investigating the potential utility and 
generalizability of the distinctive genera and KO makers in effectively 
discriminating between individuals diagnosed with IBS and HS within 
a classification model, we partitioned our dataset into training and test 
sets in a 7:3 ratio. We applied the traditional random forest in study-
to-study transfer validation. In addition, we employed data from the 
seven studies to meticulously construct our classification model. 
Transfer learning involves leveraging existing knowledge to acquire 
new insights (Xu et al., 2023), with its essence lying in identifying 
commonalities between established and novel knowledge domains. 
Through transfer learning, an appropriate model can be adapted to a 
new task by considering the similarities and differences between 
different tasks, and by adopting adaptive learning, the model can 
be flexibly adjusted to meet the needs of different tasks. Given the 
inherent variability in samples across diverse studies, attempting to 
enhance accuracy by applying models from one study to test data from 
another is not straightforward. We employed the area under curve 
(AUC) metric to evaluate the performance of the model and 
constructed a receiver operating characteristic (ROC) curve based on 
the true positive rate (TPR) and the false positive rate (FPR). 

Meanwhile, we  conducted a comparative analysis between the 
validation outcomes derived from the transferred model and those 
obtained from the original, non-transferred model. This comparative 
assessment enabled us to effectively gage the potency of the 
transferred model.

3 Results

3.1 The community diversity analysis of IBS 
and HS

There were significant differences in the overall microbial 
community structure among all groups when all samples from the 
seven studies were combined (PERMANOVA, F = 6.25, p = 0.001). 
However, the PCoA plot based on the Bray–Curtis distance showed 
that the samples were clustered mainly by the individual studies, 
which may be attributed to the differences in the sample populations, 
DNA extraction methods, sequencing regions of the 16S rRNA gene, 
and sequencing platforms used by the individual studies (Figure 2). 
To more objectively reflect the consistent differences in the gut 
bacterial community between the IBS and control groups, 
we performed a meta-analysis on the microbial metrics from each 
individual study in the following analysis.

We evaluated the differences in the alpha diversity metrics 
between the healthy controls and patients with patients at the zOTU 
level. For the alpha diversity metrics, evenness, richness, and Shannon 
Index were calculated. The Shannon Index showed significant odds 
ratios (ORs) greater than 1.0 (Figure 3A), indicating that this index in 
the control group was significantly higher than that in the IBS group. 
When compared in the individual studies, two of the seven studies 
(PRJNA268708 and PRJEB11419UK) observed significantly higher 
microbial richness in the healthy controls than in the IBS group 
(Supplementary Table S1).

When evaluating the differences in the entire bacterial community 
between the IBS and control groups using PERMANOVA at the zOTU 
level, significant differences in the overall communities between the 
IBS and control groups were obtained in six of the seven studies 
(Supplementary Table S2) (PRJNA268708, PRJEB11419UK, 
PRJNA604466, PRJNA544721, PRJNA682378, and PRJNA1011519). 
Using the RE model, significant bacterial community differences were 
observed between the IBS and control groups (Figure 3B). When 

TABLE 1 Characteristics of the datasets included in the fecal sample-based analysis with zOTUs.

Source Country HS IBS Region(s) Sequencing 
platform

Library 
Layout

PRJNA475187 (Zhuang et al., 2018) China 9 20 V3-V4 Illumina Miseq Paired

PRJNA604466 (Belkova et al., 2020) Russia 43 10 V3-V4 Illumina HiSeq Paired

PRJNA566284 (Zhu et al., 2019) China 14 15 V4 Illumina Miseq Paired

PRJNA544721 (Liu et al., 2020) China 44 84 V3-V4 Illumina Miseq Single

PRJNA268708 (Pozuelo et al., 2015) Spain 66 125 V4 Illumina Miseq Single

PRJEB11419USA (McDonald et al., 2018) United States 102 102 V4 Illumina Miseq Single

PRJEB11419UK (McDonald et al., 2018) United Kingdom 146 146 V4 Illumina Miseq Single

PRJNA682378 (Vork et al., 2021) China 78 71 V4 Illumina MiSeq Single

PRJNA1011519 China 65 85 V4 Illumina Miseq Paired
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compared in the individual studies, five of the seven studies 
(PRJNA604466, PRJNA544721, PRJNA268708, PRJEB11419USA, 
and PRJEB11419UK) observed significant bacterial community 
differences between the IBS and control groups (Figure 3B).

