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A review of key microbial and 
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The environmental impacts of livestock agriculture include the production of 
greenhouse gasses (GHG) such as methane (CH4) through enteric fermentation. Recent 
advances in our understanding of methanogenesis have led to the development 
of animal feed additives (AFA) that can reduce enteric CH4 emissions. However, 
many interacting factors impact hydrogen (H2) and CH4 production and AFA 
efficacy, including animal factors, basal diet, particle and fluid outflow, microbial 
populations, rumen fluid pH, and fermentative cofactor dynamics. Characterizing 
the response of rumen fermentation to AFA is essential for optimizing AFA 
implementation. Mechanistic models of enteric fermentation are constructed to 
represent physiological and microbial processes in the rumen and can be updated 
to characterize the dependency of AFA efficacy on basal diet and the impacts of 
AFA on fermentation. The objective of this article is to review the current state 
of rumen mechanistic modeling, contrasting the representation of key pools in 
extant models with a particular emphasis on representation of CH4 production. 
Additionally, we discuss the first rumen mechanistic models to include AFA and 
emphasize future model needs for improved representation of rumen dynamics 
under CH4-inhibition due to AFA supplementation, including the representation 
of microbial populations, rumen pH, fractional outflow rates, and thermodynamic 
control of fermentative pathways.
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1 Introduction

Due to the importance of ruminants in the global food supply, developing quantitative 
approaches to optimizing production has been a major focus of ruminant nutritionists. 
Recently, attention has shifted to using quantitative methods to minimize environmental 
impacts of ruminant production (Dijkstra et al., 2005). Livestock agriculture is responsible for 
the direct production of greenhouse gasses (GHG) such as methane (CH4) through enteric 
fermentation and nitrous oxide (N2O) and CH4 from manure management, as well as indirect 
GHG production associated with feed production and conversion of forest into pasture (Caro 
et al., 2016).

Enteric fermentation is the digestive process by which feed is broken down by 
microorganisms in the rumen. This process uniquely allows ruminants to utilize fibrous plants 
as energy sources (Krehbiel, 2014). While CH4 is considered a loss of 2–10% of ingested gross 
energy (GE) (Moe and Tyrrell, 1979), methanogenesis is a vital sink of reducing equivalents 
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which, without disposal, could potentially inhibit the reoxidation of 
microbial cofactors and depress fermentation (Morgavi et al., 2010). 
Microbes in the rumen ferment carbohydrates to volatile fatty acids 
(VFA), the major energy source for ruminant hosts, as well as carbon 
dioxide (CO2) and hydrogen (H2). Archaea in the rumen then perform 
methanogenesis by utilizing several metabolic pathways to reduce 
substrates such as CO2 with H2 to form CH4 (Hook et al., 2010; Smith 
and Hungate, 1958).

Recently developed animal feed additives (AFA) can reduce 
enteric CH4 emissions by directly disrupting methanogenesis or 
modifying the rumen environment to promote alternative metabolic 
pathways (Honan et al., 2021). However, many interacting factors 
impact H2 and CH4 production, such as fractional outflow rates, 
microbial populations, and microbial cofactor dynamics. In addition, 
basal diet, animal factors such as cattle type, body weight, feed intake, 
and their interactions affect AFA efficacy (Dijkstra et  al., 2018; 
Kebreab et al., 2023). To optimize AFA implementation, it is essential 
to characterize the response of rumen fermentation to these additives. 
However, this task is laborious when studied in vivo and challenging 
using empirical models, which do not account for complex 
interactions between variables. In contrast, mechanistic models are 
constructed to represent physiological processes. While the complexity 
of mechanistic models and their dependence on parameters that are 
difficult to obtain can make their use impractical in some settings 
(Ross et al., 2024), they can nonetheless be valuable research tools to 
understand the dependency of AFA efficacy on rumen parameters and 
optimize AFA implementation.

Several dynamic, mechanistic models of rumen fermentation have 
been developed, but few explicitly represent AFA. Bannink and De 
Visser (1997) offered a quantitative comparison of several of these 
models and Ellis et al. (2008) surveyed microbial factors salient to 
mechanistic rumen modeling. Kebreab et al. (2009) reviewed both 
mechanistic and empirical models of nutrient excretion by ruminants 
and Bannink et  al. (2016) reviewed how mathematical modeling 
contributes to understanding rumen fermentation. However, none of 
these articles thoroughly review the mathematical representations of 
microbial elements in extant rumen models, nor do they discuss these 
elements under conditions of CH4-inhibition. The recent advent of 
molecular methods has allowed deeper characterization rumen 
microbial communities, including under CH4-inhibition (Indugu 
et al., 2024; Zhao et al., 2024), that was not previously available for 
incorporation into mechanistic models. In addition, data from in vitro 
studies characterizing the rumen microbiome, including its response 
to AFA, have been incorporated into and used to evaluate predictions 
and identify influential parameters in in vitro fermentation models 
(Blondiaux et al., 2024; Merk et al., 2023; Muñoz-Tamayo et al., 2021). 
Thus, in vitro studies and models are important steps toward 
incorporating AFA into full rumen models. Revisiting the current 
state of rumen mechanistic models considering these recent advances 
is necessary.

The objective of this article is to review current mechanistic 
models of rumen fermentation and their representations of rumen 
fermentation via state variables and control elements, with specific 
focus on those capable of predicting enteric CH4 emissions. We focus 
predominantly on comprehensive models of rumen fermentation, but 
also discuss specialized models focusing on particular aspects of 
rumen fermentation such as lipid biohydrogenation, starch 
degradation, and rumen outflow. We begin with an overview of the 

historical development of rumen mechanistic models and typical 
model structures and then review representations of rumen state 
variables in these models, emphasizing updated model needs 
specifically for modeling rumen fermentation and CH4 production 
under AFA supplementation.

2 Mechanistic model structure

Classifying a mathematical model as “mechanistic” denotes that 
it predicts the behavior of a system by simulating elements of the 
system at a lower level of aggregation than the system itself, such as 
simulating the behavior of rumen microbes to predict rumen function. 
The models of rumen fermentation discussed here are structured 
according to the rate: state formalism. In this formalism, a “state 
variable” is a biological entity that determines the state of the system 
and state variable quantities are called “pools.” The system to 
be modeled is defined in terms of state variable pools and the rates of 
exchange between these pools (Thornley and France, 2007). 
Transactions of state variables from one pool to another (“fluxes”) are 
catalyzed by enzymes and can be represented using enzyme kinetic 
equations including mass action, Michaelis–Menten, sigmoidal 
(allosteric), and inhibitory kinetics (Gill et al., 1989). General forms 
of these flux equations are given in Table 1, Panel B. Subtracting the 
sum of all outputs from a state variable pool from the sum of all its 
inputs gives a first-order ordinary differential equation (ODE) for each 
state variable (Panel C). Thus, dynamic mechanistic models consist of 
a system of ODE describing the rate at which state variable pools 
change over time (Panel A). For a simplified example, see Panel D. The 
mechanistic model is then typically run by numerically integrating 
each ODE to give state variable pool size at each timestep, given initial 
pool size conditions.

3 Overview of historical development 
of rumen nutritional models

Mechanistic models from five major “lineages” are discussed in 
this review. These “lineages” were selected because the original models 
and their successors encompass the most significant efforts in 
modeling whole-rumen function mechanistically. The earliest model 
discussed here is Baldwin et  al. (1977) along with related models 
(Argyle and Baldwin, 1988; Baldwin, 1995; Baldwin et al., 1987; Reichl 
and Baldwin, 1975), collectively known as MOLLY. MOLLY has been 
updated in several models (e.g., Gregorini et al., 2015; Vetharaniam 
et al., 2015). A separate “lineage” is represented by France et al. (1982). 
A third “lineage” is represented by Dijkstra et al. (1992), which was 
later updated to improve representation of protozoa by Dijkstra 
(1994). These models are known as COWPOLL. Several subsequent 
models were based on COWPOLL such as Dijkstra et al. (1996b) and 
Mills et al. (2001, 2014). van Lingen et al. (2019, 2021) are closely 
related to COWPOLL but do not directly update it. Another “lineage” 
is the Karoline model (Danfær et al., 2006; Huhtanen et al., 2015; 
Ramin and Huhtanen, 2015). Some overlap of “lineages” exists as 
elements of models in one lineage were incorporated into others. More 
recently, Muñoz-Tamayo et al. (2016) developed a model of in vitro 
fermentation which utilizes a novel representation of microbial 
functional groups; this model was later updated in Muñoz-Tamayo 
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et al. (2021), representing a fifth “lineage.” While Muñoz-Tamayo et al. 
(2016, 2021) are in vitro models, they introduce elements relevant to 
the objectives of this review and are discussed here. Other models that 
are more specialized to represent aspects of rumen fermentation in 
more detail are also discussed. Table 2 summarizes salient control 
features, with a particular emphasis on modeling CH4 production, of 
the comprehensive rumen models included in this review.

4 Review of state variable pools in 
current rumen mechanistic models

4.1 Feed fractions

The primary goal of mechanistic models of rumen fermentation 
is to mathematically describe the microbial transactions that 
transform feed into metabolites, including CH4. Consequently, most 
models incorporate detailed representation of feed fractions, especially 
carbohydrates and nitrogen (N) sources. Below, we  review the 
representation of feed fraction categories in extant rumen models. 
Most models include dietary inputs into each feed fraction as a 
continuous intake rate (Baldwin, 1995; Dijkstra, 1994; Dijkstra et al., 

1992). However, some models can represent pulsed dietary inputs to 
simulate non-continuous feeding patterns (France et al., 1982; van 
Lingen et al., 2019).

4.1.1 Carbohydrates
Carbohydrate feed fractions are generally divided into at least 

four fractions: degradable starch, degradable fiber, undegradable 
fiber, and soluble carbohydrates (Nozière et al., 2010). Below is a 
detailed review of how carbohydrate fractions are represented in 
various models.

4.1.1.1 Fiber
See Figure 1A for an overview of state variables corresponding to 

fiber included in models reviewed here. Baldwin et al. (1977) explicitly 
represents plant insoluble carbohydrates such as pectin, hemicellulose, 
cellulose, and lignin. These fractions are further disaggregated into 
available (non-solubilized), fluid-associated, and fluid-and particle-
associated-microbe-associated pools. This complex representation is 
simplified by Baldwin et al. (1987), which combines hemicellulose and 
cellulose into holocellulose (also referred to as β-hexose), and includes 
lignin and insoluble ash. Cell wall content (hemicellulose, cellulose, 
and lignin) is used to scale rumination rate in Baldwin et al. (1987).

TABLE 1 Mechanistic model notation and general equation forms.

