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Background: In-feed antibiotic growth promoters (AGPs) have been a

cornerstone in the livestock industry due to their role in enhancing growth

and feed e�ciency. However, concerns over antibiotic resistance have driven

a shift away from AGPs toward natural alternatives. Despite the widespread

use, the exact mechanisms of AGPs and alternatives are not fully understood.

This necessitates holistic studies that investigate microbiota dynamics, host

responses, and the interactions between these elements in the context of AGPs

and alternative feed additives.

Methods: In this study, we conducted a multifaceted investigation of how

Bacitracin, a common AGP, and a natural alternative impact both cecum

microbiota and host expression in chickens. In addition to univariate and static

di�erential abundance and expression analyses, we employed multivariate and

time-course analyses to study this problem. To reveal host-microbe interactions,

we assessed their overall correspondence and identified treatment-specific

pairs of species and host expressed genes that showed significant correlations

over time.

Results: Our analysis revealed that factors such as developmental age

substantially impacted the cecum ecosystem more than feed additives. While

feed additives significantly altered microbial compositions in the later stages,

they did not significantly a�ect overall host gene expression. The di�erential

expression indicated that with AGP administration, host transmembrane

transporters and metallopeptidase activities were upregulated around day

21. Together with the modulated kininogen binding and phenylpyruvate

tautomerase activity over time, this likely contributes to the growth-

promoting e�ects of AGPs. The di�erence in responses between AGP

and PFA supplementation suggests that these additives operate through

distinct mechanisms.

Conclusion: We investigated the impact of a common AGP and its natural

alternative on poultry cecum ecosystem through an integrated analysis of both

the microbiota and host responses. We found that AGP appears to enhance host
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nutrient utilization and modulate immune responses. The insights we gained

are critical for identifying and developing e�ective AGP alternatives to advance

sustainable livestock farming practices.

KEYWORDS

antibiotic growth promoter (AGP), phytogenic feed additive (PFA), poultry, cecum, gut

microbiome, host expression, host-microbe interaction

1 Introduction

Antibiotic growth promoters (AGPs) are in-feed antibiotics at
a sub-therapeutic concentration. The discovery of their growth-
promoting effect in the 1950s has led to their wide usage
in livestock farming practices, especially in the poultry sector
(Kirchhelle, 2018). Common classes of antibiotics used as growth
promoters include macrolide, β-lactam, tetracycline, peptides,
fluoroquinolones, and polymyxins (Roth et al., 2019). Bacitracin,
for example, was one of the most used peptide antibiotic growth
promoters for poultry. It has been shown in different studies to
be able to reduce poultry mortality rate, lower feed conversion
ratio, and increase weight gain (Wicker et al., 1977; Ferket et al.,
2002; Izat et al., 1990; Crisol-Martínez et al., 2017). However, in
the late ’90s, a clear connection between the use of antibiotics
in livestock farming and the development of antibiotic resistance
was recognized (Singer et al., 2003; Khachatourians, 1998; Witte,
1998; McDermott et al., 2002). Since then, the industry has been
searching for effective natural alternatives to AGPs. The promising
alternative options include probiotics, prebiotics, and phytogenic
feed additives (PFAs) (Rahman et al., 2022). PFAs, the alternative of
focus in this study, are plant-derived feed additives that can also
enhance production (Abdel-Moneim et al., 2020). The beneficial
effects of PFAs are believed to be attributed to polyphenols, the
main bioactive compounds, which possess natural antioxidant and
antimicrobial properties (Gadde et al., 2017).

Understanding the exact modes of action is essential to develop
potent alternatives for AGPs. However, despite being used for
decades, the molecular mechanisms behind the observed growth-
promoting effects remain unclear (Brown et al., 2017). Based on
the current evidence, the proposed hypotheses can be primarily
divided into microbiota-centric and host-centric ones (Rahman
et al., 2022). When used as AGP, the dosages of antibiotics are
typically lower than the minimum inhibitory concentration
needed to suppress the growth of pathogens directly (Broom,
2017). Consequently, popular microbiota-centric hypotheses
mainly focus on how AGPs alter the gut microbiota composition,
potentially promoting beneficial microbial populations and
indirectly controlling pathogenic bacteria (Smirnov et al., 2005;
Wati et al., 2015). Alternatively, microbial compositional changes
can reduce the nutrient demands of the microbial community,
making more nutrients available for the host (Plata et al., 2022).
Host-centric hypotheses propose that AGPs can enhance nutrient
uptake by the host, for example, through a thinner polarized
epithelium (Page, 2006). Although the industry has increasingly
shifted away from AGP in favor of alternatives such as PFAs,

these alternatives also suffer from a similar lack of understanding
regarding their molecular mechanisms.

