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Background: The production of D-lactic acid (D-LA) from non-detoxified corn

stover hydrolysate is hindered by substrate-mediated inhibition and low cell

utilization times. In this study, we developed a novel temperature-sensitive

hydrogel, F127-IEA, for e�cient D-LA production using a cell-recycle batch

fermentation process.

Results: F127-IEA exhibited a porous structure with an average pore size of

approximately 1µm, facilitating the formation of stable Lactobacillus bulgaricus

clusters within the gel matrix. It also maintains excellent mechanical properties.

It also maintains excellent mechanical properties. F127-IEA immobilized

Lactobacillus bulgaricus T15 (F127-IEA-T15) can be used in cell-recycle

fermentation for over 150 days from glucose and 50 days from corn stover

hydrolysate, achieving high production rates of D-LA from glucose (2.71 ± 0.85

g/L h) and corn stover hydrolysate (1.29 ± 0.39 g/L h). F127-IEA-T15 enhanced

D-LA production by adsorbing and blocking toxic substances present in corn

stover hydrolysate that are detrimental to cellular activity.

Conclusions: The newly developed hydrogels in this study provide a robust

platform for large-scale extraction of D-LA from non-detoxified corn stover.
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1 Introduction

Biorefineries derived from lignocellulosic biomass play a pivotal

role in the emerging bioeconomy and efforts to advance energy

and environmental sustainability (Partovi et al., 2020; Wang X.

et al., 2020). Extensive research has focused on the conversion

of lignocellulosic materials, including agricultural residues such

as corn stover (Zhang et al., 2020), maize stover (Zhang et al.,

2023), sugarcane bagasse (Agrawal and Kumar, 2023) as well

as forestry byproducts like spruce (Campos et al., 2023), and

eucalyptus (Cabrera et al., 2024), into lactic acid, underscoring

their potential for sustainable bioprocessing (Ajala et al., 2020).

Among various lignocellulosic sources, corn stover with an annual

output of 700 million tons stands out as a crucial resource.

Corn stover as a fermentation raw material is also conducive to

solve global challenges such as food crisis, low utilization rate

of corn stover, and environmental pollution caused by excessive

burning (Li et al., 2021; Schroedter et al., 2021). The fermentable

sugars from corn stover can provide an exceptional carbon source

for biochemicals production. However, the pretreatment of corn

stover, a key step in generating fermentable sugars, results in the

formation of inhibitors such as ferulic acid (FA) and vanillin,

which significantly impede microbial fermentation (Dordevic et al.,

2019; Sharma et al., 2021; Zhang et al., 2021). The antimicrobial

properties of polyphenols aremainly determined by the structure of

the individual, such as FA through the interaction with the bacterial

cell membrane, changing the hydrophobicity of the cell membrane

causing local damage to the cell membrane and leakage of

essential intracellular components (Li et al., 2022).These inhibitors

penetrate the cell membrane, inducing the accumulation of reactive

oxygen species that alter the ratio of cell membrane proteins to

lipids and cause irreversible membrane damage (Sharma et al.,

2009). Although detoxification processes can reduce the phenolic

content in pretreated corn stover, the concentration process of

corn stover hydrolysate may increase the levels of these toxic

substances (Si et al., 2018). In addition, many previous studies have

confirmed that a large amount of water is consumed during the

washing and detoxification process, while wastewater containing

large amounts of acids, alkalis and nutrients is not suitable

for direct discharge into the environment without additional

treatment (Gai et al., 2015).

D-LA, a subset of lactic acid (LA), is extensively utilized in

the pesticide and chemical industries (Skonberg et al., 2021).

It also serves as a precursor for synthesizing new polylactic

acid (PLA) materials, which are promising alternatives

to traditional plastics due to their biodegradability and

durability (Wu et al., 2021). Consequently, there is a high

global demand for D-LA, predominantly produced through

microbial fermentation, which yields D-LA with superior optical

purity compared to chemical synthesis (de Albuquerque et al.,

2021). Approximately 90% of D-LA production currently

relies on microbial fermentation technology (John et al.,

2009).

Recent research has focused on immobilization techniques

to enhance LA or D-LA yields from waste or non-edible food

resources, though these studies have reported relatively low

yields (Bahry et al., 2019; Shahri et al., 2020; Suwannakham

and Yang, 2005; Zhao Z. et al., 2016). The development of

novel cell immobilization methods is essential to address the

challenges of low yield and poor tolerance to toxic substances

in these strains (Lappa et al., 2022; Radosavljevic et al., 2020).