A. Mechanistic model: a system of differential equations

A mechanistic model is a system of differential equations given as:

 ( )1 1 1 2 3/ , , , ,= … ndQ dt f Q Q Q Q

( )2 2 1 2 3/ , , , ,= … ndQ dt f Q Q Q Q

…
( )1 2 3/ , , , ,= …n n ndQ dt f Q Q Q Q

where dQn/dt represents the change in pool Qn with respect to time and fn represents some function of the pools of the state variables.

B. General forms of kinetic flux equations

Mass action:

[ ] 11 Nv k S=  for systems with a single substrate

[ ] [ ] [ ]1 2
1 2

N N Nnv k S S Sn= …  in a system with multiple substrates, where v is the reaction velocity, k is the mass action constant, S are substrates.

 Michaelis–Menten and allosteric/inhibitory relationships:

[ ]( ) [ ]( ) [ ]( ) ( )1 1
max 1 1 1 1/ (1 / / / ] / )[= + +…+ + +…+

N Nn M Mn
n n n nv V K S K S I J I J

or

[ ]( ) [ ]( )1
max 1 1/ 1 / 1 /N Nnv V K S K Sn n

   = + ×…× + ×   
     [ ]( ) [ ]( )1

1 11 / 1 /M MnI J I Jn n
   + ×…× +   
   

where Vmax is the maximum reaction velocity, S are substrates with allosteric interactions, K are Michaelis–Menten constants corresponding to S, I are inhibitors, J are 

inhibition constants corresponding to I, and N and M are steepness parameters.

C. Differential equation for the state variable pool Qi

Kinetic flux equations can be summed to give a differential equation for each state variable pool as:
/ , ,dQ dt P Ui i jm i jm= Σ − Σ

where input fluxes to and output fluxes from pools are denoted Pi,jm and Ui,jm, respectively, where the subscript represents the uptake (U) or production (P) of pool i by j-to-m 

transaction.

D. Simplified example

 Influx of fiber (Fb) into the rumen can be modeled as: ( ) ( ) ( ), /   /   /− = ×Fb Intake FbP grams Fb h Feed intake rate g h feed fiber concentration g Fb g feed

 Outflow of fiber from the rumen occurs due to hydrolysis into hexoses (He): ,   − = ×Fb Fb He FbU Q fiber hydrolysis rate
Correspondingly, one of many inflows to the He pool is fiber hydrolysis: PHe, Fb-He = UFb, Fb-He.

The differential equation describing the change in degradable fiber pool size is thus defined as: dQFb/dt = ΣPFb - ΣUFb.

Adapted from Gill et al. (1989), Thornley and France (2007), and van Lingen et al. (2019). Additive or multiplicative Michaelis–Menten equations in Panel (B) can be selected based on the 
nature of substrate–substrate or substrate-inhibitor interactions (e.g., competitive or non-competitive inhibition). See Thornley and France (2007) for more complete discussion of equation 
forms. Square brackets denote concentrations of substrates or inhibitors.
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TABLE 2 Overview of representations (rep.) of key microbial and nutritional elements included (incl.) in main mechanistic models of rumen fermentation discussed in this review.

Model “Predecessor” 
or related 
model(s)

CH4 rep. AFA incl. VFA incl. Microbial groups 
incl.

Fractional 
rumen 
outflow rep.

Thermodynamic control Other controls, e.g., 
pH, intake pattern, etc.

France et al. 

(1982)

No direct predecessor None None None General microbes Mechanistically 

modeled based on 

rumen fluid pool 

size

None Pulsed feed inputs to simulate 

non-continuous feed intake

Baldwin (1995) Argyle and Baldwin 

(1988), Baldwin et al. 

(1977, 1987)

H2 balance None Acetate (Ac), 

propionate 

(Pr), butyrate 

(Bu), lactate 

(La)

General microbes subdivided 

by association with particles 

of different sizes

Particle-size based None pH estimated empirically based on 

relative proportions of VFA and 

lactate; whole animal model with 

digestion and metabolism sub-

models

Dijkstra (1994) Dijkstra et al. (1992) None None Ac, Pr, Bu, 

valerate (Vl)

Amylolytic (Ba) and 

fibrolytic bacteria (Bf), 

protozoa (Po)

Constant solid and 

liquid outflow rates

None pH, time below critical pH, and 

minimum pH specified by user

Mills et al. 

(2001)

Dijkstra et al. (1992) H2 balance None Ac, Pr, Bu, Vl Amylolytic and fibrolytic 

microbes

Constant solid and 

liquid outflow rates

None pH estimated empirically based on 

VFA concentrations

Danfær et al. 

(2006)

Huhtanen et al. 

(2015), Ramin and 

Huhtanen (2015)

Stoichiometric 

fermentation 

coefficients

None Ac, Pr, Bu, 

branched 

chain VFA

General microbes 

disaggregated by microbial 

composition

General passage 

rate modified to 

be more specific for 

many components

None Whole animal model with 

digestion and metabolism sub-

models

Mills et al. 

(2014)

Dijkstra (1994) None None Ac, Pr, Bu, La Ba with sub-groups of 

lactate-utilizers and lactate-

producers, Bf, Po

Constant solid and 

liquid outflow rates

None pH estimated empirically based on 

lactate and VFA concentrations; 

pulsed dietary inputs

Van Lingen et al. 

(2019)

No direct predecessor 

but related to 

COWPOLL

Based on kinetic H2 

uptake for 

methanogen growth

None Ac, Pr, Bu General microbes, 

methanogens (Me)

Constant solid and 

liquid outflow rates

Thermodynamic control of 

fermentation pathways via NAD+/

NADH ratio, controlled by pH2

Pulsed feed inputs to simulate 

non-continuous feed intake

van Lingen et al. 

(2021)

van Lingen et al. 

(2019)

Based on kinetic H2 

uptake for 

methanogen growth

3NOP, nitrate, 

3NOP- and nitrate-

metabolite nitrite

Ac, Pr, Bu General microbes, Me Constant solid and 

liquid outflow rates

Thermodynamic control of 

fermentation pathways via NAD+/

NADH ratio, controlled by pH2

Pulsed feed inputs to simulate 

non-continuous feed intake

Muñoz-Tamayo 

et al. (2016)

No direct predecessor Based on kinetic H2 

uptake for H2-utilizer 

growth

None Ac, Pr, Bu Sugars-, amino acids-, and 

hydrogen-utilizing microbes

No outflow (in vitro 

model)

None Mechanistic pH based on charge 

balance

Muñoz-Tamayo 

et al. (2021)

Muñoz-Tamayo et al. 

(2016)

Based on kinetic H2 

uptake for H2-utilizer 

growth

Bromoform from 

A. taxiformis

Ac, Pr, Bu Sugars-, amino acids-, and 

hydrogen-utilizing microbes

No outflow (in vitro 

model)

pH2 controls VFA flux allocation; 

implicitly assumes linearity between 

pH2 and NADH/NAD+

Mechanistic pH based on charge 

balance

In the case of several models developed in the same “lineage,” the later model is presented, but subsequent models that introduce wholly new aspects are presented separately. See text for more detailed discussion of each aspect.
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Subsequent rumen mechanistic models often use a more 
aggregated and functional approach, assuming that non-structural 
plant carbohydrates (e.g., starch) are fully degradable while structural 
carbohydrates contain both degradable and non-degradable fractions. 
The two latter fractions are found in most models. Structural 
carbohydrates are represented by “non-rumen-degradable β-hexose” 
and “rumen-degradable β-hexose” in France et  al. (1982) and 
“degradable” and “undegradable fiber” pools in Dijkstra (1994) and 
Dijkstra et  al. (1992, 1996b). A more recent model uses neutral 
detergent fiber (NDF) as the state variable pool representing structural 
carbohydrates (Muñoz-Tamayo et al., 2016). Danfær et al. (2006) uses 
a hybrid approach between functional and chemical classification, 
whereby the only fiber input is NDF, which is subdivided into forage 
and concentrate NDF and further divided into digestible and 
indigestible forage and concentrate NDF, respectively.

Inputs to the “fiber” pool come only from the diet. Some 
models associate fiber with a large particle pool (Baldwin et al., 
1977, 1987) and Danfær et al. (2006) aggregates NDF, starch, and 
sugars pools into escapable and non-escapable carbohydrate pools, 
where the non-escapable pool corresponds to large particles. The 
allocation of structural carbohydrate chemical entities into these 
pools links fiber chemical structure with model representation. For 

example, in Baldwin et al. (1987), hemicellulose and cellulose (not 
themselves state variables) comprise the dietary input to the 
holocellulose pool. In Dijkstra et al. (1996a), undegradable fiber is 
the percent of NDF in the diet undigested after prolonged rumen 
incubation, multiplied by NDF, while undegradable fiber is NDF 
minus degradable fiber (Tamminga et  al., 1990). Baldwin et  al. 
(1987) includes degradable fiber in three separate pools of differing 
particle sizes.

Outputs from the degradable fiber pool in Dijkstra (1994) and 
Dijkstra et al. (1992) include only hydrolysis by fibrolytic microbes to 
“fibrolytic hexose” (a pool of hexose only accessible to fibrolytic 
bacteria) and outflow from the rumen with the solid fraction. 
Typically, fiber hydrolysis is represented using mass action kinetics 
with a static fiber hydrolysis rate (Muñoz-Tamayo et al., 2016); mass-
action with dependence on cellulolytic microbial mass is also common 
(e.g., Baldwin et al., 1987; France et al., 1982; van Lingen et al., 2019). 
In Dijkstra (1994) and Dijkstra et  al. (1992), fiber hydrolysis is 
represented using Michaelis–Menten kinetics, dependent on 
cellulolytic microbial mass, and is sigmoidally regulated by rumen pH, 
with the hydrolysis rate declining at lower pH levels. In Baldwin et al. 
(1987), the holocellulose hydrolysis rate is dependent on the mass of 
microbes associated with holocellulose, and Argyle and Baldwin 

FIGURE 1

Overview of carbohydrate feed fractions and their corresponding state variables in mechanistic rumen fermentation models. (A) Fiber. (B) Starch. 
(C) Soluble carbohydrates. The biological feed fraction entity is linked to its corresponding state variable via an arrow corresponding to each model 
according to the key on the right of the figure. Some state variable pools are aggregated for simplicity. When the state variable name is the same as the 
biological entity, the state variable name is written in quotation marks. Associations of insoluble state variable pools with particles is not shown. The 
“Rest” fraction in Danfær et al. (2006) refers to sugars and other organic matter not accounted for. Created in BioRender. Pressman, E. (2024a) https://
BioRender.com/z67x384.
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(1988) updated this representation to include pH effects on fiber 
hydrolysis. Non-escapable carbohydrates in Danfær et al. (2006) are 
either fermented or released to the escapable pool, whereby the 
fermentation rate decreases with increasing diet starch and sugars 
content, implicitly representing dependence on the fibrolytic bacterial 
population in a less mechanistic manner, as liquid-associated microbe 
population depends on the ratio of soluble carbohydrates to total NDF 
in the diet. Escapable carbohydrates are either fermented or flow out 
to the small intestine.

