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Background: The rising prevalence of obesity and related metabolic disorders 
highlights the urgent need for innovative research approaches. Utilizing 
machine learning (ML) algorithms to predict obesity-associated gut microbiota 
and validating their efficacy with specific bacterial strains could significantly 
enhance obesity management strategies.

Methods: We leveraged gut microbiome data from 1,563 healthy individuals and 
2,043 overweight patients sourced from the GMrepo database. We  assessed 
the anti-obesity effects of Bifidobacterium pseudocatenulatum through 
experimentation with Caenorhabditis elegans and C3H10T1/2 cells.

Results: Our analysis revealed a significant correlation between gut bacterial 
composition and body weight. The top  40 bacterial species were utilized to 
develop ML models, with XGBoost demonstrating the highest predictive 
accuracy. SHAP analysis indicated a negative association between the relative 
abundance of six bacterial species, including B. pseudocatenulatum, and body 
mass index (BMI). Furthermore, B. pseudocatenulatum was shown to reduce 
lipid accumulation in C. elegans and inhibit lipid differentiation in C3H10T1/2 
cells.

Conclusion: Bifidobacterium pseudocatenulatum holds potential as a 
therapeutic agent for managing diet-induced obesity, underscoring its relevance 
in microbiome-based obesity research and intervention.
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Introduction

Overweight and obesity are major global public health challenges, 
presenting substantial clinical difficulties (Laine and Wee, 2023). 
Obesity is a key precursor to various widespread diseases, including 
type 2 diabetes, hypertension, non-alcoholic fatty liver disease, cancer, 
and obstructive sleep apnea syndrome (Tsai and Bessesen, 2019; Quek 
et al., 2023). Despite numerous efforts aimed at treatment, mitigation, 
and prevention, the global prevalence and severity of obesity continue 
to rise (Heindel et  al., 2024). Etiologically, obesity is a complex 
condition driven primarily by the interplay of genetic and 
environmental factors (Laine and Wee, 2023). As a result, effective 
obesity treatment requires a multidisciplinary approach (Velazquez 
and Apovian, 2018), highlighting the urgent need for innovative 
prevention and therapeutic strategies.

The gut microbiota plays a crucial role in the digestion, absorption, 
and metabolism of food, influencing body weight through the 
regulation of metabolism, appetite, bile acid metabolism, and the 
endocrine, nervous, and immune systems (Van Hul and Cani, 2023). 
Studies by Cho et al. (2012) and Cox et al. (2014) demonstrated that 
subtherapeutic doses of antibiotics in mice lead to increased weight 
and fat mass, underscoring the gut microbiota’s role in the etiology of 
obesity. Backhed et al. (2004) further showed that gut microbiota 
directly participate in host energy metabolism; colonizing germ-free 
mice with gut microbiota increases blood glucose and insulin levels 
while promoting lipid storage in adipose tissue. Research also indicates 
that omega-3 fatty acids protect against mild inflammation, metabolic 
endotoxemia, insulin resistance, and obesity. Probiotics such as 
Bifidobacterium, Lactobacillus, and Akkermansia muciniphila have 
been associated with the beneficial effects of omega-3 (Carvalho et al., 
2012). Although there is no conclusive evidence that specific microbes 
are the primary cause of obesity or overweight issues, the role of gut 
microbiota in metabolic disorders and obesity has been consistently 
demonstrated (Liang et al., 2023). Notably, various probiotic strains 
have been shown to effectively reduce BMI (Tome-Castro et al., 2021), 
with significant research focusing on Lactobacillus, Bifidobacterium, 
and Akkermansia muciniphila, which can improve obesity, blood 
glucose levels, and insulin resistance (Koutnikova et al., 2019; Qiu 
et al., 2022; Dao et al., 2016). Thus, the targeted study of gut microbiota 
as early indicators and preventive measures for obesity, along with the 
development of probiotics with potential anti-obesity effects, is vital 
for effective obesity management.

Given the numerous interfering factors and significant challenges 
in detecting gut microbiota, the lack of objective and large-scale 
clinical data is likely a key reason why gut microbiota have struggled 
to predict overweight and obesity. In this context, machine learning 
(ML) offers a promising approach by classifying the gut microbiota of 
normal and overweight populations based on extensive clinical 
datasets. ML algorithms, rather than solving inference problems or 
understanding the relationships between variables, learn directly from 
data, identifying complex nonlinear patterns to make accurate 
predictions (Deo, 2015). By exploring disease risk through ML, we can 
obtain quick, real-time, and interpretable results regarding risk factors 
and conditions (Safaei et al., 2021). Therefore, this study aims to use 
feature selection methods to characterize the gut microbiota 
landscape, develop and validate ML algorithms to identify overweight 
individuals, and apply interpretability techniques to visualize 
predictive factors. Additionally, by leveraging ML methods to discover 

potential probiotics, we validate the anti-obesity effects of specific 
strains through nematode and cell experiments, offering a new 
perspective for probiotic development.