In this context, the novel hydrogel material poloxamer F127

has gained considerable attention due to its three-dimensional

cross-linked network. This hydrophilic polymer has a three-

dimensional cross-linked network and is widely used in medicine

and the chemical industry (Butelmann et al., 2021; Yuan

et al., 2021; Zhao Z. et al., 2016). The porous matrix of

F127 adsorbs phenolic inhibitors, protecting the immobilized

cells from inhibitory effects (Santana et al., 2024). Additionally,

F127 has excellent temperature sensitivity, transitioning between

liquid and solid states depending on the temperature. It also

demonstrates photosensitivity (Padaga et al., 2024). However, the

mechanical properties and adsorption capacity of F127 cannot

satisfy the field of hydrolysate fermentation of undetoxified corn

stover (Shamma et al., 2022). Hence, we employ imino groups

to improve F127′s molecular structure, along with hydrogen

bonds and π-π interactions, enhances its adsorption capacity

for aromatic compounds. The cell-recycle fermentation process

reduces cellular load and enhances cell density, promoting a

robust cell population that improves glucose utilization and D-

LA production (Gupta et al., 2024; John and Nampoothiri, 2011;

Liu et al., 2022). In this study, we innovatively prepared and

employed F127-IEA for immobilizing Lactobacillus bulgaricus T15

to produce D-LA through cell-recycle fermentation from corn

stover (Supplementary Figure S2).

2 Materials and methods

2.1 Materials

For the measurement of glucose content during the

fermentation process, a glucose kit was purchased from

Shanghai Rongsheng Biopharmaceutical (Shanghai, China).

Pluronic-F127 was obtained from Sigma-Aldrich Corp. (MO,

USA); C7H9NO3 from Shanghai Yuan-ye (Shanghai, China),

and Cellic CTec 3 (Enzyme activity: 1000 BHU-2-HS/g) from

Novozymes (Copenhagen, Denmark). All other reagents were of

analytical grade.

2.2 Strain and cultural condition

The strain used was Lactobacillus sp. T15, provided by the key

laboratory of the Ministry of Education of stover Comprehensive

Utilization and Black Soil Preservation (Jilin Province, China). The

MRSmedium used in this experiment was purchased from Aladdin

(Shanghai, China). The ferment condition for Lactobacillus sp.

T15 before and after immobilization were 41◦C, 2% inoculation,

and an initial glucose concentration of 80 g/L. Under these

specified conditions, the metabolic activity of the microorganisms

is markedly enhanced, leading to a substantial increase in lactic acid

production (Lupu et al., 2023).
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2.3 Synthesis of F127-IEA

With slight modifications based on the method of Li et al.

(2023). The procedure beganwith the drying of 30 g of F127 powder

at room temperature for 16 h. Subsequently, anhydrous CH2Cl2
(250mL) was added to the reactor under a nitrogen atmosphere,

and the system was maintained at 30◦C. Dibutyltin laurate (six

drops) and ethyl isocyanate acrylate (25mL) were added, with

the latter added at a rate of approximately one drop per second.

The reaction proceeded at 30◦C for 2 days. Upon completion,

methanol (30mL) was added to terminate the reaction. The

reaction mixture was then transferred to a rotary evaporator and

concentrated at 30◦C. The concentrated solution was subsequently

added to 1 L of ether and stirred for 15min before being dispensed

into 50mL centrifuge tubes. The precipitate was obtained by

centrifugation at 1,288 g for 10min, and the supernatant was

discarded. This centrifugation process was repeated twice with

additional ether to ensure the removal of impurities from the

precipitate (Supplementary Figure S1).

2.4 Preparation of F127-IEA immobilized
Lactobacillus sp. T15 (F127-IEA-T15)

Three grams of F127-IEA were dissolved in 6mL of sterile

deionized water and stored at 4◦C overnight. The solution was

then heated to 28◦C for gel conversion to verify its temperature

sensitivity, and subsequently transferred to an ice-water mixture.

The photo-initiator 2-hydroxy-2-methylpropyl phenyl ketone (20

µL/10 g hydrogel solution) was added to F127-IEA in a ratio of 1:10

with the activated T15 seed solution. Then cured at 365 nm for 1 h

(Johnston et al., 2020).