To understand the underlying mechanisms of AGPs, many
previous work utilized traditional culture-based methods and
microarrays to examine the poultry gut microbial and host
response. More recently, an increasing number of studies have
employed high-throughput sequencing methods to examine the
effects of AGPs and their alternatives on poultry gut ecosystem
(Danzeisen et al., 2011; Salaheen et al., 2017; Paul et al., 2022;
Huang et al., 2018; Lin et al., 2013; Costa et al., 2017; Fibi-Smetana
et al., 2021; Luo et al., 2021; Oladokun et al., 2022). However, most
of these studies focus on either the microbiota or the host gut,
lacking a holistic view of the problem. The potential differences
in the response of digesta and mucosa-associated microbiota are
frequently neglected, despite increasing evidence of their distinct
compositional and functional roles (Borda-Molina et al., 2018). In
addition, the temporal nature of the response and the multivariate
nature of the data are often overlooked. For instance, some
studies rely solely on cross-sectional data collected at a single time
point. Frequently, even when data is collected from multiple time
points, only static and univariate analysis methods, like differential
abundance and expression analysis, are used to identify affected
microbes or host genes.

Our study aims to systematically assess the impact of a common
AGP and a PFA on the poultry cecum ecosystem across four critical
development stages. To achieve an integrated understanding, we
analyzed both the gut microbiota (in the digesta and mucosa
content) and host gene expression. Beyond standard differential
abundance and expression analysis, we employed multivariate
and time-course analyses to address the complex, time-dependent
nature of this problem. Furthermore, we examined overall
correspondences between the two profiles to explore potential
interactions between the gut microbiota and host gene expression
in the cecum. Besides, we identified significantly correlated pairs
with treatment-specific patterns over time. The insights gained
from our results are crucial for discovering and developing effective
AGP alternatives for sustainable livestock farming.

2 Materials and methods

2.1 Materials

The data for our study were obtained from a previously
conducted controlled randomized trial on poultry (Segura-Wang
et al., 2021). Briefly, ninety-six healthy one-day-old male broiler
chickens (Ross 308) were randomly allocated into twelve pens, with
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eight birds per pen. The twelve pens were further randomized into
three dietary treatment groups: Control, AGP, and PFA, each group
comprising four replicates.

Throughout the experiment, all birds were fed a standard
basal diet. The Control group received no additional feed
supplements. From day 3 to 35, the AGP group received an in-
feed supplementation of zinc-bactracin (ALBAC R©, Huvepharma,
Belgium; 20 mg/kg). The PFA group was supplemented with
a phytogenic feed additive (Digestarom R© DC Power, Biomin
Holding GmbH, Austria; 150 mg/kg feed).

Birds were euthanized on days 3 (baseline), 14, 21, and 35 for
sample collection. Each time, two birds per pen were sacrificed
to obtain samples of cecum digesta content, mucosa content, and
tissue from the host. The samples from the two birds from each
pen were pooled to form a single sample. To profile the cecum
microbiota compositions, DNA was extracted from the collected
digesta and mucosa content using the QIAamp PowerFecal DNA
Kit (Qiagen) following the manufacturer’s instructions. Library
preparation and metagenomic sequencing were performed by
LGC Genomics GmbH, using 150 bp paired-end reads (Illumina
NextSeq 500 V2). RNA was extracted and purified from the tissue
samples with the RNeasy Plus Mini Kit (Qiagen, Germany). The
concentration and purity of isolated RNAs were estimated on a
NanoDrop 2000 spectrophotometer (Thermo Scientific, 442 USA)
and RNA quality (RIN) was determined by using the 4200 Agilent
TapeStation System (Agilent). RNA-Seq libraries were prepared
with the NEBNext Ultra RNA Library Prep Kit for Illumina, which
includes poly(A) enrichment. The library was sequenced on a
Illumina NovaSeq S1 SR100 machine.

2.2 Methods

The overall workflow of this study can be found in Figure 1,
while the details of each step and the methods used are
described below.

2.2.1 Quality control and read alignment
To ensure the quality of the metagenomic and host

transcriptomic reads, we employed FastQC v0.11.7 (Andrews
et al., 2017) for read quality assessment and Trimmomatic v0.39
(Bolger et al., 2014) for trimming low-quality bases.

For the metagenomic samples, Bowtie2 v2.3.5.1 (Langmead
and Salzberg, 2012) and samtools v1.10 (Li et al., 2009) were used
to remove the host sequences using the Gallus gallus genome
GRCg6a downloaded from the NCBI FTP site (https://ftp.ncbi.
nlm.nih.gov/genomes/all/GCF/000/002/315/GCF_000002315.
6_GRCg6a/). Kraken2 v2.1.2 (Wood et al., 2019) was used to
profile the taxonomic compositions of the samples at the species
level using the GTDB release 207 (Parks et al., 2022) prebuilt
by Struo2 (Youngblut and Ley, 2021). Bracken (Lu et al., 2017)
was subsequently used to improve the accuracy of the abundance
estimates generated by Kraken2. To reduce noise and spurious
results, microbial species that have a relative abundance below
0.01% in <10% of the microbiota samples were excluded. In the
following analysis of the microbiota, we separated the two sample

types, digesta and mucosa, since they might react differently to
changes in feed.