Materials and methods

Data sources and processing

The human gut microbiota data for this study were obtained from 
the GMrepo database,1 including individuals aged 18 years and older 
classified as either healthy or overweight. Overweight was defined as 
BMI ≥25, encompassing individuals with BMI ≥30 (commonly classified 
as obese). To ensure homogeneity, samples from individuals with other 
underlying diseases were excluded, and participants were categorized 
into two groups: overweight (BMI ≥25) and control (BMI <25). Stratified 
sampling was applied to the overweight group to minimize biases related 
to age and gender distribution, resulting in 3,606 samples analyzed (2,043 
overweight and 1,563 control). The inclusion of individuals with obesity 
under the overweight category is discussed as a potential limitation. Data 
were imported into Python using pandas, enabling operations like 
filtering, alignment, and transformation. Missing values for bacterial 
relative abundance and gender were replaced with zeros to ensure data 
integrity. Z-score normalization was applied within cross-validation to 
avoid data leakage by calculating normalization parameters only on the 
training data and applying them to the test data. Samples with low 
sequencing coverage (<1%) were excluded, and potential contaminants 
were identified and removed through background sample comparisons, 
ensuring a robust and high-quality dataset.

Microbiota diversity indices

We calculated the Shannon index and Chao1 index to assess the 
diversity of gut microbiota among the study groups. The Shannon 
index provides insights into the richness and evenness of microbial 
communities, while the Chao1 index estimates species richness based 
on the number of observed species and their frequency.

Statistical analysis and visualization

To visualize the microbial diversity and community structure, 
we generated heatmaps and boxplots. Heatmaps illustrate the relative 
abundance of microbial taxa across samples, highlighting patterns of 
similarity and differences between groups. Boxplots provide a 
comparative overview of diversity indices between the overweight and 
control groups, facilitating the identification of significant differences.

Data standardization

In this study, we applied z-score standardization to all input 
features to ensure that the features were on the same scale for 

1 https://gmrepo.humangut.info
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comparison. The standardization was performed before model 
training to eliminate differences in scale between features, 
preventing certain features from disproportionately influencing the 
model results due to their different units. All numerical data (such 
as microbial community relative abundance and sample 
information) were standardized before being input into the 
machine learning models. This step helped improve the model’s 
stability and ensured that all features had equal weight during 
model training.

Model construction and evaluation

To investigate the potential of gut microbiota dysbiosis as 
biomarkers for overweight, we developed machine learning models 
using XGBoost, support vector machine (SVM), logistic regression, and 
decision tree algorithms. The optimization target for model performance 
was AUC (area under the ROC curve), though additional metrics such 
as accuracy, precision, recall, and F1-score were also assessed. For each 
algorithm, we used the following settings: In XGBoost, hyperparameter 
optimization was performed using GridSearchCV, exploring the ranges 
of colsample_bytree: [0.8, 0.9, 1.0], gamma: [0, 0.1, 0.2], learning_rate 
(eta): [0.01, 0.1, 0.2], max_depth: [3, 4, 5], n_estimators: [50, 100, 150], 
and subsample: [0.8, 0.9, 1.0]. A 5-fold cross-validation strategy was 
employed to prevent overfitting and ensure robust model performance. 
For SVM (support vector machine), the radial basis function (RBF) 
kernel was used, and hyperparameters such as C (regularization 
parameter) and gamma (kernel coefficient) were optimized using a grid 
search. The values tested for C ranged from 1 to 100, and gamma ranged 
from 0.001 to 0.1. In Logistic Regression, default parameters were used, 
with the main hyperparameter being the regularization parameter C, 
which was optimized using GridSearchCV with values from 0.01 to 10. 
For the Decision Tree model, the default max_depth parameter was 
used, and different values for min_samples_split (ranging from 2 to 10) 
and min_samples_leaf (ranging from 1 to 4) were explored to control 
tree growth and avoid overfitting. After comparing performance 
metrics, including AUC, we determined that XGBoost was the most 
effective model for predicting overweight status based on gut 
microbiota data.

SHAP-based model interpretability analysis

To interpret the XGBoost model’s predictions, we  employed 
SHAP (Shapley Additive Explanations), an approach grounded in 
game theory (Li et al., 2023). SHAP quantifies the contribution of 
each feature to the model’s output by assigning a Shapley value that 
indicates the direction and magnitude of each feature’s impact. 
Positive SHAP values (>0) suggest a positive influence on the 
prediction, while negative SHAP values (<0) indicate a negative 
influence (Song et al., 2023). SHAP provides both global and local 
insights: Global Interpretation calculates the average SHAP value of 
each feature across all samples, highlighting overall feature 
importance, while local interpretation assesses each feature’s impact 
on individual predictions. The SHAP framework enabled us to 
generate “SHAP Summary Plots,” visualizing feature importance and 
contributing to a deeper understanding of the influence of gut 
microbiota features on overweight classification.