2.5 Morphology, structure and mechanical
properties analysis of F127-IEA and
F127-IEA-T15

Before analysis, the desired sample of F127-IEA and F127-

IEA-T15 for SEM (cryogenic scanning electronic microscopy) was

placed on 10 µL of conductive carbon adhesive. The sample stage

containing the droplets was then frozen in liquid nitrogen for 30 s.

The frozen sample was transferred to the preparation chamber

under vacuum (∼-200 Pa) for carbon plating. After sublimation

at −9◦C for 10min, a 5 nm thick gold layer was sputtered on

the sample surface. Samples were pre-cooled (∼140◦C) operating

at 5 kV and imaged in an FEI Quanta450. After taking frozen

SEM images, samples were analyzed using the imaging viewing

software image J. The specific surface area and average porosity

size of F127-IEA were compared using BET to verify if the

material is a porous matrix. The C, N, and H content of F127,

F127-IEA, and F127-IEA/T15 samples were measured using an

elemental analyzer (German, UNICUBE
R©
) to verify the success

of the material modification and immobilization of T15. The TA-

XT Physical Properties Analyzer (USA) was applied to the uniaxial

stress compression test. The parameters of the fixture were a

compression drop rate of 1 mm/s and 80% compression strain.

The primary parameters used for mechanical strength analysis were

strain fracture and Young’s modulus. As the cross-sectional area

within the microcapsule varies during the test, modifications were

made using the p/36R probe and compression mode according to

Equations 1, 2. The specific results are converted into Hencky stress

(σH) and Hencky strain (εH), respectively (Zhao X. et al., 2016).

σH =
F(t) ·H(t)

(H0 · A0)
(1)

εH = − ln

[

H(t)

H0

]

(2)

F(t) is the stress at time t (N); H(t) is the height of the sample

at time t (mm); A0 is the initial cross-sectional area of the sample

(mm²); H0 is the initial height of the sample (mm). The σH-ε stress

and strain corresponding to the highest point of the H curve are

the fracture stress and fracture strain. Young’s modulus is σH-ε

and represents the gradient of the linear part of the H curve at

the beginning.

Riboflavin is a typical alternative for measuring the cell

encapsulation rate in hydrogel. The riboflavin instead of the T15

seed solution was dissolved in water, stirred overnight at room

temperature (avoiding light), co-mixed with the riboflavin solution,

and freeze-dried. A portion of the powder was solubilized in

distilled water, stirred overnight, and then centrifuged for 20min

at 5,152 g. The supernatant was collected, and its OD value was

measured at 445 nm using a UV-vis spectrophotometer (Cary 60

UV-Vis, Agilent, USA). The encapsulation rate was calculated

according to the following equation (Butelmann et al., 2021; Yuan

et al., 2021):

Embedding rate =
C0

C1
× 100% (3)

Where C0 is the amount of riboflavin in the gel and C1 is the

total riboflavin content.

F127-IEA hydrogels were prepared and added to 1.5mL

centrifuge tubes. After weighing, the gels were centrifuged at

14,167 g for 15min. The remaining gel was removed after

centrifugation, and the residual weight was measured. The water

retention rate of different gels was calculated using the following

equation (Wang et al., 2024).

Water retention rate =
W2 −W0

W1 −W0
× 100% (4)

Where W0 is the mass of the empty centrifuge tube (g), W1

is the mass of the centrifuge tube with gel before centrifugation

(g), and W2 is the mass of the centrifuge tube with gel after

centrifugation (g).

2.6 Phenolic compounds adsorption test of
F127-IEA

Equal amounts of F127-IEA gels (3mL) were added to phenolic

solutions (anhydrous ethanol, deionized water, pH 6), which

contained either FA dissolved in anhydrous ethanol or vanillin

dissolved in deionized water at concentrations of 0, 0.5, 1, 1.5, and

2 g/L. These mixtures were left to stand at 41◦C to simulate the

fermentation process. Samples were taken every 20min to measure
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the concentration of the corresponding substances, which were

then used to calculate the removal rate of inhibitors according to

Equation 5 (Guo et al., 2022).

R =
C0 − Ce

C0m
× 100 % (5)

Where R is the adsorption amount at equilibrium (%), C0 is the

initial concentration of the inhibitor in solution (g/L), and Ce is the

equilibrium concentration of the inhibitor in solution (g/L). After

the adsorption reached equilibrium, F127-IEA was transferred to

a solution of the respective solvents for 2 h (equilibrium time for

the above test). Subsequently, the content of the corresponding

substance in the solution was measured to verify the adsorption

strength of F127-IEA.