The fiber hydrolysis rate is influential on CH4 predictions. An 
error of 1%/hour in the NDF degradation rate in Huhtanen et al. 
(2015) would cause a 2.4% error in CH4 predictions, and the fiber 
hydrolysis rate in van Lingen et al. (2019) accounted for 6.2% of 
variation in predicted CH4 output, making it the fourth largest 
contributor to CH4 uncertainty among model parameters. The 
authors noted that this result agreed with empirical CH4 prediction 
equations, where fibrous fractions, unlike starch and sugars, 
typically appear (Appuhamy et al., 2016). They hypothesized that a 
more mechanistic representation of the fiber hydrolysis rate (e.g., 
by representing its dependence on pH or on feed particle size) 
might improve CH4 predictions. However, Muñoz-Tamayo et al. 
(2016) found that in their model of in vitro batch fermentation, the 
fiber hydrolysis rate constant was similar across all four 
experimental diet scenarios simulated. This suggests that more 
mechanistic representation of the fiber hydrolysis rate would not 
explain differences in CH4 production across experiments. This 
may reflect the particularly influential role of fiber hydrolysis rate 
in terms of its interplay with particulate outflow from the rumen 
in a model of in vivo fermentation. These results suggest that, at 
least in the in vivo modeling scenario, more mechanistic control of 
fiber hydrolysis rate and solid outflow rate may improve 
CH4 predictions.

4.1.1.2 Starch
Mechanistic models generally assume that all insoluble starch is 

degradable and represent it using a “degradable starch” state variable 
(Dijkstra, 1994; Dijkstra et al., 1992), “insoluble starch” (Dijkstra et al., 
1996b), “α-hexose” (Baldwin et al., 1987; France et al., 1982), simply 
“starch” (Baldwin et al., 1977; Danfær et al., 2006), or the more general 
“non-structural carbohydrates” (Muñoz-Tamayo et  al., 2016) 
(Figure 1B). In conceptual models of starch degradation, Nocek and 
Tamminga (1991) represent directly soluble starch, and Beever et al. 
(1993) conceptualize starch fractions as potentially degradable or 
undegradable, with potentially degradable split into that actually 
degraded to hexose and that passing out of rumen (Mills et al., 1999). 
Additional complexity is added to starch representation by models 
which describe digested nutrients in terms of particle size distribution 
(Baldwin et al., 1987; Gregorini et al., 2015).

Inputs to the insoluble starch pool include only dietary inputs. In 
models that represent microbial storage polysaccharides (e.g., 
glycogen) (Dijkstra, 1994; Dijkstra et al., 1992), these are represented 
as separate state variables that do not enter the starch pool, but instead 
the soluble carbohydrates pool upon microbial lysis. However, in 
Muñoz-Tamayo et  al. (2016), the recycling of microbial cells is 
included as an input to the starch pool.

Outputs from the starch state variable pool generally include 
hydrolysis either to a single pool containing soluble starch and sugars 
(Dijkstra et al., 1996b; France et al., 1982; Muñoz-Tamayo et al., 2016) 

or hydrolysis by amylolytic microbes to amylolytic hexose (Dijkstra, 
1994; Dijkstra et  al., 1992). In the model with the most complex 
representation of microbial metabolism and explicit representation of 
protozoa, insoluble starch is directly taken up by protozoa for both 
growth and storage polysaccharide formation (Dijkstra, 1994). In 
Dijkstra (1994), protozoal uptake of starch is represented using 
saturation kinetics, with allosteric inhibition by the intracellular 
storage polysaccharide content of protozoa. Most models represent 
insoluble starch outflow from the rumen with the solid fraction 
(Baldwin et al., 1987; Dijkstra, 1994; Dijkstra et al., 1992, 1996b). 
Baldwin et al. (1987) and France et al. (1982) use α-and β-hexose-
specific outflow rates. Like fiber, starch hydrolysis is generally 
represented with first-order or Michaelis–Menten kinetics.

Starch-related state variables are generally represented with 
similar or less complexity and fewer state variables than fiber. This 
may reflect that starch is a relatively more homogenous chemical 
entity than fiber, although few mechanistic models attempt to 
represent starch in terms of starch granule structure or the degree and 
type of starch processing. Mills et al. (1999) reviewed representations 
of starch degradation in rumen mechanistic models and recommend 
that starch model inputs be characterized in terms of degradability, as 
well as physical form of starch and proportions of large, small and 
soluble fractions. However, such characterizations may be difficult to 
define in terms of proximate analysis fractions as with fiber. 
Mechanistic models developed since then have not introduced major 
changes in starch representations. Improved starch description may 
facilitate improved representation of carbon and redox balances 
(Baldwin, 1995; Mills et al., 1999), which may gain more importance 
as thermodynamic control of CH4 production is 
increasingly considered.

4.1.1.3 Soluble carbohydrates and hexoses
The products of complex carbohydrate hydrolysis are often 

represented as a single pool containing various soluble sugars, or as 
multiple pools disaggregated by the microbial groups they are 
accessible to (Figure 1C). Sugars are included in a generalized “soluble 
starch and sugars” pool in Baldwin et al. (1987) and Dijkstra et al. 
(1996b) and in the “Rest” fraction in Danfær et al. (2006), which 
represents sugars and all other organic matter unaccounted for. In 
Dijkstra et al. (1996b), the sugars pool includes dietary water-soluble 
carbohydrates, glycerol from the hydrolysis of long chain fatty acids, 
and the hydrolysis products of degradable fiber or insoluble starch, 
whereas in Danfær et al. (2006), glycerol from fatty acids have its own 
pool. Similarly, Baldwin et al. (1987) and France et al. (1982) include 
hydrolysis of the structural carbohydrates as inputs to the soluble 
sugars pool. France et al. (1982) also accounts for the release of water-
soluble carbohydrates via microbial catabolism.

Dijkstra (1994) and Dijkstra et al. (1992) offer a more complex 
representation of microbial metabolism, disaggregating water-soluble 
carbohydrates into amylolytic and fibrolytic hexoses. These hexoses, 
produced through the hydrolysis of insoluble starch and fiber, 
respectively, are available only to the corresponding microbial group. 
Microbial catabolism serves as a source of amylolytic hexose and in 
Dijkstra et al. (1992) the death and lysis of amylolytic microbes is a 
source of amylolytic hexose. The Dijkstra (1994) model further 
distinguishes between amylolytic bacteria and protozoa, with 
additional sources of amylolytic hexose arising from glycerol (from 
dietary and protozoal lipid) and hydrolyzed protozoal storage 
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polysaccharides released through protozoal lysis. Finally, lactate is 
included in the amylolytic hexose pool in both Dijkstra models and as 
a soluble carbohydrate in Danfær et al. (2006). In contrast, Muñoz-
Tamayo et al. (2016) uses a simpler representation, where a “sugars” 
pool is produced solely from the hydrolysis of structural and 
non-structural carbohydrates.

Several models (Baldwin et al., 1987; Dijkstra, 1994; Dijkstra et al., 
1992, 1996b; France et al., 1982) include the uptake of water soluble 
carbohydrates for microbial growth on ammonia and soluble protein 
and for non-growth purposes. These uptakes are disaggregated by 
microbe type in the Dijkstra models. Outputs from each hexose pool 
in Dijkstra et al. (1992) include microbial growth with ammonia, 
growth with soluble protein, utilization for non-growth, and outflow. 
Dijkstra (1994) updated this model to include engulfment by protozoa 
as an output of fibrolytic hexose, and in this model, amylolytic hexose 
is also taken up for protozoal growth and storage polysaccharide 
formation by amylolytic bacteria and protozoa. Muñoz-Tamayo et al. 
(2016) includes uptake for fermentation as the sole sugar 
utilization pathway.

As hexose is a key substrate for microbial growth and VFA 
production, the representation of water-soluble carbohydrates can 
considerably influence the dynamics of microbial growth and 
substrate utilization. Baldwin et  al. (1987) was the first model to 
introduce microbial substrate with distinct amylolytic and fibrolytic 
hexose groups, a strategy adopted by subsequent models to prevent 
biologically inappropriate interactions. However, in mixed cultures, 
interspecies cross feeding occurs, where microbial species utilize 
products of other species’ digestive enzymes (Krause et al., 2013). 
Baldwin (1995) argued that data were insufficient to represent and 
parameterize these complex interactions at that time. While cross-
feeding of hexoses remains underrepresented in more recent rumen 
fermentation models, Mills et  al. (2014) includes uptakes by one 
microbial group of lactate produced by another group. Given the 
importance of cross-feeding in the digestion of plant carbohydrates, 
incorporating representations of microbial cross-feeding may improve 
predictions of carbohydrate degradation and potentially 
CH4 formation.

4.1.2 Protein/growth substrates
Nitrogenous feed fractions are generally disaggregated into at least 

two fractions in complex rumen models: soluble protein (amino acids) 
and non-protein nitrogen (NPN; ammonia and/or urea). Most models 
also include insoluble protein that is hydrolyzed to soluble protein, 
and fewer models include an undegradable protein fraction. The 
representations of growth substrates in each model are reviewed below 
and an overview is presented in Figure 2A.

4.1.2.1 Undegradable protein
Some models represent the variable digestibility of insoluble 

protein by including an undegradable protein pool, while others 
assume that all protein is eventually degraded in the rumen. Dijkstra 
(1994) and Dijkstra et  al. (1992, 1996b) include an undegradable 
protein pool whose only source is the feed, with outflow as its only 
uptake. In Dijkstra et al. (1996a), undegradable protein is defined as 
the percent of crude protein undigested after prolonged rumen 
incubation, multiplied by crude protein content (Tamminga et al., 
1990). Similarly, “totally indigestible” forage and concentrate protein 
and “non-rumen-degradable protein” pools are included in Danfær 

et al. (2006) and France et al. (1982), respectively, with dietary input 
and outflow as their only fluxes.

While these undegradable protein pools do not interact with other 
pools, they may impact nutrient availability. Modifying Baldwin et al. 
(1987) to include undegradable protein and NDF pools led to reduced 
rumen availability of NDF and protein, which in turn decreased 
digestion and microbial growth (Bannink and De Visser, 1997). 
Increasing the insoluble protein degradation rate in Danfær et al. 
(2006) reduced predicted CH4, but this effect was small. Subdividing 
protein pools based on digestibility, as is more common in fiber pools, 
may improve prediction of nutrient utilization.