Bacterial culture and co-culture 
experiments

We cultured B. pseudocatenulatum strains (JXL-01, JXL-02, 
JXL-03, and JXL-05) anaerobically in MRS medium (Shanghai 
Macklin Biochemical Technology Co., Ltd.) at 37°C for 24 h. Once the 
bacterial concentration reached 10^9 CFU/mL, the culture was 
centrifuged at 7,000 rpm for 15 min. The supernatant was discarded, 
and the bacterial pellet was washed several times with sterile PBS. The 
bacteria were then resuspended in complete DMEM medium and 
incubated anaerobically at 37°C for an additional 2 h. The supernatant 
was collected for subsequent cell experiments.

Synchronization of Caenorhabditis elegans

L4-stage C. elegans were collected in a centrifuge tube, and 1 mL 
of M9 buffer was added to wash away excess E. coli OP50. After 
allowing the worms to settle, the supernatant was removed, and this 
washing step was repeated three times. Next, 1 mL of lysis solution 
was added and thoroughly mixed. After discarding the supernatant, 
the worms were washed three times with M9 buffer via centrifugation 
(3,000 rpm, 1 min), retaining the eggs. The eggs were then transferred 
to new NGM plates and incubated at 20°C in a biochemical incubator. 
After approximately 16–18 h, the eggs developed into L1-stage larvae.

Culture of Caenorhabditis elegans and fat 
measurement

B. pseudocatenulatum strains (JXL-01, JXL-02, JXL-03, and JXL-05) 
and E. coli OP50 were cultured in liquid medium until reaching the 
logarithmic phase. After centrifugation at 8,000 rpm for 10 min at 4°C, 
the bacterial pellets of B. pseudocatenulatum were collected and 
resuspended in M9 buffer to an OD of 0.5. A total of 100 μL of the 
bacterial suspension was then applied to 60 mm NGM solid plates 
containing the worm eggs and incubated at 20°C. After approximately 3 
to 4 days, the worms developed into L4-stage larvae, with E. coli OP50 
serving as a control group. Following an additional 3 days of continued 
culture with the bacterial suspension, 20 randomly selected worms were 
subjected to Oil Red O staining to measure fat accumulation. The worms 
were rinsed three times with M9 buffer, anesthetized with 25 mM 
levamisole hydrochloride, and treated with 200 μL of 4% 
paraformaldehyde solution for 20 min. The solution was removed, and 
the worms underwent three freeze–thaw cycles using liquid nitrogen. 
Subsequently, the worms were stained with 60% isopropanol and Oil 
Red O solution for 5 h. Excess dye was rinsed off with M9 buffer, and the 
staining was observed under an optical microscope to analyze fat content.

Culture and differentiation of C3H10 into 
adipocytes

Mouse mesenchymal stem cells (C3H10 cells) were generously 
provided by Professor En-Dong Zhu’s research group at the 
Endocrinology Institute of Tianjin Medical University. The cells were 
cultured in DMEM medium (Gibco, United  States) at 37°C, 
supplemented with 10% fetal bovine serum (FBS) (Hyclone, 
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United States) and 100 U/mL penicillin/streptomycin (Beijing ZSbio). 
They were divided into two groups: a control group and a 
B. pseudocatenulatum metabolite intervention group (B.p), with the 
intervention lasting for 24 h. Following this, the cells were treated with 
specific differentiation media to induce differentiation into adipocytes. 
Differentiation Induction Agent A, consisting of DMEM high-glucose 
complete medium supplemented with 0.2 μg/mL dexamethasone, 
5 μg/mL insulin, 100 μM indomethacin, and 250 μM IBMX, was 
applied for 3 days. This was followed by Differentiation Induction 
Agent B, which included DMEM high-glucose complete medium with 
5 μg/mL insulin, administered for an additional 3 days. This 
differentiation process ensured that C3H10 cells functionally mimic 
adipose tissue, making them suitable for subsequent fat accumulation 
studies. For co-culture experiments, we used 10% of the metabolites 
from the bacterial cultures, ensuring that the conditions for cell 
differentiation were consistent across all experiments.