2.7 Phenolic substances tolerant test of
F127-IEA-T15

The tolerance of F127-IEA-T15 cells to phenolic substances

was analyzed using free T15 cells as a control. Phenolic substances

(FA and vanillin) were added to the medium until the ultimate

concentrations of 0, 0.5, 1, 1.5, and 2 g/L were reached. Tolerance

was analyzed by measuring D-LA production as an indicator

through 72 h of fermentation.

2.8 Preparation of non-detoxified corn
stover hydrolysate

The corn stover pretreatment process was carried out in a

250mL reactor. Initially, the corn stover at a mass fraction of 8%

was mixed with the pretreatment agent (NaOH/urea: 8 wt%/12

wt%) at 80◦C for 20min. The pre-treated samples were subjected

to solid-liquid separation and then dried to a constant weight in an

oven at 80◦C. In this study, the solvent system consisted of 2.5mL

of citrate buffer (0.05M, pH 5.0) and 34.8mL of distilled water, to

which 1.579 g of pretreated corn stover was added for the enzymatic

hydrolysis reaction. The pH was adjusted to 4.6–6.0 and cooled

to room temperature. Subsequently, 2.5mL of cellulase was added,

and the sample was brought to a preheated 180 rpm rotary shaker at

50◦C and stirred for 72 h. After this, the samples were centrifuged

at 1,278 g for 5min, and the supernatant was collected to obtain the

corn stover enzymatic hydrolysate (Wang et al., 2019).

2.9 Cell-recycle fermentation via
F127-IEA-T15 cells from glucose and corn
stover hydrolysate

F127-IEA immobilized T15 cells-recycle fermentation was

performed in 12mL shaking tubes at 41◦C and 80 g/L glucose

concentration. Free cell-recycle fermentation was conducted after

inoculation of 6% T15/F127-IEA microcapsules into the tubes.

To assess the yield, 500 µL of fermentation broth was collected

from each cycle, the mass of the remaining gel beads and the

glucose concentration were measured, and the yield per gram of

gel beads was calculated. The residual gel column after solid-liquid

separation (filtration) was transferred to the next fermentation

stage in the same medium as the previous cycle. To validate the

recoverability of the various materials, the microcapsules were

collected after 72 h of fermentation in each cell-recycle and their

residual mass was determined. The efficacy of F127-IEA as an

immobilized material was verified using corn stover hydrolysate as

the sole carbon source for D-LA production via F127-IEA-T15 cells.

D-LA production served as the indicator of efficiency.

2.10 Determination of phenols by HPLC

Phenols (FA and vanillin) in corn digest were detected using

a Waters 1525 instrument equipped with a PRONTOSIL 120-10-

C18H column (250 × 4.6mm) (Bischoff, Leonburg, Germany).

Detection wavelengths were set to 210 and 321 nm, respectively,

with flow rates of 0.8 and 280 mL/min, respectively.

Fermentation broth samples were filtered through a 0.2µm

syringe filter (Wheaton Science, Millville, Worcester, MA, USA).

D-LA was detected using a Waters 1525 detector equipped with

an Astec CLC-L column (250 × 4.6mm) (Supelco, Bellefonte, PA,

USA) with a detection wavelength of 245 nm and a flow rate of

1.2 mL/min. Additionally, acetic acid, a fermentation by-product,

was determined using a Waters 1525 detector with a detection

wavelength of 210 nm and a flow rate of 0.8 mL/min.

3 Results and discussion

3.1 Preparation and characterization of
F127-IEA hydrogel matrix before and after
immobilization of Lactobacillus bulgaricus
T15

The thermoresponsive material, F127-IEA, was synthesized

by polymerizing isocyanate ethyl ester with the imine groups

at both termini of the F127 hydrogel. Subsequently, we mixed

Lactobacillus bulgaricus T15 with F127-IEA and added a photo-

initiated crosslinker (2-hydroxy-2-methylpropiophenone) to

stably immobilize the T15 cells within the F127-IEA gel matrix.