For the host transcriptomic samples, HISAT2 (Kim et al.,
2019) and samtools v1.10 were used to map the transcriptomic
reads to the Gallus gallus genome GRCg6a mentioned before.
Next, featureCounts (Liao et al., 2014) was used to generate the
read counts. Similarly, host transcripts representing <0.1% of
all transcripts in fewer than 10% of the transcriptomic samples
were removed.

2.2.2 Overall correspondence between
microbiota and host transcriptomic profiles

We converted the obtained digesta and mucosa microbiota
compositions, as well as host transcriptomic profiles into distance
matrices using Spearman’s rank correlation to evaluate their
overall correspondence, independently of the treatment groups.
Subsequently, Mantel tests were conducted on each pair of the
distance matrices to assess their correlations. This analysis was
performed using the vegan R package v2.6.4 (Oksanen et al., 2022).

2.2.3 Comprehensive multivariate analysis and
statistical tests

In order to compare the influence of age, sample type and
treatment on microbial compositions and host tissue expression,
we employed hierarchical clustering to visualize and Permutational
Multivariate Analysis of Variance (PERMANOVA) to quantify such
influence of different sources.

Specifically, for all collected microbiota samples, we first
computed the pairwise Bray-Curtis dissimilarity based on species-
level relative abundance. Using this dissimilarity matrix, we
visualized the underlying groupings of all microbiota samples
by hierarchical clustering. To quantitatively assess the impact of
various factors and their interactions on microbial community
composition, we conducted Permutational Multivariate Analysis
of Variance (PERMANOVA) test. The tested factors include the
poultry age (four levels: Days 3, 14, 21, and 35), sample type (two
levels: digesta and mucosa) and treatment (three levels: AGP, PFA
and Control). We implemented the PERMANOVA test provided
in the vegan R package v2.6.4. The associated p-values were derived
by a permutation test with 1,000 iterations to assess the statistical
significance. A significance level of 0.05 was used.

Similarly, we used hierarchical clustering and PERMANOVA to
assess the impact of different sources on host expression. However,
in this case, we transformed the raw counts by the regularized log
function provided in DESeq2 R package v1.40.2 (Love et al., 2014)
and used Euclidean distance to obtain the distance matrix for all
transcriptome samples.

2.2.4 Cross-sectional multivariate analysis
Dimension reduction and overlaying environmental variables

onto the new ordination can provide valuable insights into how
environmental factors impact a high-dimensional dataset. To
evaluate such impact of the treatments on both data types at each
single time point, we used non-metric multidimensional scaling
(NMDS) implemented by the vegan R package v2.6.4 (Oksanen
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FIGURE 1

General workflow for the metagenomics and host transcriptomics analysis. To systematically assess the response of cecum ecosystem to AGP and

PFA, we used metagenomic sequencing and RNA sequencing to profile the cecum microbiota compositions and host transcriptomics from chickens

receiving di�erent feed strategies at di�erent ages. Later, we used Mantel tests to quantify the overall correspondence between the profiled

microbiota compositions and the host gene expression. We used both the comprehensive and cross-sectional multivariate analysis to understand

how di�erent factors such as age, microbial sample type and feed additives impact our data. Later, di�erential abundance and expression analysis

was performed to identify di�erentially abundant species and host expressed genes at each time point. In the end, a time-course analysis was

conducted to find treatment-specific patterns in microbial species and host transcripts over time. Created with BioRender.com.

et al., 2022) to project the digesta and mucosa samples, as well
as host transcriptomic samples collected at each single time point
to a low-dimensional space. Specifically, NMDS was applied for
microbial samples using the Bray-Curtis dissimilarity matrices, and
host transcriptome samples using the Euclidean distance matrices.
Subsequently, the treatment group variable was fitted to the new
ordination plots using the envfit function (Clarke and Ainsworth,
1993) from vegan. The envfit function infers the influence of the
treatments on themicrobial compositions and host gene expression
by examining the distribution and clustering of samples based
on the treatment group variable within the ordination space. To
quantify such influence, for each dataset at each time point, an
r2 score was calculated by dividing the between-group variance
by the total variance, indicating the proportion of the variance
in the samples explained by the treatment group. Based on the
ordination and the r2 score, an associated p-value was also provided
by a permutation test with 1,000 iterations to assess the statistical
significance. A significance level of 0.05 was used.