Cell viability

Cell viability was assessed using the CCK-8 Cell Counting Kit 
(Shanghai Taosu Bio Technology Co., Ltd.) according to the 
manufacturer’s instructions. C3H10 cells were seeded in a 96-well 
plate with 100 μL of cell suspension per well and incubated at 37°C 
with various concentrations of B. pseudocatenulatum for 24 h. 
Following treatment, 10 μL of CCK-8 reagent was added to each well 
and incubated for an additional 30 min. Absorbance at 450 nm was 
then measured using a multifunctional microplate reader (Thermo 
Fisher Scientific), and cell viability percentages were calculated for 
each concentration.

Oil Red O staining and lipid droplet analysis

Oil Red O staining was performed, and lipid droplets were 
analyzed using cell imaging. The procedure followed the Oil Red O kit 
instructions (Beijing Solarbio Science & Technology Co., Ltd.). First, 
Solution A and Solution B were mixed in a 3:2 ratio to prepare the 
staining solution. Cells were fixed with ORO fixative for 25 min, 
followed by staining with freshly prepared Oil Red O solution for the 
recommended time. After staining, cells were washed to remove 
excess dye, and the cell nuclei were counterstained with Mayer’s 
Hematoxylin, followed by washing with distilled water. Finally, the 
cells were treated with ORO buffer for 1 min and observed under a 
microscope to analyze the lipid droplets.

Quantitative reverse-transcription PCR

Total RNA was purified from cells using the Total RNA Extraction 
Kit (Tiangen Biotech Co., Ltd.) according to the manufacturer’s 
instructions. After quantifying the RNA concentration and purity, 
1 μg of RNA was reverse transcribed using the M-MuLV First Strand 
cDNA Synthesis Kit (Tiangen Biotech). The resulting cDNA was then 
amplified on a PCR cycler (Eppendorf, Germany) using the SYBR 
Green Real-Time PCR Kit (Tiangen Biotech). Relative mRNA levels 
were determined using the TC2−∆∆  method, with GAPDH mRNA 
serving as the reference.

The primer sequences used in the study are shown in the 
Supplementary Table S1.

Statistical analysis

Statistical analysis in this study was conducted using several 
methods. ML analysis was performed using Python (version 3.10.2), 
while the Mann–Whitney U test was applied for non-parametric 
data, with p-values adjusted using the Bonferroni method and a 
significance level set at p < 0.01. Experimental data were analyzed 
using SPSS (version 25.0). Data normality was assessed, and for 
normally distributed data, independent samples t-tests were used to 
compare two groups. Results were expressed as mean ± standard 
deviation (SD), with a p-value of p < 0.05 considered statistically 
significant. Data processing for image analysis was carried out using 
Fiji ImageJ. These methods ensured rigorous and accurate data 
analysis, providing reliable and meaningful results for the study.

Results

Data processing results

From the GMrepo database, a total of 14,028 samples containing 
human gut microbiome information were downloaded. After sample 
screening and processing, samples that did not meet the criteria were 
excluded, leaving 5,259 samples. Using BMI ≥25 as the threshold for 
overweight classification, the samples were divided into an overweight 
group and a control group. Further stratified screening of the samples 
resulted in the final inclusion of 3,606 samples, with 1,563 in the 
normal group and 2,043 in the overweight group, as illustrated in 
Figure 1 and detailed in Supplementary Table S1.

The study included a total of 4,419 bacterial species. Analysis of 
the gut microbiota in the two sample groups revealed that the relative 
abundance and frequency of 705 bacterial species differed significantly 
between the groups (p < 0.01). After applying Bonferroni correction, 
283 bacterial species remained significantly different (adjusted p-value 
<0.01). These bacterial species were then ranked by frequency of 
occurrence. Considering model complexity and computational power, 
the top 40 bacterial species were selected as features for constructing 
the ML model (Table 1). Additionally, to enhance prediction accuracy, 
gender and age were included as feature variables, given their potential 
influence on the gut microbiome composition (Hales et al., 2018; Ge 
et al., 2024).

Differences in gut microbiota diversity 
between overweight and control groups

The analysis revealed significant differences in gut microbiota 
diversity between the overweight and control groups. Figure  2A 
presents a stacked bar chart illustrating the changes in microbial 
composition, emphasizing the substantial impact of overweight status 
on gut microbiota diversity and composition. Figure  2B displays 
boxplots comparing the Shannon index and Chao1 index, showing 
that the control group exhibited a wider range and higher median 
values for both indices. This further reinforces the observation of 
reduced microbial diversity in individuals with overweight status. 
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Specifically, the Shannon index, which reflects the richness and 
evenness of microbial communities, was significantly lower in the 
overweight group compared to the control group. Similarly, the Chao1 
index, an indicator of species richness, also demonstrated a significant 
decrease in the overweight group, indicating a shift in microbial 
diversity associated with overweight status. Figure  2C presents a 
heatmap generated from the relative abundance of microbial taxa, 
clearly illustrating the clustering of samples, with distinct groupings 
observed between the overweight and control groups. Specific taxa 
showed significant differences in abundance, supporting the findings 
from the diversity indices.