3.2 Identification of cross-cohort species 
biomarkers for IBS

For the purpose of further identifying the significantly different 
taxa and bacterial pathways between the control and IBS groups, 
we calculated the ORs of all common taxa and pathways in each 
study. We  identified 26 genera and 12 pathways that were 
significantly associated with IBS. Faecalitalea had significant ORs 
lower than 1.0 for the IBS group in the RE models. The 26 genera, 
including Lachnospiraceae, Ruminococcaceae, Holdemanella, 
Christensenellaceae, Eubacterium, Clostridium, Ruminococcus, 
Prevotella, Coprococcus, Allisonella, Anaerostipes, Alloprevotella, 
Coprobacter, Paraprevotella and Barnesiella, had significant ORs 
higher than 1.0 for the individuals in the control group (Figure 4A), 
indicating that these bacteria were scarce in the patients with 
IBS. Vasopressin-regulated water reabsorption had significant ORs 
higher than 1.0 for the individuals in the control group in the RE 
models. The 11 pathways, including peroxisome, inositol phosphate 
metabolism, aminobenzoate degradation, spliceosome, D-arginine 
and D-ornithine metabolism, nitrogen metabolism, tyrosine 
metabolism, vitamin B6 metabolism, carbon fixation pathways in 
prokaryotes, phenylalanine metabolism, and selenocompound 

metabolism, had significant ORs lower than 1.0 for the individuals 
in the IBS group (Figure  4B). The statistical analysis of the 
microbial community in the two groups is presented in 
Supplementary Table S3. The significant differences at other species 
levels are shown in Supplementary Figures S1, S2.

3.3 Predictive performance of the model 
on IBS and HS

In a previous study, we identified a total of 26 different genera and 
12 KOs. These identified genera/KOs have been used as pivotal 
features in our model construction endeavors, contributing to the 
development of their corresponding models. The comprehensive 
outcomes across the various studies, as well as the amalgamated 
findings encompassing all examined studies, are meticulously 
presented in Tables 2, 3. As shown in Figure 5A, the test set result of 
the overall study at the genus level was 0.6384, and the test set result 
of the overall study at the pathway level was 0.6074. Meanwhile, 
we  present the contribution ranking of the features in the model 
(Figure 5B; Supplementary Figure S3). We used the above-mentioned 
bacterial genera to train models on the respective training sets of each 
dataset and then validated them on the validation sets of each dataset 
separately. We achieved an average internal AUC of 0.6443, with a 
range of 0.49–0.85 along the diagonal. The average AUC of the test sets 
did not reach 0.7, and only four training sets had an average AUC 
higher than 0.6 (Figure 6A). The classifier had an average AUC of 0.6 
(off-diagonal column average), and all models had an average external 

FIGURE 2

Principal coordinates analysis (PCoA) based on the Bray–Curtis distance according to the genera. Each point in the diagram represents a sample. The 
shapes represent the healthy control and IBS groups, respectively. The colors represent the different studies.
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AUC higher than 0.54 (off-diagonal row average), indicating its 
effectiveness across the different cohorts.

In addition, when the models were trained at the KO functional 
prediction level, the classifier had an average AUC of 0.6 (Figure 6B; 
off-diagonal column average), and all models had an average external 
AUC higher than 0.58 (off-diagonal row average), indicating its 
effectiveness across the different cohorts. When validating on the 
different datasets’ test sets, the average AUC of the test sets did not 
reach 0.7, and only three test sets had an average AUC higher than 0.6, 
raising the external mean AUC from 0.54 to 0.63 (Figure 6B). The 
features closely related to the patients with IBS and healthy controls 
did not show the expected effectiveness when training models to 
be used across datasets. The insights gleaned from the depicted figure 
revealed a discernible pattern: the features selected through meta-
analysis can play a role in the modeling process, which helps 
distinguish IBS and HS.