4.1.2.2 Degradable protein
In most models, feed protein enters as either insoluble protein or 

soluble protein (free amino acids), or into the undegradable protein 
pool if included. Without an undegradable protein pool, insoluble 
protein is considered completely degradable to free amino acids via 
microbial hydrolysis. A degradable protein pool is included in Baldwin 
et al. (1977), France et al. (1982), Baldwin et al. (1987), Dijkstra (1994) 
and Dijkstra et al. (1992, 1996b). Danfær et al. (2006) contains both 
forage and concentrate insoluble, degradable protein pools. Muñoz-
Tamayo et al. (2016) includes a single protein polymer pool assumed 
to be degradable, functionally equivalent to a degradable insoluble 
protein pool. In Dijkstra et al. (1996a), the soluble protein fraction is 
defined as the protein fraction that washes out of nylon bags without 
rumen incubation, and the degradable protein pool is the dietary 
crude protein content, minus the soluble and undegradable protein 
fractions (Tamminga et al., 1990). However, in the aggregated protein 
polymer pool of Muñoz-Tamayo et al. (2016), this pool also includes 
recycled microbial cell protein, which other models include in the 
soluble protein pool.

Uptakes for insoluble protein include outflow with the solid 
fraction and hydrolysis to soluble protein in most models. In Dijkstra 
(1994), insoluble protein can be  taken up directly by protozoal 
engulfment. In Baldwin et  al. (1977, 1987), where insoluble feed 
particle size distributions are considered, the insoluble protein pool 
contributes to the large particle pool size, and only the portion of 
insoluble protein not associated with large particles is available for 
passage. Similarly to carbohydrates, insoluble protein pools 
(degradable and undegradable protein from forage and concentrate) 
are aggregated into inescapable nitrogen pools and are either 
fermented or released to the escapable nitrogen pool in Danfær 
et al. (2006).

Degradable (insoluble) protein hydrolysis is typically represented 
using modified mass action kinetics dependent on the relevant 
microbial pool size (Baldwin et al., 1977, 1987; Dijkstra et al., 1996b; 
France et al., 1982) or Michaelis–Menten kinetics (Dijkstra, 1994; 
Dijkstra et  al., 1992). Most models do not explicitly include a 
proteolytic microbial group, so the microbial group relevant for 
protein hydrolysis is represented as the total microbial pool or, in 
Baldwin et al. (1987), the small-particle associated microbial pool. The 
models of Muñoz-Tamayo et  al. (2016, 2021), however, explicitly 
represent an amino-acid utilizing bacterial pool.

4.1.2.3 Soluble protein (amino acid protein)
Inputs to the soluble protein pool include the immediately soluble 

protein content of the feed, hydrolysis of insoluble protein, and 
salivary proteins. Models vary in the complexity of their representation 
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of microbial protein recycling. The most complex representation is 
found in Dijkstra (1994), where microbial soluble protein inputs are 
disaggregated into those from the lysis of protozoa and the release of 
unutilized insoluble and bacterial protein engulfed by protozoa. 
Danfær et al. (2006) also utilizes a relatively complex representation 
of soluble protein, including separate pools for amino acids, soluble 
protein, and peptides. Inflow to the peptides pool is degradation of 
soluble protein, and inflows to amino acids are degraded peptides and 
recycled microbial protein. A more simple representation by Muñoz-
Tamayo et al. (2016) only includes an aggregated input of “recycled 
microbial cell protein” into the protein polymer (not amino acid) pool.

Outputs from the soluble protein pool include outflow with the 
liquid fraction from the rumen and utilization by rumen microbes, 
the latter represented with varying complexity across models. 
Microbial amino acid uptakes for growth is typically modeled using 
either kinetic rates of substrate utilization or microbial growth rates, 
which are linearly related if maintenance requirements are negligible 
(Muñoz-Tamayo et al., 2016). Dijkstra (1994) disaggregates microbial 
soluble protein uptake into incorporation into amylolytic and 
fibrolytic microbial mass, fermentation to ammonia by these microbes, 
and uptake by protozoa. Dijkstra et al. (1996b) models soluble protein 
uptake for microbial growth using saturation kinetics dependent on 
soluble protein, energy (soluble carbohydrates), and microbial pool 
size, with soluble protein uptake for fermentation inhibited by soluble 
carbohydrates. Degraded amino acids are also inputs to the ammonia 
pool in Danfær et  al. (2006). Baldwin et  al. (1977) uses a more 
simplified representation of microbial amino acid uptake, where 
amino acids are used for microbial protein synthesis or fermentation 
disaggregated by free and attached microbes, with uptakes represented 
using mass-action kinetics. Baldwin et al. (1987) is similar, except that 
uptake for fermentation is represented using Michaelis–Menten 
kinetics. France et  al. (1982) assumes that all rumen degradable 

protein is hydrolyzed to NPN, which is utilized by microbes for 
growth, with no direct uptake of degradable protein for growth. 
Muñoz-Tamayo et al. (2016) uses modified saturation kinetics for 
amino acid uptake, with dependence on the concentration of amino 
acids-utilizing microbes. The model of van Lingen et al. (2019) centers 
on carbohydrate and fermentative metabolism and does not include 
any N compounds.

4.1.2.4 Ammonia
Many models include pools of NPN compounds (encompassing 

ammonia and less commonly urea and nucleic acids). France et al. 
(1982) includes an NPN pool from where all N utilized by microbes 
is taken up; inputs to this pool are salivary intake, degradation of 
rumen-degradable protein by proteolytic enzymes, and NPN released 
by microbial catabolism. Baldwin et al. (1977) includes nucleic acids 
and urea in an NPN pool, which solubilizes into an ammonia pool. 
Similarly, Baldwin et al. (1987) models NPN flow into the ammonia 
pool via the feed, amino acid fermentation, and saliva. Salivation rate 
is empirically modeled based on diet composition, and saliva urea 
concentration is assumed to be constant. Dijkstra (1994) and Dijkstra 
et al. (1992) include ammonia as a state variable. In Dijkstra (1994), 
inputs to the ammonia pool include feed ammonia content, urea 
transfer to rumen (modeled by Michaelis–Menten kinetics) and 
fermentation of soluble protein by amylolytic and fibrolytic microbes. 
Fermentation of protein engulfed by protozoa, including insoluble and 
bacterial and protozoal protein, also contributes to ammonia 
production. Danfær et al. (2006) also includes urea recycling, as well 
as amino acid degradation, as inputs to the ammonia pool.

Outflows from the ammonia pool include outflow with the liquid 
and utilization by microbes for growth on NPN, usually like equations 
for growth on soluble protein. Uptake of ammonia for growth by 
bacteria uses the same equation forms as those for soluble protein 

FIGURE 2

Overview of protein and lipid feed fractions and their corresponding state variables in mechanistic rumen fermentation models. (A) Protein and non-
protein nitrogen. (B) Lipids. The biological feed fraction entity is linked to its corresponding state variable via an arrow corresponding to each model 
according to the key on the bottom right of the figure. Some state variable pools are aggregated for simplicity. When the state variable name is the 
same as the biological entity, the state variable name is written in quotation marks. LCFA: long chain fatty acid. Created in BioRender. Pressman, E. 
(2024b) https://BioRender.com/e11l750.
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uptake for growth in Dijkstra (1994), but it is assumed that protozoa 
do not utilize ammonia. Unlike amino acids, most models include 
absorption of ammonia through the rumen wall. Dijkstra (1994) 
represents ammonia absorption using saturation kinetics dependent 
on the rumen surface area and pH. Baldwin et  al. (1977) models 
ammonia utilization for microbial growth using mass-action process 
with stoichiometric requirements for growth on NPN. Baldwin et al. 
(1987) combines ammonia outflow and absorption into a single mass-
action equation, representing ammonia uptake for microbial growth 
similarly to Baldwin et  al. (1977). Dijkstra et  al. (1996b) models 
ammonia uptake for microbial growth using saturation kinetics 
dependent on soluble protein, energy, and microbial pool size. 
Muñoz-Tamayo et  al. (2016) includes ammonium ion as a state 
variable for charge balancing and dynamic pH prediction, and 
ammonia is a nitrogen source for sugar-and H2-utilizing 
microbial groups.

Although physiological soluble substrate concentrations are 
generally far below microbial affinities, making mass-action forms 
equally appropriate, Michaelis–Menten kinetics can represent 
saturating concentrations of soluble nutrients immediately after 
feeding (Argyle and Baldwin, 1989; Baldwin, 1995). Baldwin et al. 
(1987) and the Dijkstra models use a Michaelis–Menten form for all 
equations describing utilization of soluble nutrients. The Monod 
equation is a mathematical model for microorganism growth with the 
same form as the Michaelis–Menten equation. While the theoretical 
interpretation of the Michaelis–Menten equation applied to microbial 
growth has been questioned (Liu, 2007), “Monod growth” remains a 
flexible and easily parameterized model for microbial growth in the 
rumen environment (Dijkstra et al., 2002), generally agreeing with 
empirical gas production profiles better than other growth models 
(Dhanoa et  al., 2000). Michaelis–Menten/Monod and Hill-type 
equations also have biologically interpretable parameters (Gill et al., 
1989), and the kinetic approach to modeling microbial growth avoids 
the need for explicit maintenance requirements unlike the Pirt 
equation. The validity of Pirt “constants” for microbial species has also 
been questioned (Van Bodegom, 2007), especially given the 
aggregation typical of microbial pools in rumen models. The variable 
maintenance energy requirements of individual bacterial species 
coupled with variability in growth rates due to energy spilling led 
Dijkstra (1994) and Dijkstra et al. (1992) to avoid explicit maintenance 
energy requirements, instead calculating total energy required for 
non-growth functions based on energy and N availability. Similarly, 
Muñoz-Tamayo et al. (2016) does not explicitly represent microbial 
maintenance, assuming the cell death rate encompasses maintenance.

4.1.3 Lipids
Despite the impact of long chain fatty acids (LCFA) on fiber 

degradation and CH4 production via the biohydrogenation H2 sink, 
representations of lipid metabolism in mechanistic rumen are 
generally less complex than those of carbohydrates and N 
compounds (Figure 2B). In fact, they are not present at all in France 
et al. (1982). Dijkstra et al. (1992) includes a “lipids” pool, while 
Baldwin et al. (1987) and Dijkstra et al. (1996b) include a “LCFA” 
pool. In these models, fluxes to both pools include input from the 
diet and outflow from the rumen. Additionally, Baldwin et  al. 
(1987) and Dijkstra et al. (1996b) account for the incorporation of 
LCFA into microbial lipid. Lipids are hydrolyzed to LCFA, which 
can then undergo biohydrogenation as in Baldwin et al. (1977), 

which has a relatively complex representation of lipids with “lipid,” 
triglycerides, and LCFA pools. Similarly, Danfær et  al. (2006) 
includes a rumen fat pool which corresponds to dietary crude fat, 
assumed to be  triglycerides, as well as a free fatty acids pool. 
Triglycerides pass to free fatty acids by lipolysis, are taken up by 
rumen microbes, and flow out of the rumen. Baldwin (1995) 
empirically represents inhibition of fiber hydrolysis by fat but this 
effect is not related to the degree of LCFA saturation (Dijkstra 
et al., 2000).