2.2.5 Microbiota complexity and comparison
Traditionally, microbiota complexity has been assessed by

different alpha diversity metrics. To evaluate the impact of the
two feed additives on the microbiota complexity, we calculated
Chao1 richness, Pielou’s evenness and Shannon diversity for each
microbiota sample using the Scikit-bio Python package v0.5.8
(Rideout et al., 2022). Later, Mann-Whitney U-Test was used
to compare the three diversity metrics between each of the two
treatment groups and the control group for bothmicrobiota sample
types (digesta andmucosa). To control for the risk of false positives,

we corrected the resulting p-values from the Mann-Whitney U-
Test by the Benjamini-Hochberg method. A significance level of
0.05 was used.

2.2.6 Di�erential abundance and di�erential
expression analysis

We utilized the Wald test in DESeq2 R package v1.40.2 to
conduct differential abundance and expression analysis. DESeq2
is particularly advantageous for generating robust results when
dealing with small sample sizes, thanks to its use of shrinkage for
dispersion and fold change estimates (Baik et al., 2020). Though the
method was originally developed for analyzing the RNA-seq data,
its similarity to metagenomic data makes the tool also suitable for
microbial count data. To be specific, DESeq2 was used to identify
the differentially abundant species in both digesta and mucosa,
as well as differentially expressed host genes. The analysis was
performed separately at each four time points for each two feed
additive groups. The species abundance and transcript expression
level in the control group were used as the baseline for comparison.
The log fold changes (LFC) were shrunk using the “apeglm”
method to provide more accurate LFC estimates. The Wald test
was then used to test if the LFC is equal to zero. The cutoff we
used for the adjusted p-value was 0.05 and for the log2Fold Change
(log2FC) was 1.

2.2.7 Time-course analysis for microbial species
and host transcripts

Apart from the differential abundance and expression analysis,
we fully utilized the time-course experiment design by performing
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the likelihood ratio test (LRT) provided in DESeq2. This analysis
allows the identification of treatment-specific changes over time.
Similar to the Wald test, we compared the temporal trends of
individual species abundance and host transcript expression in the
AGP and PFA groups separately to those in the control group.
Specifically, the full model design matrix contained the age factor,
the treatment factor, and the interaction of the two (design =∼

treatment+age+treatment : age). The reducedmodel removed the
interaction term (design =∼ treatment+ age). DESeq2 fitted both
the full and reduced models to the count data of a specific species
or transcript using a generalized linear model (GLM) framework
with negative binomial distribution. LRT tests were later used to
test the statistical significance of the increase in the log-likelihood
from the additional coefficient of the interaction term to identify
treatment-specific changes over time.

Furthermore, to reveal possible interactions between the
identified host transcripts and microbial species that have
treatment-specific patterns, we calculated their pairwise
correlations over time using Spearman’s rank correlation and
obtained the associated p-values by using the scipy Python package
v1.10.1. Multiple-testing correction was used later on the p-values
using Benjamini-Hochberg method.

2.2.8 Gene ontology enrichment analysis for host
transcripts

To understand the involved molecular functions of the
identified differentially expressed host genes and host genes that
show treatment-specific patterns, Gene Ontology (GO) enrichment
analysis was performed using g:profiler (Raudvere et al., 2019). The
default significance method g:SCS and the default cutoff value 0.05
were used.

3 Results

3.1 Age and sample type impact the cecum
ecosystem more than the feed additive

To compare the effects of the feed additive and other factors
on the cecum ecosystem, we profiled the collected microbiota
samples and host tissue transcriptome samples. Hierarchical
clustering and PERMANOVA were then used to visualize and
quantify the impact of different factors on these profiles. Our
results indicate that poultry age has a greater impact on both
gut microbiota composition and host gene expression than feed
additives. Moreover, within the gut microbiota, the sample type
(digesta vs. mucosa) has a more significant impact on the microbial
compositions than the feeding strategies.

Specifically, we taxonomically profiled the microbiota samples
at the species level. Following quality control, read alignment
and low-abundance filtering, we identified a total of 597 species.
An overview of the ten most abundant species in digesta and
mucosa content at each of the four time points is plotted
in Supplementary Figure S1. Using hierarchical clustering, based
on the Bray-Curtis dissimilarity matrix from all microbiota
samples, we revealed that the microbial samples collected at
the same age exhibited similar compositions and tended to

cluster together (Figure 2A). On day 35, clear clustering was
observed based on the sample type (digesta vs. mucosa), though
no distinct treatment-related clusters emerged. Phylum-level
analysis (Supplementary Figure S2) corroborated these findings,
demonstrating significant temporal variations and consistent
differences between the two microbial sample types, even at a high
taxonomic level.