The nitrogen content of F127 alone was 0%, whereas the

nitrogen content of F127-IEA was 0.27%, indicating successful

polymerization of the C-O bonds at both ends of F127 with the

carbon-oxygen double bonds of ethyl is cyanoacrylate. Following

the immobilization of T15, the nitrogen content in F127-IEA

increased significantly to 7.76%, while the relative contents

of carbon and hydrogen decreased, confirming the successful

formation of the F127-IEA gel (Supplementary Figure S1). The

F127-IEA hydrogel exhibits a porous, matrix-like structure

(Figure 1A), characterized by a thin-walled and uniformly

distributed network with an average pore diameter of ∼40.2µm.

The presence of pore channels provides a substantial surface

area for bacterial cell attachment. The T15 cells, with an average

diameter of ∼1µm, were immobilized within the gel’s pores.

The cells establish a stable population within the material, with

newly formed cells circulating during cell division and apoptosis,

thereby enhancing the population’s stability and robustness over
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FIGURE 1

Morphology, structure and mechanical properties analysis of F127-IEA and F127-IEA-T15. SEM microstructure of F127-IEA (A) and F127-IEA-T15 (B);

the physical properties of F127-IEA (C).

time (Figure 1B). The SEM image of the F127-IEA hydrogel

after immobilizing Lactobacillus bulgaricus T15 is presented in

Figure 1B, demonstrating the preserved porous network structure.

The gel’s pores effectively accommodate T15 cells, which have

an average diameter of ∼1µm. These cells establish a stable

population within the material, forming clusters that expand the

hydrogel micropores through cell division and apoptosis. This

dynamic process enhances the long-term stability and robustness

of the population.

The mechanical properties, encapsulation rate, and water-

holding capacity of F127-IEA were evaluated to assess its resistance

to wear during stirred deep aeration fermentation. We compared

these properties to those of calcium alginate gel beads, a material

commonly used in similar studies. Our findings revealed that F127-

IEA exhibits a Hencky stress of 159 kPa and a Hencky strain

of 0.5% (Figure 1C). F127-IEA shows a higher encapsulation rate

(94.9%) than calcium alginate gel beads (80.2%). This superior

encapsulation enhances Lactobacillus sp. T15 retention, improving

product yield in a limited fermentation substrate. This superior

encapsulation capacity of F127-IEA for Lactobacillus sp. T15 is

expected to lead to higher product yields within the confines of the

fermentation substrate. The water-holding capacity of a material

can significantly influence the stability of the immobilized carrier

during fermentation. Water loss may result in the collapse of

the internal mesh structure, adversely affecting the physiological

activity of the cells embedded within the carrier. The water-holding

capacity of F127-IEA is 84.7% (Figure 1C), 161.41% higher than

that of calcium alginate, indicating its superior ability to retain

water. Relative to other investigations in the field (Gajic et al., 2023),

our study reveals that F127-IEA maintains a superior position
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in terms of Water-Retaining Capacity. Specifically, the outcomes

of study demonstrated that the sodium alginate prepared therein

exhibited a Water-Retaining Capacity of 76%, which was a good

performance. Nevertheless, F127-IEA surpassed this benchmark,

boasting a notably higher Water-Retaining Capacity by ∼11.5%.

This enhancement underscores the material’s potential for superior

performance in applications where water retention is a critical

factor. These results indicate that F127-IEA possesses superior

mechanical strength over the conventional calcium alginate. Its

robust resistance to high-strength external forces is pivotal for

maintaining durability during subsequent fermentation stirring

processes. Collectively, these attributes suggest that F127-IEA is

poised to become an exemplary material for cell immobilization in

biotechnological applications.

3.2 D-LA production from glucose with
F127-IEA-T15 via cell-recycle fermentation

To validate the applicability of F127-IEA-T15 in repeated

cell-recycling fermentation, we conducted experiments producing

D-LA from glucose. As shown in Figure 2, after 150 days (50

fermentation batches), the F127-IEA gel exhibited a loss rate of

15%. During the first two batches, the cells within the hydrogel

had not yet reached their maximum performance and were in

an adaptation phase, with D-LA production at only 40 g/L.

Subsequently, the production stabilized at 80 g/L per batch,

with acetic acid as a byproduct produced at 20 g/L per batch.

This immobilization method increased the average yield of D-

LA from glucose substrate by 30–40 g per batch. Throughout

the fermentation process, the glucose consumption rate remained

relatively consistent. Compared to the other studies (Qiu et al.,

2023; Sansatchanon et al., 2023; Zhang et al., 2018), our study

achieved an increase of 30–40 grams in the average yield per

batch of D-LA production from glucose substrate through the

immobilization method.