Dijkstra (1994) extends the limited representation of lipid 
metabolism in Dijkstra et al. (1992) by including an input to the lipid 
pool from the lysis of protozoa and the release of engulfed lipid not 
utilized for protozoal growth. It also includes the uptake of lipid by 
protozoa for growth. Dijkstra et al. (2000) further extends Dijkstra 
et  al. (1992) to more comprehensively represent rumen lipid 
metabolism, including dietary lipids and both saturated and 
unsaturated free LCFA. An updated version of Baldwin et al. (1987) 
described in Benchaar et al. (1998) also includes the biohydrogenation 
of unsaturated fatty acids to calculate hydrogen balance in the rumen. 
Similarly, Mills et al. (2001) updated Dijkstra et al. (1992) to predict 
CH4 production via H2 balance, including biohydrogenation. However, 
neither of these updated models includes a LCFA pool, so 
biohydrogenation is represented as a lipid uptake with an empirical 
constant accounting for proportion of saturated fat in dietary lipid.

Some specialized models of rumen lipid metabolism focus on 
kinetically representing the processes of unsaturated fatty acid 
biohydrogenation and the production of specific fatty acids (Moate 
et  al., 2008). However, extant rumen models incorporating CH4-
inhibiting additives (Muñoz-Tamayo et al., 2021; van Lingen et al., 
2021) do not include biohydrogenation. As it is recommended that 
models incorporate alternative H2 sinks in light of H2 redirection with 
inhibited methanogenesis (Morgavi et al., 2023), increasingly complex 
representation of rumen lipid metabolism should become more 
common in rumen mechanistic models.

4.2 Microbe and microbial storage 
polysaccharide pools

Representations of microbial groups vary in complexity across 
models, from single, aggregated pools of “microbes” to multiple 
bacterial sub-groups, protozoa, and methanogens. Distinctions within 
populations are generally made for bacteria according to carbohydrate 
utilization, although some models use alternative groupings (Muñoz-
Tamayo et al., 2016). Many models assume a uniform and constant 
microbial dry matter composition (France et al., 1982), while others 
represent microbial storage polysaccharides or other microbial 
components as separate pools to account for their variable 
contributions (Danfær et  al., 2006; Dijkstra et  al., 1992). Below, 
representations of fermentative microbial subgroup in models are 
reviewed. The representations of methanogens are discussed in 
Section 4.5.3. See Figure  3A for an overview of state variables 
corresponding to microbial groups in each model reviewed here.

4.2.1 Bacteria or aggregated fermentative 
microbes and bacterial storage polysaccharides

The simplest representation of fermentative microbes included in 
mechanistic rumen models is a single aggregated pool of microbes. 
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This approach is utilized in Baldwin et al. (1977, 1987), Dijkstra et al. 
(1996b), and France et  al. (1982). In the Baldwin models, the 
aggregated microbe pool is distributed across particle pools of 
different sizes, where microbes associated with different particle sizes 
access different substrates. This distribution implicitly distinguishes 
microbes based on substrate utilization. In a different approach, 
Danfær et  al. (2006) models one microbial population that is 
disaggregated into pools of microbial components (microbial protein, 
starch, etc.), but uses one maintenance requirement that encompasses 
both amylolytic and fibrolytic bacteria. In contrast, Dijkstra et  al. 
(1992) disaggregates microbes into amylolytic and fibrolytic microbial 
pools, where the amylolytic pool encompasses both bacteria and 
protozoa. Dijkstra (1994) further refines this by creating a fibrolytic 
bacteria pool and splitting amylolytic “microbes” into amylolytic 
bacteria and protozoa. In the Dijkstra models, inputs to a given 
microbial pool are represented as a microbial growth yield constant 
multiplied by the corresponding uptake of growth substrate (e.g., 
soluble protein or ammonia) for growth, with growth substrate 
requirement factors adapted from Reichl and Baldwin (1975). 
Additionally, these inputs apply specifically to the polysaccharide-free 
microbial dry matter, as amylolytic storage polysaccharides are 
represented as a separate state variable pool. While most kinetic 
parameters are shared between the amylolytic and fibrolytic groups, 
they differ in outflow rates and composition (Dijkstra et al., 1992), as 
only amylolytic bacteria synthesize storage polysaccharides. While 
amylolytic bacteria do not utilize this polysaccharide to power cellular 
processes, amylolytic hexose is taken up for formation of amylolytic 
bacterial storage polysaccharide. This may impact microbial growth, 
which depends on energy substrate availability, and distinguish the 
growth dynamics of each bacterial pool.

Mills et  al. (2014) extends Dijkstra (1994) by splitting the 
amylolytic bacterial pool into lactate-producing bacteria and lactate-
utilizing bacteria. Lactate-producers ferment amylolytic hexose to 
either lactate or VFA, depending on specific growth rate and rumen 
pH, while lactate-utilizers use both lactate and amylolytic hexose as 
energy sources. Lactate utilization by protozoa is also included. The 
growth of these microbial pools is represented similarly to that of 
Dijkstra (1994) and Dijkstra et al. (1992). Muñoz-Tamayo et al. (2016) 
uses a different approach from the prevailing method of disaggregation 
by carbohydrate utilization type, instead representing the rumen 
microbiota with three functional groups: sugar (glucose) utilizers, 
amino acids utilizers, and hydrogen utilizers. In Muñoz-Tamayo et al. 
(2016), ammonia is assumed to be the sole N source for sugar utilizers, 
and microbial growth is represented as a growth yield constant 
multiplied by the corresponding substrate uptake flux.

In Dijkstra et al. (1996b), uptakes of the aggregated microbial pool 
include outflow from the rumen, where the outflow rate for the 
aggregated microbial group is estimated by assuming that the total 
microbial biomass comprises 40% protozoa and 60% bacteria, that 
particle-associated bacteria make up  75% of the total bacterial 
biomass, and that the fractional outflow rate of protozoa is half of that 
of the fluid outflow rate. The need for such assumptions demonstrates 
the limitations of using aggregated microbial pools for more complex 
modeling exercises. This approach does not account for protozoal 
predation and resultant microbial N recycling in the rumen. In 
contrast, the 1992 and 1994 Dijkstra models with disaggregated 
amylolytic and fibrolytic microbe include outflows from each pool 

corresponding with the appropriate fraction, e.g., all amylolytic 
microbes flow out with the fluid and that all fibrolytic microbes with 
the solid fraction. In addition, microbes can be taken up via predation 
by protozoa and protozoa can also die due to lysis.

In Muñoz-Tamayo et  al. (2016), the only uptakes of each 
functional microbial group are through death, represented as a 
mass-process where the death rate is constant across microbial 
groups. In France et  al. (1982), uptake from the aggregated 
microbial group also includes microbial death, parameterized 
with a death rate dependent on the specific rate of microbial 
catabolism, which itself depends sigmoidally on the microbial 
growth rate, as well as washout to the omasum. Baldwin et al. 
(1977) includes microbial uptakes such as outflow of liquid-
associated microbes with the rumen fluid, while particle-
associated microbes pass out in association with insoluble 
particles. In Baldwin et al. (1987), it is assumed that large-particle 
associated microbes do not pass out of the rumen, while those in 
the small-particle-associated microbial pool (corresponding to 
the earlier model’s particle-associated pool) and fluid-associated 
pools do.

As rumen mechanistic models have evolved to predict CH4 
production, the increasingly complex representations of 
fermentative pathways and other controls have not been matched 
by increasing complexity in representations of fermentative 
microbial groups. The only models currently incorporating 
thermodynamic control of fermentation pathways (van Lingen 
et al., 2019, 2021) represent all fermentative microbes by a single 
pool. Sensitivity analysis in van Lingen et al. (2019) identified the 
fiber degradation rate constant as influential on CH4 predictions, 
so distinguishing between cellulolytic and amylolytic bacteria 
may improve representation of substrate degradation, 
fermentative substrate availability, and CH4 production (van 
Lingen et al., 2019). Less aggregation of bacteria solely based on 
carbohydrate utilization and inclusion of additional bacterial 
functional groups in the rumen may also be necessary to improve 
CH4 predictions, especially under supplementation of CH4-
inhibitors. AFA targeting methanogens may provide an advantage 
to reductive acetogens to compete for H2 (Ellis et al., 2008), but 
utilization of H2 by reductive bacteria is not included in any 
extant model of rumen fermentation. Similarly, sulfate-reducing 
bacteria, while minor under normal conditions, may become 
more prevalent H2-utilizers under CH4-inhibition or alternative 
feeding practices that include sulfur-containing feeds, such as 
corn co-products, but are not included in any extant rumen 
model (Ellis et  al., 2008). Inclusion of additional microbial 
functional groups may be  an important next step for more 
biologically realistic representation of H2 balance in the rumen. 
This endeavor can be supported by the increased knowledge of 
the diversity and function of the rumen microbiome generated 
through genomic approaches (Seshadri et al., 2018). However, 
this expanded genomic information has not yet been matched by 
representations of microbial metabolism in rumen mechanistic 
models (Bannink et  al., 2016), although recent work has 
integrated microbial “omics” data into dynamic models of the 
metabolism of Fibrobacter succinogenes (Fakih et al., 2023) and 
the entire rumen microbiome (Davoudkhani et al., 2024). Further 
integration of omics data into rumen mechanistic models can 
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improve representation of both microbial metabolism and 
fermentation stoichiometry (Muñoz-Tamayo et  al., 2023) and 
mechanisms of CH4-inhibition by AFA (Indugu et al., 2024; Tan 
et al., 2024), potentially improving predictions of CH4 emissions.

4.2.2 Protozoa and protozoal storage 
polysaccharides

The only extant rumen model that explicitly includes protozoa is 
Dijkstra (1994) and its derivatives. In Dijkstra (1994), inputs to the 
protozoa pool represent the uptake by protozoa of many substrates, 
and protozoal growth is determined by the minimum of either the 
growth supported by engulfed carbohydrates or protein. Inputs to the 
protozoal storage polysaccharide pool are yield constants multiplied 
by the corresponding uptakes of energy substrates. The representation 
of protozoal growth in Mills et al. (2014) is the same as in Dijkstra 
(1994), with the addition of lactate as an energy substrate for protozoal 
growth, and maximum protozoal uptake of bacterial protein and feed 
protein depends on rumen fluid pH.