XGBoost outperforms in overweight model 
classification

Using BMI classification as the response variable and 
incorporating the 40 bacterial species listed in Table 1, along with 
gender and age as feature variables, we constructed prediction models 
using XGBoost, logistic regression, decision tree, and support vector 
machine (SVM). The results represent the average performance 
metrics (accuracy, precision, recall, F1-score, and AUC) obtained from 
5-fold cross-validation on the validation data. Among these models, 
the XGBoost model achieved the highest overall performance 
(Figure 3A), demonstrating its suitability for this task.

Subsequently, we used GridSearchCV to fine-tune the parameters 
of the XGBoost model. The performance metrics and ROC curve of 
the optimized model are shown in Figures 3B,C. The fine-tuned model 
achieved an accuracy of 0.8144, a precision of 0.8191, a recall of 
0.8481, and an F1-score of 0.8333. Additionally, the AUC was 0.90, 
indicating that the model performs well and is suitable for 
further research.

Model global visualization

The importance matrix of the XGBoost model, shown in Figure 4, 
highlights the top 10 most significant variables contributing to the 
model. These variables are host age, Akkermansia muciniphila, 
Alistipes putredinis, sex, Alistipes finegoldii, Blautia obeum, Barnesiella 
viscericola, Alistipes onderdonkii, B. pseudocatenulatum, and 
Anaerotruncus colihominis.

By calculating the Shapley values for each feature, we gain a clear 
understanding of how each feature influences the model’s predictions. 
This is crucial for revealing feature importance and the predictive 
mechanisms of the model (Ning et al., 2022). To identify the features with 
the most significant impact on the predictive model, we plotted the SHAP 
summary plot for the XGBoost model (Figure 5). Higher SHAP values for 
a feature indicate a greater likelihood of being overweight.

Our analysis revealed that features such as Akkermansia 
muciniphila, Barnesiella viscericola, Alistipes onderdonkii, 
B. pseudocatenulatum, and Anaerotruncus colihominis have negative 
SHAP values, suggesting that their abundance is inversely related to 
BMI. In contrast, Odoribacter splanchnicus exhibits a positive impact 
on BMI. While features like age and sex significantly contribute to the 
model’s predictions, their biological implications are less clear in terms 
of explanatory power.

Interpretation of personalized predictions

SHAP values illustrate the contribution of each feature to the final 
prediction, providing a clear explanation of the model’s predictions for 
individual patients. As shown in Figure 6, we selected an overweight 
sample to demonstrate the model’s interpretability. In this case, age 
had the highest positive contribution to BMI, with a SHAP value of 
0.62. Conversely, B. pseudocatenulatum, Roseburia hominis, and 
Akkermansia muciniphila had negative contributions to BMI, with 
SHAP values of −0.58, −6.1, and −0.92, respectively.

Bifidobacterium pseudocatenulatum 
inhibits fat deposition in Caenorhabditis 
elegans

This study employed machine learning (ML) to predict several 
bacterial strains associated with BMI. To validate the potential 
functions of these strains, we  examined the effect of 
B. pseudocatenulatum on fat reduction using Caenorhabditis elegans 
as a model, with Escherichia coli OP50 as the blank control. Four 
strains of B. pseudocatenulatum (JXL-01, JXL-02, JXL-03, and JXL-05) 
were selected based on their availability and prior verification of their 
fat-reducing properties, which were identified through our ML 

FIGURE 1

Workflow of this study. Hyperparameter tuning was conducted 
exclusively on training data. Validation data was only used for 
performance evaluation to avoid data leakage. XGBoost, extreme 
gradient boosting; LR, logistic regression; DT, decision tree; SVM, 
support vector machine; SHAP, SHapley Additive exPlanations.
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analysis of bacterial strains associated with BMI. Additionally, these 
strains have been implicated in obesity-related studies (Cano et al., 
2013), providing further justification for their selection. These initial 

findings allowed us to identify the most effective strains for further 
cell experiments, and lipid accumulation in C. elegans was compared 
after feeding with each of these four B. pseudocatenulatum strains.

TABLE 1 Top 40 target bacteria.