In evaluating production efficiency, our study demonstrated

superior fermentation performance compared to other analogous

immobilized cell fermentation studies (Wang J. et al., 2020).

Specifically, we achieved a higher fermentation efficiency of 2.71

± 0.85 g/L h over extended single fermentation cycles, totaling

72 h and 50 batches. This efficiency surpasses the 2.213 ± 0.008

g/L h observed in studies with 48-h, 8-batch cycles. Additionally,

the initial glucose concentration in our study was set at a more

modest 80 g/L, which is lower than the 115.3 g/L typically

used in other studies. These findings underscore that F127-IEA

is not only suitable for long-term fermentation production but

also exhibits enhanced production efficiency at lower initial sugar

concentrations. This suggests that F127-IEA could offer a more

cost-effective and sustainable approach to fermentation processes,

particularly when glucose resources are limited.

To simulate the equipment maintenance process, we collected

the F127-IEA hydrogel after the 10th fermentation batch (30 days)

and stored it at −80◦C for 3 days. In subsequent fermentation

experiments, we found that the freezing storage did not affect its

fermentation performance, and the ability to produce D-LA after

ultra-low temperature preservation demonstrated its robustness.

3.3 D-LA production from corn stover
hydrolysate with F127-IEA-T15 via
cell-recycle fermentation

To further validate the fermentation performance of F127-

IEA-T15 in non-detoxified corn stover hydrolysate, we conducted

continuous cell fermentation experiments to produce acid from

the hydrolysate. The initial concentrations of glucose, FA, and

vanillin in the corn stover hydrolysate were 5.079, 0.25, and

1.86 g/L, respectively. The hydrolysate was then concentrated

to achieve a glucose concentration of 40 g/L, which served

as the initial carbon source for subsequent F127-IEA-T15 cell-

recycle fermentation experiments aimed at producing D-LA. The

feasibility of using F127-IEA-T15 for D-LA production from

corn stover hydrolysate was assessed (Figure 3). The results

showed that the D-LA production rate in the first cycle was

only 0.42 ± 0.04 g/L h, significantly lower than the production

rate observed during glucose fermentation (Figure 2). This result

suggests that the presence of 2 g/L FA and 14.88 g/L vanillin in

the fermentation substrate had a substantial inhibitory effect on

F127-IEA-T15. The immobilized cells required time to adapt to

the new environment, with some T15 cells either perishing or

nearing death under these conditions. However, with increased

recycling cycles under identical fermentation conditions, there

was a marked improvement in the production rate. Over 30

fermentation batches (30 days), the average D-LA production rate

by F127-IEA-T15 cells from corn stover hydrolysate reached 1.29

± 0.09 g/L/h, with the wear rate of F127-IEA remaining below 5%.

During ten consecutive batches using corn stover hydrolysate as

the sole carbon source, both the yield and efficiency of F127-IEA-

T15 were comparable to those observed when glucose was used

as the sole carbon source in previous experiments. The result is

similar as other studies (Supplementary Table S1). These findings

conclusively demonstrate that F127-IEA, as an immobilization

material for Lactobacillus bulgaricus T15, facilitates effective

cellulose utilization while mitigating the inhibitory effects of

phenolic by-products generated during corn stover pretreatment.

3.4 The adsorption characteristics of
F127-IEA

To further analyze how the production capacity of F127-IEA-

T15 is protected in the presence of cytotoxic substances such as

phenolics, and to determine whether the hydrogel adsorbs toxic

and harmful substances, we conducted adsorption experiments

with vanillin and FA. The ability of porous matrix-like materials

to adsorb phenolics is crucial for enhancing the tolerance of

immobilized cells to phenolic inhibitors (Du H. et al., 2020).

The presence of small pore windows and closed surfaces in the

material exhibits a molecular sieve effect, enabling us to investigate

the correlation between such structures and selective phenol

adsorption performance (Hu et al., 2016). It is speculated that

the adsorption of phenols by F127-IEA involves both physical

adsorption and chemical bonding. Moreover, the permeability

coefficient of the porous matrix material hinders the transfer of

inhibitors within it, thereby reducing their contact with cells inside

Frontiers inMicrobiology 06 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1492127
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zheng et al. 10.3389/fmicb.2024.1492127

FIGURE 2

Sequential batch fermentation of glucose for production of D-LA using F127-IEA-T15 with cell recycle. Fermentation temperature was maintained at

37◦C, pH at 6.5. The concentrations of glucose (red square), D-LA (blue circle), acetic acid (green triangle), material wear rate (yellow-green diamond).