To represent the high observed rate of protozoal lysis in the 
rumen in Dijkstra (1994), thought to be caused by unrestricted 
soluble sugar uptake and intracellular accumulation of acidic 

fermentative end products, protozoal lysis is included as an 
uptake, which is sigmoidally dependent on the rate of VFA 
production from hexose fermentation and protozoal biomass. 
Uptakes of protozoa also include outflow from the rumen, which, 
due to protozoal sequestration, is assumed to be 45% of the solid 
outflow rate. Thus, all protozoa are eligible for lysis, regardless of 
whether they are sequestered with less access to soluble 
substrates, leading to a rapid increase in protozoal death rates at 
high nutrient availabilities and mimicking the high protozoal 
lysis rates observed in vitro. However, recent work has questioned 
the applicability of these rates in vivo, due to limitations in 
studies that led to high observed lysis rates (Firkins et al., 2007). 
Diaz et al. (2014) postulated that extensive autolysis by isotrichids 
in culture tubes may result from their inability to migrate away 
from lytic conditions, unlike in the in vivo environment, where 
they could sequester in the ventral rumen. Therefore, the true in 
vivo protozoal lysis rate may be lower than that represented in 
Dijkstra (1994). Given the important role of protozoa in 
sequestering soluble substrates, revisiting the representation of 
protozoal lysis may improve predictions of VFA production and 
CH4 emissions.

FIGURE 3

Overview of rumen microbe and fermentation products and their corresponding state variables in mechanistic rumen fermentation models. (A) Rumen 
microbial populations or components. (B) Fermentation products. The biological entity is linked to its corresponding state variable via an arrow 
corresponding to each model according to the key on the right of the figure. When the state variable name is the same as the biological entity, the 
state variable name is written in quotation marks. VFA: volatile fatty acids. Created in BioRender. Pressman, E. (2024c) https://BioRender.com/f30w782.
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4.2.3 Anaerobic fungi
No mechanistic rumen model includes anaerobic fungi, perhaps 

because of their complex life cycle and relatively poorly characterized 
metabolism. However, France et  al. (1990) uses a mechanistic, 
differential equation-based model to predict the proportion of the 
fungal population in each life stage (zoospore, immature thalli, and 
mature thalli) and total population size. Inclusion of anaerobic fungi 
in future models is important due to their impact on insoluble particle 
degradation (Kennedy and Murphy, 1988) and, consequently, particle 
retention and outflow rates. In addition, rumen anaerobic fungi play 
an important role in interspecies H2 transfer, and therefore, CH4 
production. Methanogens are thought to be  ecto-symbionts of 
anaerobic fungi, which, like protozoa, produce large amounts of H2 
gas via specialized hydrogenosome organelles (López-García et al., 
2022; Valle et  al., 2015). Therefore, representing interspecies H2 
transfer between anaerobic fungi and methanogens may improve 
predictions of CH4 production and H2 accumulation under  
CH4-inhibition. To advance representation of anaerobic fungi in 
future models, the approach of France et al. (1990) could potentially 
be incorporated into a full rumen model.

4.3 Fermentative products

The products of microbial carbohydrate fermentation (VFA, as 
well as other organic acids such as lactic acid) are the primary energy 
source for the ruminant host and different VFA species are relative 
sources or sinks of H2, impacting CH4 production. While almost all 
models consider the protonated (acid) and deprotonated (conjugate 
base) forms of the fermentative products together in one aggregated 
pool, this section will refer to all products in their acid form unless 
specifically referring to the disassociated form. Typical representations 
of fermentative products in models are reviewed below and an 
overview is presented in Figure 3B.

4.3.1 Major VFA (acetic, propionic, and butyric 
acids)

The production of the major VFA (acetic, butyric, and propionic 
acids) is generally represented in the same manner mathematically, 
using empirically-derived stoichiometric yield factors to give 
relative proportions of each VFA species, based on high-forage or 
high-starch diets and usually interpolated for intermediate diets. 
This approach is more thoroughly examined in Alemu et al. (2011) 
and Bannink et al. (2006). Inputs to each VFA pool (acetic, butyric, 
propionic, and valeric acids) in Dijkstra (1994), include VFA 
content of the feed and fermentation of hexose, additional energy 
substrates available to protozoa, or soluble protein for growth, 
non-growth, and storage polysaccharide formation by microbes, 
according to stoichiometric yield factors. Dijkstra et al. (1996b), a 
simplified version of Dijkstra (1994) and Dijkstra et  al. (1992), 
contains five inputs to an aggregated VFA pool: intake with diet, 
fermentation of soluble carbohydrates for microbial growth and for 
non-growth processes, and soluble protein fermentation. However, 
instead of predicting the VFA species, it uses an empirical average 
VFA profile for the diet simulated by the model.

Baldwin et al. (1977) represents VFA production using a relatively 
high degree of aggregation. Total VFA production is calculated using 
a fermentation balance equation, while acetic, propionic, butyric, and 

unspecified “higher” acids are given as proportions of total VFA using 
static stoichiometric relationships. Baldwin et al. (1987) disaggregates 
the major VFA and explicitly represents acetic, propionic, and butyric 
acid pools using empirical stoichiometric yield factors; Danfær et al. 
(2006) use a similar approach. Muñoz-Tamayo et al. (2016) uses a 
novel approach to modeling the production of the three major VFA, 
defining fermentation stoichiometry through biochemical reactions. 
This approach reduces the number of model parameters by avoiding 
unknown stoichiometric factors based on diet, arguably making it 
more mechanistic. van Lingen et al. (2019) uses a similar approach, 
utilizing biochemical reactions to predict individual VFA 
species formation.

In Dijkstra (1994) and Dijkstra et al. (1992), uptakes from 
each VFA pool include outflow from the rumen with the fluid 
fraction and absorption through the rumen wall. The latter is 
represented using modified Michaelis–Menten kinetics, where 
the maximum absorption rate is dependent on rumen wall 
surface area and is modified sigmoidally by rumen fluid pH to 
represent acid disassociation, with slower absorption rates of 
disassociated acids at higher pH. Dijkstra et al. (1996b) simplifies 
this representation by assuming a constant absorption rate based 
upon empirical VFA absorption data at rumen fluid pH values 
typical of sugarcane-based diets. Baldwin et al. (1987) represents 
the uptake of each major VFA with one aggregated mass-action 
reaction representing both outflow and absorption. Muñoz-
Tamayo et al. (2016) includes an uptake of acid disassociation to 
the ionized conjugate base.

More complex representations of VFA production have developed 
in concert with increased interest in representing CH4 production. It 
is likely that using empirical stoichiometric yield factors leads to errors 
in predicting relative VFA proportions and production, partly due to 
measurement errors in the data upon which the empirical factors are 
developed. Because direct observation of VFA production rates in vivo 
is technically difficult, it is typically assumed that molar proportions 
of VFA in rumen fluid are representative of the proportions in which 
VFA are produced (Alemu et al., 2011). However, this assumption is 
not necessarily valid given differential rates of VFA absorption and 
utilization in the rumen epithelium or by the rumen microbiota. Such 
stoichiometric constants also assume a fixed fermentative pattern for 
all microbial subpopulations, even though fungi and protozoa produce 
very little propionate, and a fixed microbial growth efficiency with 
substrate fermentation to each VFA. Finally, VFA interconversion 
cannot be  represented using these fixed factors, nor do they 
incorporate the effect of pH on rumen VFA stoichiometric coefficients, 
potentially affected through interplay with thermodynamics and 
hydrogenase-mediated conversion of H+ to H2 (see Section 4.5 and 
Figure 4). Only recently have models of Muñoz-Tamayo et al. (2016) 
and van Lingen et  al. (2019) used yield factors from balanced 
fermentation reaction equations for hexose and protein fermentation. 
This type of representation requires its own assumptions, e.g., that 
non-hexose monosaccharides have the same fermentation 
stoichiometry as hexose or the structure of the “average” amino acid.

4.3.2 Lactic acid
Mills et al. (2014) modifies Dijkstra (1994) to include lactic acid 

metabolism in the rumen (Figure 3B). The production of lactic acid is 
similar to that of the major VFA in Dijkstra (1994). Inputs to the lactic 
acid pool include intake with the diet and fermentation of hexose by 
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lactate-producing amylolytic bacteria. The proportion of hexose 
fermented to lactic acid is assumed to increase as specific growth rate 
increases and as pH decreases. Uptakes of lactic acid in Mills et al. 
(2014) include outflow with fluid, absorption through rumen wall, 
and fermentation to VFA by lactate-utilizing bacteria and protozoa; 
uptakes for fermentation to VFA are all inputs to the corresponding 
VFA pool.

While the balance of lactic acid production and utilization usually 
prevents its accumulation in rumen, at high microbial growth rates and 
increased glycolytic flux, the production of more reduced products like 
lactic acid is a means to rapidly regenerate NAD+, whereas production 
of more oxidized products like acetic acid would be inhibited by the 
high H2 partial pressure (Mackie et al., 1984) (Figures 4A,C). Therefore, 
the inclusion of lactic acid metabolism may gain importance as 
thermodynamic control of fermentative pathways becomes more 
prominent in rumen models. In addition, including lactic acid 
metabolism allows for more mechanistic prediction of rumen fluid pH.

4.3.3 Minor VFA and other fermentative 
end-products

In addition to the major VFA and lactic acid, some models also 
include minor VFA species. For example, Dijkstra (1994) and Dijkstra 
et al. (1992) incorporate hexose fermentation to valeric acid. However, 
no current mechanistic models of rumen fermentation include minor 
VFA (such as caproate), formate, or organic acids like fumaric or 
malic acid, despite their potential importance as intermediates in 
propionate or CH4 production (Ellis et al., 2008). Only Danfær et al. 
(2006) includes an aggregated branched-chain VFA pool, produced 
through protein fermentation. While branched-chain VFA are minor 
species, they are important intermediates in branched-chain amino 
acid catabolism and microbial growth, suggesting that their inclusion 
could improve the representation of microbial growth dynamics and 
protein metabolism in the rumen. Additionally, incorporating 
alternative fermentative substrates and products, such as formate, 
malate, and fumarate, may improve predictions of fermentative shifts 
under CH4-inhibition (Ellis et al., 2008).

4.4 Rumen pH

Few models include mechanistic control of rumen pH and 
misrepresentation of pH is a major contributor to errors in CH4 
prediction (Bannink et al., 2011). Approaches to modeling dynamic 
rumen pH include charge balancing and kinetic modeling of 
organic disassociation with bicarbonate buffering. Dijkstra (1994) 
and Dijkstra et al. (1992) use a static rumen fluid pH while Baldwin 
(1995) employs an empirical approach based on relative proportions 
of VFA and lactate without accounting for saliva’s buffering effect. 
The model of Muñoz-Tamayo et  al. (2016) mechanistically 
represents dynamic rumen pH by explicitly modeling acid–base 
pair disassociation and solving for H+ concentration. Imamidoost 
and Cant (2005) use a more typical rate: state formula to depict 
rumen pH where the dissociation of an aggregated organic acid 
state variable is controlled by bicarbonate buffer content, and 
dynamic rumen pH is then calculated using the Henderson-
Hasselbach equation. Offner and Sauvant (2006) also use the rate: 
state formalism to explicitly represent hydrogen ions as a state 

variable with flows from VFA and bicarbonate disassociation, and 
through H2 pool via redox reactions.