Species Fisher p-value Adjusted 
Fisher p-value

p-value Adjusted p-value

Blautia obeum 7.07 × 10−26 3.13 × 10−22 8.45 × 10−27 3.73 × 10−23

Alistipes putredinis 2.68 × 10−22 1.19 × 10−18 1.40 × 10−18 6.17 × 10−15

Alistipes shahii 3.97 × 10−22 1.75 × 10−18 1.98 × 10−11 8.76 × 10−8

Dorea formicigenerans 1.08 × 10−25 4.76 × 10−22 2.88 × 10−15 1.27 × 10−11

Parabacteroides merdae 8.87 × 10−35 3.92 × 10−31 3.52 × 10−15 1.56 × 10−11

Roseburia hominis 8.94 × 10−13 3.95 × 10−9 2.30 × 10−10 1.02 × 10−6

Alistipes onderdonkii 7.97 × 10−12 3.52 × 10−8 4.09 × 10−15 1.81 × 10−11

Akkermansia muciniphila 1.12 × 10−38 4.96 × 10−35 3.06 × 10−46 1.35 × 10−42

Eubacterium ventriosum 1.62 × 10−15 7.16 × 10−12 1.34 × 10−8 5.92 × 10−5

Alistipes finegoldii 2.05 × 10−6 0.009046201 8.88 × 10−8 0.000392558

Clostridium leptum 2.10 × 10−26 9.27 × 10−23 2.20 × 10−32 9.71 × 10−29

Eubacterium ramulus 2.87 × 10−9 1.27 × 10−5 9.87 × 10−12 4.36 × 10−8

Bacteroides massiliensis 1.35 × 10−21 5.96 × 10−18 5.09 × 10−13 2.25 × 10−9

Odoribacter splanchnicus 5.95 × 10−14 2.63 × 10−10 2.04 × 10−8 9.00 × 10−5

Bilophila wadsworthia 1.49 × 10−35 6.59 × 10−32 2.85 × 10−27 1.26 × 10−23

Clostridium bolteae 2.19 × 10−16 9.68 × 10−13 5.33 × 10−17 2.35 × 10−13

Streptococcus thermophilus 2.06 × 10−10 9.10 × 10−7 1.45 × 10−8 6.42 × 10−5

Bacteroides intestinalis 1.38 × 10−25 6.10 × 10−22 1.76 × 10−19 7.79 × 10−16

Ruminococcus callidus 1.42 × 10−26 6.26 × 10−23 8.77 × 10−19 3.87 × 10−15

Clostridium symbiosum 1.51 × 10−24 6.67 × 10−21 4.33 × 10−21 1.91 × 10−17

Anaerotruncus colihominis 1.32 × 10−29 5.81 × 10−26 2.48 × 10−42 1.09 × 10−38

Holdemania filiformis 1.14 × 10−22 5.03 × 10−19 2.30 × 10−23 1.01 × 10−19

Bacteroides eggerthii 3.67 × 10−14 1.62 × 10−10 6.49 × 10−15 2.87 × 10−11

Alistipes indistinctus 4.51 × 10−18 1.99 × 10−14 4.24 × 10−15 1.88 × 10−11

Clostridium indolis 1.44 × 10−22 6.36 × 10−19 6.01 × 10−23 2.65 × 10−19

Oscillibacter valericigenes 1.07 × 10−20 4.71 × 10−17 1.07 × 10−27 4.74 × 10−24

Bacteroides nordii 4.91 × 10−7 0.002171386 1.51 × 10−6 0.006665991

Bacteroides coprocola 2.66 × 10−17 1.18 × 10−13 3.41 × 10−9 1.51 × 10−5

Ruminiclostridium thermocellum 1.33 × 10−20 5.87 × 10−17 9.64 × 10−29 4.26 × 10−25

Streptococcus mitis 1.01 × 10−16 4.45 × 10−13 5.40 × 10−18 2.39 × 10−14

Sporobacter termitidis 6.89 × 10−23 3.04 × 10−19 1.66 × 10−31 7.35 × 10−28

Coprococcus eutactus 4.36 × 10−16 1.93 × 10−12 3.67 × 10−16 1.62 × 10−12

Clostridium saccharolyticum 6.32 × 10−20 2.79 × 10−16 8.26 × 10−21 3.65 × 10−17

Eubacterium desmolans 2.27 × 10−19 1.00 × 10−15 1.30 × 10−19 5.77 × 10−16

Clostridium spiroforme 3.24 × 10−18 1.43 × 10−14 1.71 × 10−21 7.56 × 10−18

Blautia glucerasea 3.58 × 10−19 1.58 × 10−15 9.11 × 10−20 4.03 × 10−16

Barnesiella viscericola 7.60 × 10−32 3.36 × 10−28 7.73 × 10−41 3.41 × 10−37

Bifidobacterium pseudocatenulatum 1.82 × 10−14 8.03 × 10−11 1.51 × 10−12 6.67 × 10−9

Ruminococcus albus 2.13 × 10−20 9.42 × 10−17 2.33 × 10−24 1.03 × 10−20

Clostridium methylpentosum 2.87 × 10−21 1.27 × 10−17 1.60 × 10−20 7.09 × 10−17
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Results showed that, compared to the E. coli OP50 group, fat 
content in nematodes fed with the four strains of B. pseudocatenulatum 
was significantly reduced (Figure  7A). Further analysis of red 
fluorescence intensity, which indicates fat content, revealed that the 
strains JXL-01, JXL-02, JXL-03, and JXL-05 resulted in significant 
reductions in fat fluorescence intensity by 39.25, 24.95, 38.6, and 
19.29%, respectively (Figure  7B). These findings suggest that 
B. pseudocatenulatum can significantly reduce fat deposition in 
nematodes, thereby influencing fat metabolism.