3.4 Performance of transfer learning 
models on IBS and HS

From the outcomes derived from the aforementioned modeling 
endeavors, it is evident that superior results cannot be achieved when 
examining individual studies in isolation. In light of this, we used 
transfer learning to enhance the predictive capabilities of our model. 
After comprehensively considering the results of the different studies, 
it was found that the overall results of the PRJNA682378 study were 
better. Therefore, the PRJNA682378 model was used as a suitable 
transfer candidate model. Subsequently, transfer learning was 
performed on the different studies at the genus level. The results of 
both pre-transfer and post-transfer are shown in Table  4; 
Supplementary Figure S4A. In addition, the results at the pathway 
level are shown in Supplementary Table S4 and 
Supplementary Figure S4B. It can be seen that after transfer learning, 

the results of the majority of the studies improved. Although the 
results of the individual studies did not improve, they were basically 
the same as the results before transfer learning. Overall, the use of 
transfer learning can improve the performance of the model.

3.5 Co-occurrence network for the 
patients with IBS

We quantified the relationships between the 26 different genera at 
the genus taxonomic level and the 12 KOs at the pathway level in the 
patients with IBS using the Pearson correlation coefficient. 
Ruminococcaceae and Christensenellaceae were increased in the 
patients with IBS (Figure  4A). Moreover, Ruminococcaceae and 
Christensenellaceae were negatively correlated with vitamin B6 
metabolism (Figure 7), which was decreased in the patients with IBS 
(Figure  4B). Ruminococcaceae was also negatively correlated with 
tyrosine metabolism (Figure 7), which was decreased in the patients 
with IBS (Figure 4B).

3.6 The interconnection of the 
identification of the cross-cohort species 
biomarkers

We observed that the abundance of Ruminococcaceae, 
Anaerostipes, and Christensenellaceae was increased in the patients 
with IBS in our study. The latest study reported that Ruminococcaceae 
was positively associated with IBS (Tana et al., 2010). Another study 
reported that Anaerostipes was increased in IBS-C (Chassard et al., 
2012). A higher relative abundance of Christensenellaceae in healthy 
controls compared to individuals with IBS was reported in several 
studies (Pozuelo et al., 2015; Jalanka-Tuovinen et al., 2014; De Palma 
et  al., 2017; Hollister et  al., 2020). Several studies also reported a 

FIGURE 3

Comparison of bacterial alpha diversity and beta diversity between the individuals with IBS and HS. (A) Forest plot of the alpha diversity metrics 
richness, Shannon Index, and evenness (J) between the individuals with IBS and HS; (B) Forest plot of the Bray–Curtis distance between the individuals 
with IBS and HS. The error bar depicts the 95% confidence interval. The ORs less than 1.0 (left side of the dashed line) indicate that the metric was 
higher in the patients with IBS than in the controls. The ORs greater than 1.0 (right side of the dashed lines) indicate that the metric was lower in the 
patients with IBS than in the controls. No intersection between the dashed line and the error bar indicates a significant difference between the patients 
with IBS and the controls.
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FIGURE 4

Forest plots of (A) the genera or (B) the KOs with the significant ORs.

TABLE 2 The results of the different studies at the genus level.

Dataset Training AUC Testing AUC

PRJNA268708 0.85202 0.67310

PRJEB11419USA 0.90171 0.49205

PRJEB11419UK 0.79621 0.53774

PRJNA604466 0.99524 0.69231

PRJNA544721 0.86390 0.59310

PRJNA682378 0.96011 0.84585

PRJNA1011519 0.93417 0.67894

All studies 0.71942 0.63841

TABLE 3 The results of the different studies at the pathway level.

Dataset Training AUC Testing AUC

PRJNA268708 0.81136 0.62033

PRJEB11419USA 0.80060 0.58466

PRJEB11419UK 0.76986 0.54077

PRJNA604466 0.99285 0.53846

PRJNA544721 0.79759 0.51379

PRJNA682378 0.91596 0.81126

PRJNA1011519 0.94599 0.86759

All studies 0.64749 0.60742
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positive correlation between Christensenellaceae and longer transit 
time or even constipation (De Palma et al., 2017; Oki et al., 2016; 
Roager et al., 2016; Tigchelaar et al., 2016; Jalanka et al., 2019).