Rumen pH can affect fractional VFA absorption rates (Alemu 
et  al., 2011) as well as fiber degradation by rumen microbes 
(Dijkstra et  al., 1992). One study found that errors in rumen 
acidity had the greatest effect on estimated CH4 emissions, where 
a 0.1 reduction in rumen pH decreased estimated CH4 emission 
by over 3% (Bannink et  al., 2011). Similarly, differences in 
fractional absorption rates among VFA at lower rumen pH could 
partly explain variations in model predictions (Dijkstra et al., 
1993). Given its important role in VFA profile and interactions 
with redox reactions, further development of mechanistic models 
for dynamic rumen fluid pH is warranted.

4.5 Redox balance in the rumen

Mechanistic representation of redox reactions and thermodynamic 
control in rumen models is relatively limited, but increasingly 
recognized as important (van Lingen et al., 2016, 2019). Below, aspects 
of rumen redox balance, including CH4 and methanogens, 
are discussed.

4.5.1 Metabolic hydrogen and other electron 
donors

Early representations of H2 production in the rumen treated 
H2 as a “zero pool” (France et al., 1992), whereby the difference 
between all explicitly represented H2 inputs and outputs was used 
for CH4 production as seen in Baldwin (1995), Benchaar et al. 
(1998) and Mills et  al. (2001). Similarly, Danfær et  al. (2006) 
models CH4 production based on empirically based on 
stoichiometric fermentation coefficients without representing 
methanogens. Mills et al. (2001) modified the Baldwin (1995) 
model to include H2 production from the fermentation of 
carbohydrate and protein substrates to acetate and butyrate and 
microbial growth on amino acids. H2 uptake was represented for 
microbial growth on NPN, biohydrogenation of unsaturated fatty 
acids and fermentation of substrates to propionate and valerate. 
Vetharaniam et al. (2015) also adapted Baldwin (1995) to simulate 
the rumen of a sheep and predict CH4 emissions, using the same 
H2-balance approach as Mills et al. (2001).

More recent models (e.g., van Lingen et al., 2019) instead represent 
an H2 pool using the rate: state formalism. Inflows include 
carbohydrate fermentation to acetate and butyrate, with absorption 
and outflow of dissolved H2 explicitly represented using Henry’s law 
and the ideal gas law. Eructation of gaseous H2 is represented using a 
mass-action process and H2 uptake for methanogen growth is 
modeled using Michaelis–Menten kinetics. While van Lingen et al. 
(2019) does not represent protein metabolism or H2 production 
through amino acid fermentation, this flux is included in Muñoz-
Tamayo et al. (2016) via mass-action equations. Muñoz-Tamayo et al. 
(2016) also explicitly represents non-equilibrium liquid–gas transfer 
of H2 from dissolved to gaseous state using mass-action kinetics with 
dissolved H2 uptake for methanogenesis and microbial growth on 
NPN, both represented by Michaelis–Menten kinetics.

No rumen mechanistic model currently represents 
methanogenic electron donors or substrates besides H2 and CO2. 
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Formate, produced by anaerobic fungi and protozoa, may contribute 
up to 18% of CH4 production (Hungate et al., 1970) and serve as an 
electron donor for reducing fumarate and malate to succinate and 
then propionate. Including formate and other potential electron 
donors like acetate, methanol, and methylamines in models could 
improve predictions of CH4 emissions and VFA profiles, especially 
under CH4-inhibition (Ungerfeld, 2020).

4.5.2 Microbial cofactors and thermodynamic 
control of fermentation pathways

Accurate CH4 prediction depends on correctly modeling relative 
concentrations of VFA produced through fermentation (Alemu et al., 
2011), which typically first proceeds via glycolysis (Figure 4A). NADH 
and reduced ferredoxin, cofactors carrying electrons, must be re-oxidized 
for glycolysis to proceed (Hegarty and Gerdes, 1999) (Figure  4B). 

FIGURE 4

Overview of carbohydrate fermentation pathways in the rumen emphasizing the net production of reduced cofactors by each pathway and the re-
oxidation of reduced cofactors. Adapted from Figures 1, 3, 4, and 6 in Hackmann, 2024, used under CC BY 4.0 (https://creativecommons.org/licenses/
by/4.0/). (A) Summary of key fermentation pathways in the rumen with symbols representing the oxidation or reduction of cofactors in each reaction 
step. See (B) for key to redox symbols. Steps in each pathway may be combined or not shown for simplicity. (B) Key to redox symbols in Panel (A) and 
overview of hydrogenase-catalyzed cofactor re-oxidation. If H2 produced through cofactor re-oxidation accumulates, the rumen pH2 can increase 
which is thought to thermodynamically inhibit fermentation pathways that lead to net cofactor reduction. Hydrogenase represents a generic 
hydrogenase. Reduced cofactors can also be re-oxidized via bifurcating hydrogenases, which is not shown. Reoxidation reactions do not necessarily 
show balanced stoichiometries. (C) Summary of the net reduced cofactors NAD(P) (left sub-panel) and reduced ferredoxin (right sub-panel) generated 
in the steps of fermentation pathways shown in (A). (D) Hypothetical scheme of fermentation pathway redirection to fermentation products that are 
net sinks of reduced cofactors, such as propionate, under inhibited methanogenesis. AA-CoA: acetoacetyl-CoA, B-CoA: butanoyl-CoA, CHBr3: 
bromoform, CoA: coenzyme A, G3P: glyceraldehyde 3-phosphate, OA: oxaloacetate, PEP: phosphoenolpyruvate. Created in BioRender. Pressman, E. 
(2024d) https://BioRender.com/i01j227.
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Although acetate is the most abundant VFA, its production from pyruvate 
is not directly coupled to the re-oxidation of reduced cofactors, unlike 
propionate (Figure  4C). When acetate is produced from pyruvate, 
cofactors must be re-oxidized via hydrogenase-catalyzed oxidation, which 
results in production of H2. This is thermodynamically inhibited when 
the rumen hydrogen partial pressure (pH2) is elevated (van Lingen et al., 
2016) (Figure 4B). Thus, pH2 thermodynamically controls fermentation 
pathways via the ratio of oxidized to reduced cofactors (van Lingen et al., 
2016), impacting VFA molar ratios, H2 balance, and ultimately CH4 
production. Thermodynamic favorability of fermentation pathways may 
also interact with other rumen conditions, such as pH, as hydrogen ions 
are taken up for hydrogenase-catalyzed NADH oxidation to NAD+ (van 
Lingen et  al., 2016). Incorporation of thermodynamically controlled 
cofactor dynamics improved the prediction of VFA under different pH, 
glucose concentration, and pH2 conditions in a model of in vitro mixed 
culture fermentation (Zhang et al., 2013). Only two models, van Lingen 
et al. (2019, 2021) and Offner and Sauvant (2006) represent microbial 
fermentative cofactors and their thermodynamic control on fermentation 
pathways mechanistically.

van Lingen et al. (2019, 2021) explicitly represents the NAD+/
NADH ratio, controlling flux allocation between carbohydrate 
fermentation pathways. Inflows to the oxidized NADH pool include 
hexose fermentation to acetate, while outflows include hexose 
fermentation to propionate and hydrogenase-catalyzed reoxidation. 
Elevated pH2 inhibits NADH reoxidation by modifying the mass-
action reoxidation process via the thermodynamic potential factor 
(Jin and Bethke, 2007). Offner and Sauvant (2006) use a more complex 
approach, predicting thermodynamically favorable fermentation 
pathways by explicitly modeling Gibbs free energy changes. Muñoz-
Tamayo et  al. (2021) uses a hybrid approach assuming a linear 
relationship between NADH/NAD+ and pH2, with pH2 controlling 
flux allocation parameters. More widespread adoption of 
thermodynamic control in rumen models could further improve 
CH4 predictions.

4.5.3 Methanogens and CH4

Only van Lingen et al. (2019, 2021) explicitly include methanogens 
and methane using the rate: state formalism (Figure 3A), while Muñoz-
Tamayo et al. (2016, 2021) include a “hydrogen-utilizers” microbial 
pool, corresponding to methanogenic archaea. In van Lingen et al. 
(2019), methanogen growth via hydrogenotrophic methanogenesis is 
modeled by a growth yield constant multiplied by H2 uptake. 
Methanogen outflow is set to 40% of the liquid and solid outflow rates, 
reflecting the slower outflow of methanogens due to their adherence to 
rumen epithelium. The CH4 production rate is then modeled by 
multiplying the H2 uptake flux for methanogen growth by a yield rate. 
In Muñoz-Tamayo et  al. (2016), dissolved CH4 production is 
represented as a yield factor multiplied by the H2 uptake for H2-utilizer 
growth, and conversion to gaseous CH4 occurs via liquid–gas transfer.

Future models could benefit from more detailed representation of 
methanogenic subpopulations. Methanogen species vary in several 
respects that are relevant to predicting the impact of AFA, such as 
sensitivity to CH4-inhibitors, H2 affinity, and methanogenic pathways. 
Methanobrevibacter ruminantium is particularly sensitive to 
halogenated sulfonated methyl–coenzyme M reductase (MCR) 
inhibitors (Patra et al., 2017), potentially due to this species’ inability 
to synthesize coenzyme M (Ungerfeld and Pitta, 2024). Halogenated 
CH4 analogs such as bromoform reduce CH4 production by inhibiting 

cobamide-dependent methyl transfer (Wood et  al., 1968). It is 
speculated that differences in methanogen sensitivity to halogenated 
CH4 analogs may also be due to differences in cobamide structures 
and affinities for these analogs, but this has yet to be  investigated 
experimentally (Ungerfeld and Pitta, 2024). Differences in expression 
of MCR isozymes may also contribute to variability in sensitivity to 
AFA, as well as H2 affinity, across methanogen species (Pitta et al., 
2022b; Ungerfeld and Pitta, 2024).

Methanogens also differ in methanogenic pathways, although 
extant mechanistic rumen models incorporate only 
hydrogenotrophic methanogenesis. Methylotrophic methanogenesis 
requires only one mole of H2 to produce CH4 from methyl group-
bearing substrates, while hydrogenotrophic methanogenesis requires 
three or four moles of H2 (Ungerfeld and Pitta, 2024). Thus, 
increased abundance of methylotrophic methanogens could 
contribute to greater CH4 yields, but is limited by the availability of 
methyl group-bearing substrates (Feldewert et al., 2020). On the 
other hand, the lower H2 threshold of methylotrophic methanogens 
may be less of a competitive advantage under CH4-inhibition, when 
pH2 in the rumen is higher. As pectin and xylan are rich in methyl 
groups (Feldewert et  al., 2020), basal diet also may partially 
determine methanogen population structure and the impact of AFA 
on methanogenesis. However, the representation of non-hexose 
soluble carbohydrates is simplified in rumen models. Baldwin et al. 
(1987) specifies pectin as its own input, but simulates its fermentation 
using a combined soluble carbohydrates pool, and the α-hexose 
group in France et  al. (1982) includes pectin. This simplified 
representation of complex plant polysaccharides and methanogen 
community structure could impact CH4 prediction accuracy by 
underestimating methylotrophic methanogenesis under normal 
conditions and overestimating it under CH4-inhibition.