Bifidobacterium pseudocatenulatum 
inhibits adipogenic differentiation

Based on the results from the C. elegans experiment, we selected the 
B. pseudocatenulatum JXL-01 strain for further investigation into its 

effect on adipogenic differentiation using mouse mesenchymal stem 
cells (C3H10 cells). The cells were divided into two groups: a control 
group and a B. pseudocatenulatum intervention group (B.p). To assess 
the impact of B. pseudocatenulatum metabolites on cell viability, a CCK8 
assay was first performed. We chose to co-culture C3H10 cells with 10% 
of the bacterial metabolites (Figure  8A). To evaluate the effects on 
adipogenic differentiation, we used Oil Red O staining to visualize lipid 
accumulation. The results showed that lipid droplets were significantly 
reduced in the B.p group compared to the control group (Figure 8B). 
Quantitative analysis of the lipid content confirmed the reduction in 
lipid droplets in the B.p group (Figure 8C). Furthermore, we assessed 
the expression of key adipogenic transcription factors, including PPARγ 
and FABP4, which are upregulated during adipocyte differentiation. The 
mRNA levels of PPARγ and FABP4 were significantly inhibited in the 
B.p group (Figure 8D–E), suggesting that B. pseudocatenulatum can 
significantly reduce adipogenic differentiation. These findings 

FIGURE 2

Gut microbiota diversity and composition in overweight vs. control groups. (A) Changes in microbial composition between overweight and control 
groups. (B) Comparison of Shannon and Chao1 diversity indices. (C) Clustering of samples based on microbial taxa abundance.

FIGURE 3

Comparison of model performances. (A) Comparison of XGBoost, logistic regression, decision tree, and SVM. (B) Performance of XGBoost after 
parameter optimization. (C) ROC curve of XGBoost model.
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FIGURE 4

Importance matrix plot of the XGboost model. This importance matrix plot depicts the importance of each covariate in the development of the final 
predictive model.

https://doi.org/10.3389/fmicb.2024.1488656
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wu et al. 10.3389/fmicb.2024.1488656

Frontiers in Microbiology 09 frontiersin.org

demonstrate that B. pseudocatenulatum JXL-01 significantly influences 
fat deposition and adipogenic differentiation in C3H10 cells, promoting 
a reduction in fat accumulation.

Discussion

Obesity represents a significant public health challenge (Artasensi 
et  al., 2023). The role of the microbiome in health and disease is 
increasingly recognized, yet the complex and dynamic interactions 
between host-microbiome and microbe-microbe interactions complicate 
the identification of beneficial versus harmful bacteria or bacterial 
combinations. While many studies have reported correlations between 
the microbiome and health (Van Hul and Cani, 2023), large-scale data 
studies on obesity-related microbiomes utilizing ML are lacking.

In this study, we predicted the distribution of gut microbiota 
between overweight (BMI ≥25) and normal weight (BMI <25) 
groups, employing four ML algorithms for classification. Among 
these, the XGBoost model demonstrated superior performance, 
achieving an AUC of 0.90. Furthermore, through the use of SHAP 
values and SHAP plots, we illustrated that ML methods can elucidate 
the key features of the gut microbiota associated with overweight 
populations. This approach facilitated the visual interpretation of 
feature importance, offering a clear understanding of the critical 
features identified by the XGBoost model.

However, it is important to note a limitation in our study design. 
Individuals with obesity (BMI ≥30) were included in the overweight 
group, which was defined as BMI ≥25. This broad definition may 
mask specific microbiota differences between overweight and obese 
individuals, potentially limiting the granularity of our findings. Future 
research should consider analyzing subgroups within the BMI ≥25 
category to better delineate microbiota changes associated with 
varying degrees of overweight and obesity.

Overall, this study makes several important contributions. 
We  employed XGBoost to develop a ML classification model for 
identifying overweight individuals and confirmed the effectiveness 
and reliability of XGBoost in this context. Notably, our analysis 
revealed that the relative abundances of A. muciniphila, B. viscericola, 
A. onderdonkii, B. pseudocatenulatum, and A. colihominis are 
negatively correlated with increased BMI.