Tyrosine metabolism, vitamin B6, and phenethylamine were 
clustered in the patients with IBS. Rearranged during transfection 
(RET) is a neuronal growth factor receptor tyrosine kinase critical for 
the development of the enteric nervous system (ENS), which may lead 
to the hyperinnervation of visceral afferent neurons in the GI tract and 
contribute to the pathophysiology of IBS (Schenck Eidam et al., 2018). 
It may become a target for treating IBS (Schenck Eidam et al., 2018). 
Low intake of vitamin B6 is associated with irritable bowel syndrome 
symptoms (Ligaarden and Farup, 2011). A previous study reported 
that an anaerobic, Gram-positive, and IBS-associated bacterium, 
Ruminococcus gnavus, produces tryptamine and phenethylamine by 
utilizing the dietary amino acid tryptophan and phenylalanine to 
induce diarrheal symptoms in patients with IBS (Zhai et al., 2023).

Ruminococcaceae and Christensenellaceae, which were positively 
associated with IBS (Pozuelo et al., 2015; Tana et al., 2010; Jalanka-
Tuovinen et al., 2014; De Palma et al., 2017; Hollister et al., 2020), were 
negatively correlated with vitamin B6 metabolism in the patients with 
IBS. We are also aware that low intake of vitamin B6 is associated with 
IBS (Ligaarden and Farup, 2011). Tyrosine metabolism contributed to 
the pathophysiology of IBS, while it was negatively correlated with 
Ruminococcaceae. Therefore, these results reveal how the gut 
microbiota of patients with IBS affects the disease through 
metabolic pathways.

4 Discussion

The study aimed to identify universal gut microbiota biomarkers 
for IBS prediction and therapeutic targets. We employed a consistent 
workflow to process raw data, minimizing technical variations 
between studies. Through the dataset of 1,167 samples, we addressed 
whether the microbial community of patients with IBS differs from 

healthy individuals. Overall, the study identified universal biomarkers 
for IBS prediction and therapeutic targets. The RF model can help 
choose suitable bacterial strains for precision medicine, benefiting 
patients with IBS. Transfer learning can assist in transferring the 
performance of a well-performing model to other datasets to a 
large extent.

We first analyzed commonly reported indicators in the 
microbiome field by evaluating alpha diversity, beta diversity, and 
changes in relative abundance at the genus level of the zOTU 
microbiome. We observed that not all indicators showed significant 
differences in the random effects models used to identify the alpha 
diversity differences. More than half of the studies found at least one 
significant difference among the three analyzed indicators. In 
addition to richness being higher in the patients with IBS compared 
to the healthy population, other alpha diversity indices were 
generally lower in the patients with IBS. Significant differences in 
beta diversity between the patients with IBS and controls were 
relatively more frequent and prominent in the overall dataset, with 
five out of seven studies showing significant differences. These results 
suggest distinct microbial communities within the IBS population, 
while also suggesting that microbial diversity is not the 
discriminating factor. Regardless of the high or low alpha diversity, 
the results of previous studies based on the same dataset are 
consistent with our findings (Liu et al., 2021). Therefore, the alpha 
diversity differences observed in some studies might have been the 
result of variables other than IBS status, although these variables are 
not yet known.