FIGURE 3

Sequential batch fermentation of non-detoxified corn stover hydrolysate for D-LA production using F127-IEA-T15 with cell recycle. Fermentation

temperature was maintained at 37◦C, pH at 6.5. The concentrations of D-LA (black spherical), acetic acid (gray pentagon), material wear rate (red

five-pointed star), and conversion rate of glucose (half dark green, half white spherical).

(Sanada and Kimura, 1997). Millik et al. (2019) demonstrated,

for the first time, the significant contribution of functional

groups in materials, which play a decisive role in chemical bond

adsorption. Furthermore, Wang et al. incorporated vermiculite

with a surfactant (imino), resulting in a substantial increase in its

adsorption capacity due to hydrogen bonds and π-π interactions

with the adsorbent (FA, vanillin). Therefore, we speculate that

F127-IEA can help Lactobacillus bulgaricus T15 maintain its cell

viability and fermentation performance by adsorbing cytotoxic

substances (FA and vanillin). This hypothesis was supported by the

results shown in Figure 3. The adsorption capacity of the hydrogels

for phenol compounds was assessed, and it was observed that the
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FIGURE 4

The adsorption and release property of F127-IEA on vanillin and FA. Take F127-IEA in vanillin solutions of 0, 0.5, 1, 1.5, and 2 g/L, and allow for

adsorption to occur over a period of 0–200min. After a specified adsorption time, measure the remaining concentration of vanillin or FA in the

solution to characterize the adsorption capacity of F127-IEA towards vanillin (A) and FA (B); After allowing F-127-IEA to fully adsorb in solutions of

vanillin or FA at concentrations of 0, 0.5, 1, 1.5, and 2 g/L, the samples were maintained in an aqueous solution for 1 h. Subsequently, the

concentrations of vanillin or FA in the solution were measured to characterize the release capacity of F127-IEA towards vanillin (C) and FA (D).

Di�erent letters (a, b, c) indicate significant di�erences among groups (P < 0.05).

adsorption of F127-IEA exhibited a direct correlation with the

initial concentration of the adsorbate under isothermal conditions

in identical settings. Equilibrium adsorption was achieved within

2 h. The adsorption rate of F127-IEA was 50% at an initial

concentration of 2 g/L, whereas it decreased to 25 and 30% at

concentrations of 0.5 and 0.1 g/L, respectively (Figures 4A, B).

Notably, the concentrations of FA and vanillin in the solution

remained unchanged after a duration of 2 h (Figures 4C, D).

The diffusion of phenolics into the solution was hindered by

concentration differences; instead, they were adsorbed onto the

material’s surface. Compared to F-BUM prepared by Butelmann,

the F127-IEA gel synthesized in this study exhibits a higher

propensity for adsorption of aromatics after removal of the two

methyl groups (Wang et al., 2021).

3.3 The phenolics tolerance of
F127-IEA-T15

The tolerance analysis of F127-IEA immobilized T15 cells to

phenolic inhibitors was conducted, with D-LA yield serving as

an indicator and free cells used as the control group (Figure 5).

The results demonstrated that F127-IEA immobilized T15 cells

exhibited enhanced stability at high FA concentrations, achieving

a single batch D-LA production ranging from 50 to 58 g/L

compared to 32–50 g/L for free bacteria (Figures 5A, B). In our

study, we meticulously investigated the growth kinetics of free

Lactobacillus bulgaricus T15, FA, and vanillin in relation to lactate

and glucose production (Supplementary Figure S3). The findings

revealed that Lactobacillus bulgaricus T15 exhibited distinct growth

patterns in response to varying concentrations of FA and vanillin.

Notably, these growth kinetic observations were corroborated by

the production of D-LA by the free Lactobacillus bulgaricus T15,

which was also modulated by the presence of FA and vanillin.