Among these gut bacteria, a deficiency or reduced abundance of 
A. muciniphila has been associated with various diseases, including 
obesity, diabetes, hepatic steatosis, and inflammation, suggesting its 
potential as a probiotic for improving fat accumulation and treating 
obesity (Cani et al., 2022). B. viscericola has been linked to improved 
outcomes in obesity and hepatic steatosis in animal studies, with 
increased abundance of Barnesiella species showing benefits 
(Rodriguez et  al., 2020). Alistipes is a relatively new genus, and 
human studies have found that A. onderdonkii is associated with 
weight loss following fecal microbiota transplantation and is 
negatively correlated with waist circumference (Zhang et al., 2022; 
Qin et  al., 2021). Although research on B. pseudocatenulatum is 
limited, available studies suggest that supplementation with this 
bacterium can improve obesity-related bone metabolism disorders 
and regulate inflammation associated with obesity (Fernandez-
Murga et al., 2020; Sanchis-Chorda et al., 2019; Moya-Perez et al., 
2015). A. colihominis, a bacterium capable of producing short-chain 
fatty acids, may play a role in improving glucose tolerance (Yao et al., 
2020). These findings underscore the potential of specific gut 

bacteria in managing and understanding obesity, highlighting the 
value of microbiome research and ML models in identifying key 
bacterial species linked to health outcomes.

However, it is important to note that training performance metrics, 
such as accuracy and precision, do not fully reflect a model’s 
performance in real-world applications. These metrics may be overly 
optimistic, particularly for high-capacity models like XGBoost, which 
can fit well to training data but may not generalize effectively to unseen 
data. To obtain a more reliable evaluation of our model’s performance, 
we  relied on cross-validation results, which provide a more robust 
assessment of the model’s generalization ability.

FIGURE 5

SHAP summary plot of the XGBoost model. Each dot in the plot 
represents a feature attribution value for a patient, with one dot per 
feature per patient. Dots are colored based on the feature values for 
each patient, with red indicating higher feature values and blue 
indicating lower feature values. The vertical accumulation of dots 
illustrates the density of feature attributions.
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Based on the findings mentioned, we  selected 
B. pseudocatenulatum for further validation of its fat-reducing effects 
in nematodes and cell models. Our research results indicate that all 
four strains of B. pseudocatenulatum improved lipid deposition in 

Caenorhabditis elegans. Additionally, our studies revealed that the 
metabolites of B. pseudocatenulatum can inhibit the adipogenic 
differentiation of mesenchymal stem cells. This research not only 
represents a significant advancement in the application of ML but 

FIGURE 6

The interpretation of model prediction results with the overweight sample.
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also provides novel insights into the development of probiotics like 
B. pseudocatenulatum for obesity management.

The gut microbiota is believed to play a significant role in the 
pathophysiology of obesity and is considered a potential therapeutic 

target. Bacterial metabolites, including short-chain fatty acids 
(SCFAs), bile acids, and trimethylamine N-oxide (TMAO), interact 
with specific receptors such as peroxisome proliferator-activated 
receptors α (PPARα) and γ (PPARγ), aryl hydrocarbon receptor 

FIGURE 7

Effect of B. pseudocatenulatum on fat metabolism in nematodes. (A) Oil Red O staining of Caenorhabditis elegans C. elegans to visualize lipid 
accumulation. (B) Quantitative analysis of Oil Red O staining, showing the degree of lipid deposition in the nematodes.

FIGURE 8

Effect of B. pseudocatenulatum on adipogenic differentiation of C3H10 Cells. (A) Survival rate of C3H10 cells. (B) Oil Red O staining. (C) Relative area of 
lipid droplets. (D) Relative PPARγ mRNA expression. (E) Relative FABP4 mRNA expression.
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(AhR), and G-protein-coupled receptors (GPR41, GPR43, GPR119, 
TGR5), thereby influencing host metabolism (de Vos et al., 2022; Bai 
et al., 2020). This underscores the need for further research to develop 
probiotic products and to better understand the mechanisms of 
microbe-host interactions.

Conclusion

The gut microbiota is closely associated with overweight and 
obesity. By employing ML methods, we developed a classification 
prediction model to identify and screen gut microbiota related to 
overweight. The integration of ML and SHAP (SHapley Additive 
exPlanations) offers clear explanations for individualized risk 
predictions, allowing researchers to intuitively understand the impact 
of key features in the model. Our analysis identified several key 
bacteria negatively correlated with obesity, including Alistipes 
onderdonkii, Bacteroides massiliensis, Haemophilus parainfluenzae, 
and B. pseudocatenulatum.

Further in vivo and in vitro experiments have demonstrated that 
B. pseudocatenulatum may influence fat deposition in nematodes 
and adipocyte differentiation. These findings suggest that it could 
be  a promising intervention for weight loss. Overall, our study 
represents a significant and necessary advancement toward utilizing 
gut microbiota modulation or specific active compounds for 
weight reduction.
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