We used meta-analysis to extract bacterial genera at the genus 
level for modeling. Overall, the random forest model based on the 
PRJNA682378 dataset performed the best at the species-genus level 
(AUC = 0.8459), while the modeling results based on the KO features 
performed the best using the PRJNA1011519 dataset (AUC = 0.8676). 
The model based on the PRJNA682378 dataset also showed good 
results (AUC = 0.8113). However, superior results could not 
be obtained when individually examining specific studies. In light of 

FIGURE 5

Establishment of an IBS discriminative model based on the abundance of the bacterial genera. (A) Diagnostic potential of intestinal bacteria for IBS 
across all studies. The specific AUC values for the training set and test set are shown in Table 2; (B) The rank of feature importance for the optimal 
model.
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FIGURE 6

Cross-prediction matrix reporting the prediction performances as the AUC values obtained using a random forest (RF) model on the (A) genus and 
(B) pathway level-relative abundances. The values boxed in yellow squares on the diagonal are the AUC values obtained by training and validating 
within the individual cohorts. The non-diagonal values refer to training a classifier on the dataset corresponding to the row and applying it to the 
dataset corresponding to the column to obtain the AUC values. The row averages are the average values excluding the diagonal values.
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this, we applied transfer learning to enhance the predictive power of 
our models. Considering the results from the different studies, 
we selected the PRJNA682378 model as the suitable candidate for 
transfer. Transfer learning was applied at the genus and pathway 
levels for the different studies. After transfer learning, the majority of 
the study results showed improvement. However, the results of the 
individual studies did not improve; they were essentially the same as 
before transfer learning. Overall, the use of transfer learning can 
improve model performance.

The abundance of Ruminococcaceae, Anaerostipes, and 
Christensenellaceae was increased in the patients with IBS, while 
tyrosine metabolism, vitamin B6, and phenethylamine were clustered 
in the patients with IBS. Ruminococcaceae and Christensenellaceae 
were negatively correlated with vitamin B6 metabolism in the patients 
with IBS. Tyrosine metabolism was negatively correlated with 

Ruminococcaceae. Indeed, there are some conflicting results regarding 
Christensenellaceae. For example, Kamp et al. included 67 women 
with IBS and 46 healthy women and used 16S rRNA gene sequencing 
for bacterial identification. They found that the abundance of 
Christensenellaceae R-7 group, Collinsella, Ruminococcaceae 
UCG-002, Ruminococcaceae UCG-005, and Ruminococcaceae 
UCG-014 in the IBS group was lower than in the HC group (Kamp 
et  al., 2024). However, another study by Villanueva-Millan et  al. 
found that in patients with IBS-C (irritable bowel syndrome with 
constipation), the main hydrogen producers were Ruminococcaceae 
and Christensenellaceae (Villanueva-Millan et al., 2022). It is because 
of these uncertainties that we collected datasets from multiple studies 
to conduct a meta-analysis for an objective and systematic evaluation. 
Indeed, due to the inherent heterogeneity of the IBS disease itself, it 
would be meaningful to collect more studies within a subtype of IBS 
in the future to further explore the role of specific microbes.

There are several limitations to our study. Firstly, we were limited to 
publicly available data, which often lack sufficient clinical information 
to evaluate alternative hypotheses. In the absence of this information, 
we could not determine whether the inconsistency between the studies 
merely reflected sampling biases in the selected studies. For example, 
some studies may only recruit individuals with more severe forms of 
IBS, whose microbiota may differ from other patients with IBS. In 
addition, the impact of the IBS subtypes on the microbiota of the 
patients with IBS could not be  accurately concluded, particularly 
regarding their influence on patient diversity. Furthermore, due to our 
limitations, our study only utilized 16S data and could not capture 
classification ability at a non-genus level. Further multi-omics research 

FIGURE 7

Co-occurrence network plot showing the correlations between the 12 pathways and 26 genera that had significant Spearman correlation coefficients 
(i.e., with |correlation coefficient | > 0.5 and p < 0.05). The size of the nodes varies with the number of edges (red lines, negative correlations; green 
lines, positive correlations).

TABLE 4 Pre-transfer learning and post-transfer learning results at the 
genus level.

Dataset Post-AUC Pre-AUC

PRJNA268708 0.70399 0.67310

PRJEB11419USA 0.54205 0.49205

PRJEB11419UK 0.60331 0.53774

PRJNA604466 0.61538 0.69231

PRJNA544721 0.62414 0.59310

PRJNA1011519 0.78854 0.67894

Bolded fonts indicate an improvement in performance compared to before transfer learning.
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is needed to quantify the abundance of microbial species and their 
effects on proteins and metabolites.
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