The adsorptive properties of F127-IEA substantially mitigated

the inhibitory impact of ferulic acid and vanillin on T15 cell

activity, an effect that was mirrored in the D-LA yield of both

free and immobilized cells. As depicted in Figure 4, the adsorption

efficacy of F127-IEA escalated with increasing concentrations

of FA and vanillin in the solution. This heightened adsorption

rate ensures that the cells remain unimpeded by inhibitory

compounds throughout extended fermentation periods, thereby

preserving the efficiency of D-LA production. In the presence
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FIGURE 5

The tolerance property of F127-IEA-T15 to FA and vanillin. D-LA production with free T15 (A) and F127-IEA-T15 (B) at FA concentration of 0, 0.5, 1,

1.5, and 2 g/L; D-LA production with free T15 (C) and F127-IEA-T15 (D) at vanillin concentration of 0, 0.5, 1, 1.5, and 2 g/L.

of elevated vanillin concentrations, the fermentation process

initiated earlier in immobilized T15 cells, with these bacteria

entering the fermentation stage at 12 h, while free bacteria only

commenced fermentation after 24 h of inoculation (Figure 5C).

The immobilized T15 strain exhibited an overall single-batch D-

LA production ranging from 40 to 48 g/L, whereas the free cells

showed a production range of 35–45 g/L (Figure 5D). Importantly,

the F127-IEA immobilized T15 cells demonstrated a higher D-LA

yield in fermentation using non-detoxified corn stover compared

to previous studies (Wang et al., 2021). The findings suggest that

the adsorption of phenolics by F127-IEA at high concentrations

had a lesser negative impact on the cell membrane of T15

cells. Additionally, the formation of a cell population through

immobilized cell fermentation exhibited synergic effects, resulting

in enhanced D-LA production.

3.4 Application and prospect of F127
hydrogel in di�erent fields

F127 hydrogel biomaterial has attracted significant

consideration in wound healing and tissue repair due to

their outstanding properties, such as temperature sensitivity,

injectability, biodegradability, and their ability to maintain a moist

environment in medical applications. For example, F127-CHO

hydrogels are commonly used in burn wound healing (Yang et al.,

2020), F127-NH2 hydrogels have demonstrated excellent efficacy

in preventing postoperative adhesions, and F127-DA hydrogels are

more suitable for the healing non-sutured wounds (Du X. et al.,

2020).

In our study, the F127-IEA hydrogel, a synthetic material,

has been innovatively employed for the first time for microbial

immobilization to enhance D-LA production. This hydrogel

exhibits the non-toxicity and eco-friendliness characteristic of F127

hydrogels, making it a highly desirable material for bioprocess

applications. Furthermore, its superior mechanical properties are

instrumental in sustaining continuous microbial fermentation

processes, ensuring the longevity and stability of the fermentation

system. Future research endeavors could harness the potential

of F127-IEA hydrogel immobilized cell technology for the

bioproduction of energy-rich substances such as ethanol (Ramos

et al., 2023), as well as rare saponins (Zhang et al., 2024) and

terpenoids (Han andMiao, 2024). This approach has the promise to

enhance production efficiency, bolster sustainability, and mitigate

environmental impact, thereby contributing to a more eco-friendly

and economically viable bioprocess industry.

4 Conclusion

In this study, we developed and characterized a novel hydrogel,

F127-IEA, using SEM and EAS techniques. The Hencky stress,
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WHT, and embedding rate results confirmed the superior material

properties of F127-IEA for cell immobilization. Additionally, F127-

IEA’s enhanced adsorption capacity and permeation coefficient

significantly improved cell resistance to phenolic compounds,

thereby reducing their cytotoxicity. This was further validated

through adsorption rate tests and acid yield tolerance assays.

This capability is especially crucial for fermentation processes that

utilize biomass feedstocks, which frequently contain inhibitors that

can impede microbial growth and metabolism. The distinctive

mechanical attributes and biocompatible nature of the material

under investigation render it a prospective candidate for enhancing

cell viability in adverse environmental conditions, potentially

making a significant contribution to the field of environmental

bioremediation. Remarkably, F127-IEA maintained excellent D-

LA yields even after 30 days of storage at −80◦C or 150

days of recirculation in its immobilized form. When applied

in non-detoxified corn stover fermentation with Lactobacillus

bulgaricus T15 immobilized on the F127-IEA matrix, it exhibited

exceptional fermentation performance, achieving D-LA yields 12–

48% higher than those reported in recent studies. This work

presents a novel strategy to enhance resource utilization and

reduce biorefining costs by efficiently leveraging non-detoxified

corn stover. These findings underscore the potential of F127-IEA

as a robust and efficient material for cell immobilization and D-

LA production, marking significant progress in biorefining and

industrial fermentation processes.
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