Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.
Sec. Microorganisms in Vertebrate Digestive Systems
Volume 15 - 2024 | doi: 10.3389/fmicb.2024.1490413

Inter-year consistencies and discrepancies on intestinal microbiota for overwintering relict gulls: correlations with food composition and implications for environmental adaptation

Provisionally accepted
  • Tianjin Normal University, Tianjin, China

The final, formatted version of the article will be published soon.

    The gut microbiota of migratory birds is influenced by their food choices, and exploring the potential relationship between diet composition and gut microbiota can help better protect related species. By integrating non-invasive sampling techniques, high-throughput sequencing technology, and microscopic examination technology, this study presents the first evidence on diet composition during overwintering periods as well as the potential relationship between diet composition and gut microbiota in wild relict gulls (Larus relictus). Thirty-five fecal samples from two consecutive overwintering periods (2021 and 2022 overwintering periods) in Tianjin coastal wetland were used to investigate inter-year consistencies and discrepancies on diet composition and gut microbiota in wild Larus relictus. It was found that the common dominant phyla of both 2021 and 2022 group included Firmicutes, Proteobacteria, Chloroflexi and Actinobacteriota. The common dominant genera were Catellicoccus and Ilumatobacter. The diversity of gut microbiome in 2022 group was higher,while the richness was not significantly different. Based on the high-throughput sequencing technology of 18S rDNA, the study found that the dominant classes within the diet components of Larus relictus included Polychaeta, Bivalvia, Malacostraca, Gastropoda, unclassified_p__Dinoflagellata, Dinophyceae, and Ostracoda. Among them, Bivalvia, Malacostraca, and Gastropoda were also found with microscopic examination technology from the same samples. The abundance of Fusobacteriota and Cetobacterium were positively correlated with the abundance of Bivalvia and Malacostraca; while the abundance of Psychrobacter and Breznakia were negatively correlated with the abundance of Malacostraca and Gastropoda. Findings from this study could provide scientific references for health monitoring and conservation of relict gulls.

    Keywords: Migratory birds, high-throughput sequencing technology, Fecal microscopy, diet composition, intestinal microbiota

    Received: 03 Sep 2024; Accepted: 19 Nov 2024.

    Copyright: © 2024 Wu, Yao, Sun, Wang, Zhang, Wu and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Dapeng Zhao, Tianjin Normal University, Tianjin, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.