For the host tissue samples, after undergoing similar quality
control and filtering procedures, we obtained 17,383 host
transcripts. Similarly, hierarchical clustering using the Euclidean
distance matrix also showed that age was the predominant factor
influencing the transcriptome profiles (Figure 2B). In contrast,
treatment did not significantly alter the clustering pattern within
age-defined sub-clusters.

To further quantify the effects of various factors and their
interactions on the cecum ecosystem, we conducted PERMANOVA
tests (Table 1). As listed, PERMANOVA tests indicate that age,
sample type and treatment all significantly influenced the microbial
compositions. Specifically, age was the most significant factor,
explaining 38% of the variation in the species-level compositions.
Sample type and treatment also had significant effects, though
to a lesser extent, accounting for 5.2 and 2.75% of the variation,
respectively. Among the interaction terms, only the interaction
between age and treatment was significant, explaining 6.07% of the
variation. As for the host transcriptome profiles, PERMANOVA
results showed that age was a highly significant factor, accounting
for 32.6% of the variations. In contrast, treatment did not have a
significant impact on the host gene expression and the interaction
between age and treatment was also not significant.

3.2 Feed additives significantly influence
the microbiota composition on later days

To examine the impact of feed additives on the cecum
ecosystem at each single time point, we constructed 12 dissimilarity
matrices for each combination of data sources (digesta microbiota,
mucosa microbiota, host transcriptome) and time points. We then
applied dimensionality reduction to these matrices and mapped
the feed additive group onto the new ordination. Our analysis
revealed that feed additives significantly influence the species-
level microbiota compositions, particularly at the later stages of
the experiments.

To illustrate the extent to which the feed additives shaped
the microbial community, we visualized the samples from
each data source at each time point within the reduced-
dimensional space. We quantified such influence by the proportion
of variance in the microbial compositions explained by the
treatment group and evaluated its statistical significance. As
shown in Figure 3, feed additives significantly influenced the
microbiota compositions primarily at the later stage of the
experiment. High r2 scores and statistically significant p-values
(p < 0.05) were observed in the microbial samples collected
on day 21 and day 35. Specifically, the treatment group
explained 35.9 and 39.4% of the variance in digesta and mucosa
microbiota samples collected from day 21, respectively. On day
35, the treatment group accounted for 47.3% of the variance
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FIGURE 2

Visualizing the underlying grouping of the microbiota samples and host tissue transcriptome samples using hierarchical clustering. (A) Digesta and

mucosa microbial samples. (B) Host tissue transcriptome samples. In both heatmaps, each row and each column is a sample, represented by its

Bray-Curtis distances to other samples in the case of microbiota and Euclidean distances in the case of host tissue transcriptome. The metadata

variables, age, treatment, and sample type, are mapped to each sample to reveal their relationships with the sample grouping.

TABLE 1 PERMANOVA results for the e�ects of age, sample type, treatment, and their interactions on gut microbiota compositions and host

transcriptome profiles.

Term Df SS R
2

F-value Pr (>F)

Gut microbiota Age 3 9.962 0.380 20.439 <0.001***

Type 1 1.364 0.052 8.395 <0.001***

Treatment 2 0.722 0.028 2.221 0.002**

Age× type 3 0.675 0.026 1.385 0.076

Age× treatment 6 1.592 0.061 1.633 0.004**

Type× treatment 2 0.143 0.005 0.440 1.000

Age× type× treatment 6 0.221 0.008 0.226 1.000

Residual 71 11.536 0.440

Total 94 26.214 1.000

Host transcriptome Age 3 9252 0.326 7.134 <0.001***

Treatment 2 924 0.033 1.069 0.316

Age× treatment 6 2,665.4 0.094 1.028 0.392

Residual 36 15,563 0.548

Total 47 28,404.5 1

The factors or variables being tested for gut microbiota and host transcriptome were listed with their degrees of freedom (Df). The Sum of Squares (SS) indicates the total variation attributable to
each term in the model. R2 measures the proportion of total variance in the data that is explained by each term. The F-value indicates the ratio of the between-group variance to the within-group
variance with respect to each term. Pr(>F) represents the p-value associated with the F-value. Significance levels are denoted by asterisks: ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001, with all significant
values highlighted in bold.

in the mucosa microbiota samples. However, no significant
effect of the treatment group was detected in the host tissue
transcriptome samples.

Despite the significant correlations between the treatment
group and the microbial samples ordination in later days, we
did not observe significant differences in microbial community
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complexity across any time point. Measures of microbial
complexity, including Shannon diversity, Pielou’s evenness,
and Chao1 richness, remained consistent and did not differ
significantly by the use of AGP or PFA at any time point. The
detailed complexity indices calculated for all microbiome samples
can be found in the Supplementary Table 1. As listed there,
although not the primary focus of our study, we noticed that
mucosa microbiota exhibited much lower richness than the
digesta microbiota.

3.3 Up-regulated transmembrane
transporter activity and metallopeptidase
activity with antibiotic growth promoter
administration

To identify individual microbial species and host transcripts
with significantly different abundance or expression levels between
the treatment groups, we performed differential abundance and
expression analysis. Our results suggest that enhanced host mucosa
transmembrane transporter activity is likely a key mode of action
for antibiotic growth promoters.

In the differential abundance analysis of mucosa species, only
two species showed significant changes across all time points:
Agathobaculum merdigallinarum at day 14 and Mediterraneibacter

intestinipullorum at day 21. Both species were significantly more
abundant in the PFA group compared to the control group, with a
log2 fold-change larger than 3.

In contrast, a greater number of differentially abundant digesta
species and expressed host genes were identified, indicating that
the feed additives had a more substantial impact on them than
the mucosa microbial species. Figure 4A shows the sum of these
digesta species and expressed host genes for each treatment at
each time point. As shown, there were few differentially abundant
digesta species and host transcripts at day 3, suggesting that
the broiler chicken had similar initial states before feed additive
administration. Over time, we noted a gradual increase in the
number of differentially abundant species and host transcripts,
especially with AGP supplementation. Peaks for both digesta
species and host mucosa transcripts were observed on day
21 in the AGP group, indicating a significant perturbation
in the gut ecosystem at this time. Notably, the majority of
differentially expressed genes at this time were up-regulated,
including a group of solute carrier (SLC) genes from the solute
carrier family. Figure 4B shows the detailed names and the
log2 FC values of the differentially abundant digesta species and
host transcripts.

To characterize the response of host expression at day 21
to AGP, we performed a GO molecular function enrichment
analysis, using the differentially expressed host genes at this
time. The enriched terms in the GO context is shown in
Supplementary Figure S3. The enrichment analysis showed that
the key enriched molecular functions include secondary active
transmembrane transporter activity (GO:0015291), carboxylic
acid transmembrane transporter activity (GO:0046943), and
metallopeptidase activity (GO:0008237), ranked by their statistical
significance. These findings suggest that enhanced host mucosa

transmembrane transporter activity and metallopeptidase activity
may play a crucial role in the growth-promoting effects of the
antibiotic growth promoter.

3.4 Modulated MIF and C1QBP expression
over time with antibiotic growth promoter
administration

In addition to the static differential abundance and
expression analysis, we also modeled the temporal dynamics
of microbial species and host gene expression levels. Using
both a full and reduced model, we pinpointed the species
and genes exhibiting AGP or PFA-specific changes over time
through a likelihood ratio test. Our results indicate that AGP
may also promote growth by modulating the expression
of the Macrophage migration Inhibitory Factor (MIF) and
Complement C1q Binding Protein (C1QBP) host genes in
the cecum.

Similar to the differential abundance and expression analysis,
the time-course analysis revealed few significant findings for
mucosal species, while identifying numerous digesta species and
host expressed genes with treatment-specific alterations. Figure 5A
provides an overview of these identified species and host transcripts
for each treatment and the intersection between the two treatments.
As shown, while AGP and PFA influenced the expression trajectory
of 14 shared species across time, the sets of impacted host
expressed genes were unique to each treatment. The complete
table containing the names of the identified digesta species and
host mucosa transcripts that have treatment-specific change can be
found in the Supplementary Table 2.

We performed a GO molecular function enrichment analysis
with the eight host transcripts identified in the AGP group. Given
the well-studied role of MIF and C1QBP in the query gene set
(Figure 5A), the significantly enriched terms include kininogen
binding (GO:0030984) and phenylpyruvate tautomerase activity
(GO:0050178). To visualize the change in the expression of these
two genes in the AGP and control group, we plotted their
trends using locally estimated scatterplot smoothing (LOESS) in
Figure 5B. As shown, for both genes, the slops between all time
intervals differ between the AGP and the control group, particularly
after day 14.

To reveal possible interactions between the identified
host transcript and digesta species that showed different
patterns for each feed additive, we calculated their pairwise
correlation over time. Figure 6 illustrates the resulting Spearman’s
correlation coefficients for both treatment groups, with host
transcripts on the x-axis and digesta species on the y-axis.
Subsequent significance tests show several significant correlations
between specific pairs of host transcript and digesta species. For
instance, in the AGP group, the expression of host gene MIF
exhibited a significant correlation with four species, Faecousia
sp900554625, Flavonifractor phocaeensis A, Mediterraneibacter

intestinipullorum and Blautia A excrementigallinarum. This
suggests potential interactions between these genes and microbial
species during the developmental stages of broiler chickens under
AGP administration.
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FIGURE 3

The NMDS ordinations of microbiota samples and host tissue samples at each time and the results from environmental fitting test analysis (envfit).

The dissimilarity matrices generated from the digesta/mucosa microbiota data and the host transcriptome data were used for dimension reduction

by nonmetric multidimensional scaling (NMDS). Based on that, environmental fitting test analysis (envfit) was applied to fit the treatment group onto

the NMDS ordination. In this step, a r2 score was calculated to quantify the proportion of the variance in the microbial compositions explained by the

treatment group. A corresponding p-value was also provided to indicate the statistical significance of the correlation between treatment group and

ordination axes. Significance levels are denoted by asterisks: *p ≤ 0.05, with all significant values highlighted in bold.

3.5 The host transcriptomics are positively
correlated with gut microbiota profiles

To evaluate the overall correlation between host gene
expression and microbiota composition, we performed Mantel
tests. The results showed a very high Mantel statistic (r =
0.94) between the microbiota profiles from digesta and mucosa,
indicating a strong positive correlation. This result is expected,
given the close proximity of these microbial sample types.
Interestingly, we also noted relatively high r values when comparing
the distance matrix generated from host transcriptomics to the
microbiota distance matrix (r = 0.72 with digesta microbiota
and r = 0.73 with mucosa microbiota). These results suggest
a positive relationship between the host mucosa transcriptomic
profile and microbiota composition. In other words, the birds
with similar cecum mucosa transcriptomic profiles tend to
possess similar gut microbiota compositions. The significance
of these correlations was confirmed by permutation tests, all
showing very low p-values (p < 0.001). This indicates a
high degree of consistency between host gene expression and
microbiota compositions.

4 Discussion

In-feed antibiotic growth promoters have been used for
decades to promote the health and growth of poultry. Despite
their reproducible growth-promoting effects observed, the precise
underlying mechanisms remain unclear. Common hypotheses
regarding their mode of action are divided into microbiota-centric
and host-centric perspectives. Our study systematically examined
the impact of a common AGP and a natural alternative phytogenic
feed additive on the cecum ecosystem during a critical period
of poultry development. This included analyzing the digesta and
mucosa microbiota, as well as the host gene expression.

Our comprehensive analysis of the cecum ecosystem revealed
several key insights into the effects of feed additives and other
influencing factors. While feed additives significantly impact gut
microbiota compositions, they do not notably affect host gene
expression, as evidenced by our PERMANOVA results. Instead,
poultry age emerged as a more significant factor, exerting a greater
influence on the cecum ecosystem than the feed additives. The
observed significant interaction between age and treatment in
microbiota samples indicates that the effects of feed additives
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FIGURE 4

Di�erentially abundant cecum digesta species and host mucosa transcripts at each time point with each treatment. (A) The sum of the di�erentially

abundant digesta species and expressed host transcripts. Their directions of fold-change were indicated by “down” and “up”. (B) The names of the

identified digesta species and host mucosa transcripts that pass log2 FC threshold (=1). For easier visualization, the values of log2 FC were clamped to

have the range between −3 and 3.
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FIGURE 5

Identified species and host expressed genes that showed treatment-specific change across the time. (A) The number of shared and unique digesta

species and host mucosa tissue transcripts that have treatment-specific changes over time. (B) The trends of MIF and C1QBP in the AGP and Control

group. The lines were estimated using locally estimated scatterplot smoothing (LOESS).

on microbial communities vary with the age of the poultry.
To further explore this, we analyzed the data by dividing the
original dataset into four cross-sectional datasets based on age. We
employed dimensionality reduction techniques to assess treatment
effects at each time point. The results from the cross-sectional
analysis supported our PERMANOVA findings, demonstrating
that feed additives impact overall microbiota compositions more
prominently than host gene expression, with significant effects in
the later stages of development. The results we gained regarding
the microbiota align with the findings from Zou et al. (2022), where
sampling site and host age were found to have more substantial
impact on the poultry microbiota than diet and AGPs. The same
study also noted that the impact from diet and AGPs became
more pronounced over time, suggesting that feed additives, such
as AGPs, require a period to significantly influence microbial
populations. Furthermore, our observation of no significant change
with AGP supplementation in microbiota complexity is consistent
with Kumar et al. (2018).

Later, we identified species and host genes significantly affected
by the feed additive treatments using differential abundance and
expression analyses. In the AGP group, we observed notable
peaks in both digesta microbes and host gene expression on day
21, suggesting a substantial perturbation in the gut ecosystem
at around this time. This finding aligns with our dimension
reduction analysis results. Among the differentially abundant
digesta microbes, we noted species from genera such as Blautia,

Eisenbergiella, and Agathobaculum. While the role of these species
in poultry is not well-studied, Blautia, in particular, is recognized
for its potential probiotic effects (Liu et al., 2021). Further
investigation into the functional roles of these species is necessary
to understand their impact on gut health. Meanwhile at day 21, the
majority of differentially abundance host genes were up-regulated,
particularly those associated with secondary active transmembrane
transporter activity, carboxylic acid transmembrane transporter
activity and metallopeptidase activity. These enhanced molecular
functions are important for the growth and health of the animals,
and may contribute to the growth-promoting effects of AGPs.
Specifically, secondary active and carboxylic acid transmembrane
transporters encoded by the up-regulated SLC genes are able
to facilitate the transport of essential nutrients and molecules
across the membrane of epithelial cells for maintaining gut
homeostasis, such as amino acids, short-chain fatty acids and
bile acids (Oelkers et al., 1997; Pramod et al., 2013; Fotiadis
et al., 2013; Hagenbuch and Dawson, 2004; Wright, 2013).
Metallopeptidases encoded by up-regulated genes such as ENPEP,
MEP1A and MEP1B, can catalyze the hydrolysis of peptide
bonds. These enzymes play a role in tissue remodeling and
repair, which may be a response to gut inflammation. For
example, MEP1A and MEP1B encode meprin α and meprin β ,
respectively. In mice and humans, meprins are known to be
able to protect the gut epithelium against toxic peptides and
pathogenic bacteria (Vazeille et al., 2011; Werny et al., 2022).
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FIGURE 6

Spearman’s correlation between digesta species and host transcripts with treatment-specific changes over time. (A) In the AGP group (B) In the PFA

group The associated p-values were calculated by two-sided t-test and corrected using Benjamini/Hochberg method. The significant correlations

are denoted by asterisks: ∗p ≤ 0.05, ∗ ∗ p ≤ 0.01.
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However, their specific functions in poultry cecum remain to be
thoroughly characterized.

In the subsequent time-course analysis, we spotted dozens
of digesta species and a few host expressed genes showing
treatment-specific changes over time for the two treatments.
Such host genes under AGP administration include C1QB and
MIF. These genes were enriched in kininogen binding and
phenylpyruvate tautomerase activity. Kininogens are precursors
to kinins, which are involved in the inflammatory response
and tissue repair (Couture et al., 2001). Encoded by the MIF

gene, phenylpyruvate tautomerase facilitates the conversion of
phenylpyruvate to phenylacetate (Rosengren et al., 1997). This
enzyme is also implicated in cellular signaling pathways related to
inflammation and immune responses (Calandra and Roger, 2003).
The AGP-specific changes over time of these genes suggest that
AGPs modulate immune responses through these pathways, which
could contribute to their growth-promoting effects. In contrast,
PFA application did not induce significant changes in the host
gene expression profile over time. However, it did influence a
comparable number of digesta species. Despite this, there was
minimal overlap between the host genes and digesta species affected
by both feed additives. This indicates that AGP and PFA influence
the cecum ecosystem differently, suggesting distinct mechanisms of
action for them.

Compared to digesta microbiota, we found a less significant
response in mucosa microbiota, according to both the differential
abundance analysis and time-course analysis. The lower richness
we noticed in mucosa microbiota may partly explain such
difference. Furthermore, due to the distinct environments, the
mucosa region is generally more stable than the lumen in terms
of nutrient availability (Borda-Molina et al., 2018), which likely
buffers the mucosa microbiota from dietary changes, such as the
introduction of feed additives.

In the end, to examine potential associations between the host
expression and the microbiota, we applied Mantel tests using their
overall profiles and calculated their pairwise association over time.
Mantel tests showed a significant positive correlation between host
transcriptomic profiles and gut microbiota profiles. This suggests
that poultry with similar gut expression profiles tend to have
similar gut microbial compositions. This strong correlation may
be attributed to the feeding additives, which impact both host
gene expression and microbiota composition. It may also reflect
interactions between host expression and microbiota composition,
consistent with previous studies (Nichols and Davenport, 2021).
Notably, the time-course analysis identified 17 pairs of significant
correlated digesta species and host transcripts with AGP-specific
changes over time, indicating potential AGP-specific interactions.

In conclusion, our study provides a systematic evaluation of
the impact of a common AGP and a PFA on the poultry cecum
ecosystem at four key developmental stages. We found that while
feed additives significantly affect microbiota composition at later
stages, they have a minimal impact on the overall host gene
expression. The distinct pattern of differential abundance and
expression between the AGP and PFA highlight differences in
their modes of action. Specifically, our findings suggest that AGPs
may enhance nutrient utilization and modulate immune responses,
contributing to their growth-promoting effects. These insights are
critical for the development of effective AGP alternatives and for
advancing sustainable practices in livestock farming.
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