Methanogenic microbiomes are likely influenced by many 
interacting factors such as basal diet, host genetics (Pitta et al., 2022b), 
and bacterial community composition, which has complex dynamics 
itself under CH4-inhibition (Ungerfeld and Pitta, 2024). Mechanistic 
models may be an ideal tool for predicting changes in methanogen 
community structure under CH4-inhibition. However, mechanistically 
modeling methanogens with more complexity would require model 
inputs (such as initial conditions of methanogen population 
distributions) and parameters (such as affinity constants and growth 
yields) that are difficult to obtain or may yet be unknown, making 
modeling methanogenic subpopulations under typical or CH4-
inhibited conditions challenging.

4.5.4 CH4-inhibiting feed additives
Only two mechanistic models incorporate AFA: van Lingen 

et al. (2021) for 3-nitroxypropanol (3NOP) and Muñoz-Tamayo 
et al. (2021) for bromoform from Asparagopsis taxiformis. While 
these models assume that AFA only act directly on methanogens, 
it is possible but currently unknown if AFA directly affect some 
rumen bacteria as well (Ungerfeld and Pitta, 2024). In addition 
to directly inhibiting MCR, 3NOP may redirect fermentation 
pathways toward propionate formation (van Gastelen et  al., 
2022), possibly through thermodynamic inhibition of NADH 
re-oxidation (van Lingen et al., 2021). A potential scheme of this 
redirection is shown in Figure 4D. These interactions emphasize 
the need for models to include both AFA and microbial 
cofactor dynamics.
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The potential loss of persistent CH4-inhibition by 3NOP in some 
studies (Schilde et al., 2021; Van Gastelen et al., 2024) suggests that 
microbial adaptation to AFA may be  possible. However, such 
adaptation is not included in any rumen mechanistic model, and 
mechanistic models are often evaluated assuming quasi-steady state 
conditions (Danfær et al., 2006; Dijkstra, 1994; van Lingen et al., 2019, 
2021). However, the time-dependent nature of microbial adaption 
aligns with suggestions by Muñoz-Tamayo et al. (2019) that models 
using substrate utilization kinetics alone cannot accurately predict 
methanogen dynamics, underscoring the importance of incorporating 
spatial and temporal information in models of H2 utilization. For 
example, 3NOP supplementation may reduce MCR expression (Pitta 
et al., 2022a), so methanogenic adaptation to AFA may also be related 
to upregulation of MCR expression or expression of alternate MCR 
isoenzymes or subunits. Explicit modeling of fluctuations in MCR 
expression over time, potentially incorporating genomic data (e.g., 
Pitta et  al., 2022a), may allow for predictions of methanogen 
adaptation to AFA.

AFA may also have indirect effects on net GHG reductions. For 
example, 3NOP is metabolized to NO3− and NO2−in the rumen 
(Duin et al., 2016), which can further be reduced to nitric oxide 
(NO) and ultimately nitrous oxide (N2O). While enteric N2O 
emissions are typically minor, denitrifying genes are present within 
the rumen bacterial and archaeal metagenome (Latham et al., 2016) 
and 3NOP supplementation may increase enteric N2O emissions 
(Petersen et al., 2015). In addition, application with manure from 
cows fed 3NOP led some soils to emit more N2O (Weber et al., 
2021), suggesting potential alterations to N-excretion. As N2O is a 
potent GHG with a greater global warming potential than CH4 
(IPCC, 2023), models of enteric fermentation under CH4-inhibition 
should consider the potential indirect and downstream impacts on 
GHG production.

Approaches that assume the anti-methanogenic action of 
Asparagopsis species is due to solely its bromoform content allow for 
standardization of the inhibitory effect of various macroalgae species 
but may overlook compounds that act synergistically with bromoform 
(Ahmed and Nishida, 2024; Machado et al., 2016). Because different 
AFA have different mechanisms of CH4-inhibition, it is possible they 
can also act synergistically (Villar et al., 2020), although this effect has 
not been seen consistently in vivo (Guyader et al., 2015; Maigaard 
et al., 2023; Zhang et al., 2021). Currently, no rumen mechanistic 
model represents direct supplementation of multiple AFA of different 
mechanisms, although van Lingen et al. (2021) does includes 3NOP 
catabolism to NO3− and NO2−.

4.6 Rumen fractional outflow rates

Mechanistic incorporation of rumen passage rates in fermentation 
models is rare. Models by Dijkstra (1994) and Dijkstra et al. (1992) 
assume constant outflow rates for fluid and solid fractions. Danfær 
et al. (2006) uses a more flexible approach, where passage rates for feed 
fractions are based on the passage rate of forage indigestible NDF, 
which itself depends on the ratio of NDF intake to animal body 
weight. France et al. (1982) mechanistically models rumen outflow 
based on rumen fluid pool size, where outflow to omasum is a flux 
from the fluid volume pool but uses one outflow rate for both soluble 
and insoluble digesta.

In the Baldwin lineage of models, rumen outflow is represented 
using particle size distribution-dependent solid outflow rates, where 
particles above a threshold size cannot leave rumen (Baldwin et al., 
1987; Gregorini et al., 2015). Inflows to each particle size pool are 
based on the solubility of dietary nutrients. Large particles flow into 
the small particle pool via particle size reduction due to rumination. 
Outflows include liquid-associated small particles, and size 
comminution by hydrolysis by associated microbes. Gregorini et al. 
(2015) updated MOLLY to include three particle size pools, and water 
absorption through the rumen wall due to increased rumen fluid 
osmolality. The rumen fluid pool size determines the rate of liquid 
passage according to a mass-action process. Some specialized models 
focusing only on particle and fluid dynamics in the rumen predict 
fluid outflow based on more complex factors such as reticulo-omasal 
orifice activity (Seo et al., 2007) or particle movement through the 
rumen in a two-pool model (Poppi et  al., 2001). However, these 
models have not been integrated with more comprehensive models of 
rumen fermentation.

Rumen fermentation patterns depend on digesta outflow 
rates, and overly simplistic representations can lead to errors in 
predicted CH4 production (van Lingen et  al., 2019). Rumen 
outflow is influenced by feed intake, composition, feed particle 
size, and microbial fermentation rate (Gregorini et  al., 2015). 
Sensitivity analysis in previous rumen models have implicated 
rumen passage rates as highly influential on modeled CH4 
production (Bannink and De Visser, 1997; Neal et al., 1992). In 
van Lingen et  al. (2019), parameters determining rumen 
fractional passage rates and NADH oxidation rate together 
explained 86% of the variation in predicted daily CH4 emission. 
Precise estimation of rumen outflow rates may be particularly 
important when modeling fermentation under CH4-inhibition, 
as outflow rates may interact with AFA’s inhibitory effect. For 
example, 3NOP is water-soluble and its retention in the rumen 
and longevity of its inhibitory effect may depend on the liquid 
outflow rate (Reynolds et  al., 2014; Vyas et  al., 2018). More 
mechanistic representation of rumen fractional outflow rates may 
improve CH4 production predictions, especially under 
inhibitory conditions.

5 Discussion

Inhibiting methanogenesis in the rumen is of interest because 
CH4 is both a major GHG and a loss of potentially utilizable 
energy from ruminants. Because CH4 is considered a loss of GE, 
its inhibition is expected to return GE to the animal and improve 
feed efficiency. However, CH4-inhibition in ruminants does not 
consistently achieve production benefits (Morgavi et al., 2023). 
H2 emissions typically increase under CH4-inhibition, but energy 
losses through H2 are variable and generally not directly 
proportional to the energy “saved” by reduced CH4 emissions 
(Morgavi et  al., 2023). While inhibiting methanogenesis is 
expected to lead to H2 accumulation, thermodynamic inhibition 
of NADH or reduced ferredoxin re-oxidation, and disruptions to 
fermentation, this effect has also not been observed consistently 
in vivo (Morgavi et  al., 2023). However, variations in plasma 
(Yanibada et  al., 2020) and milk (Yanibada et  al., 2021) 
metabolites in dairy cattle suggest that alterations in energy 
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partitioning do occur under CH4-inhibition. These changes could 
potentially occur concomitantly with H2 redistribution through 
increased microbial protein synthesis, as microbial protein may 
act as an electron sink (Morgavi et  al., 2023), or changes in 
nutrient metabolism, such as increased production of propionate, 
a glucogenic precursor and H2 sink. A better understanding of 
the metabolic fate of excess H2 under inhibited methanogenesis 
and the potentially utilizable “saved” GE requires more detailed 
representation of the thermodynamic favorability of fermentation 
pathways and enhanced descriptions of rumen microbial 
activities, alternative fermentation pathways, and H2 sinks (Ellis 
et al., 2008; Morgavi et al., 2023).

As reviewed herein, the interplay of the thermodynamic 
favorability of fermentation pathways, microbial activities, and 
diet could be  further developed to predict how excess H2 is 
apportioned to reductive acetogenesis, sulfate-or nitrate-
reduction, biohydrogenation, propionate formation, microbial 
growth, or additional pathways. The models of van Lingen et al. 
(2021) and Muñoz-Tamayo et al. (2021) are the first to represent 
rumen fermentation with detailed representation of metabolic 
pathways yielding H2, CH4, and different VFA, as well as  
CH4 -inhibiting AFA. However, both Muñoz-Tamayo et al. (2021) 
and van Lingen et  al. (2021) lack representation of 
biohydrogenation and the former does not include biomass 
growth on ammonia, omitting potentially important H2 sinks 
under CH4-inhibition. Additional H2 uptakes include redirection 
to propionate (Section 4.5.4) or utilization by other microbial 
groups. As discussed in Section 4.2.1, increased representation of 
competition for H2 by reductive acetogenic or sulfate-reducing 
bacteria (Ellis et  al., 2008) may improve predictions of CH4 
production and H2 dynamics under certain dietary conditions. 
As these H2 sinks vary in their stoichiometric requirements for 
H2 (e.g., Reichl and Baldwin, 1975) and kinetic parameters (e.g., 
Ungerfeld, 2020), increasingly thorough representations of these 
pathways could improve predictions of CH4 production by more 
completely accounting for the dynamics of H2 uptakes and 
therefore H2 that remains as a methanogenic substrate.

While inclusion of these elements may improve mechanistic 
models as research tools to explore predicted changes in H2 and 
energy partition under CH4-inhibition, they can also be  used to 
develop and test hypotheses for minimizing CH4 emissions from 
cattle. AFA efficacy depends on basal diet (Dijkstra et  al., 2018; 
Kebreab et al., 2023), and time and amount of feeding have also been 
shown to impact methanogenesis, with more frequent and larger 
meals associated with lower CH4 yield in growing heifers (Biswas 
et al., 2022) and steers (Llonch et al., 2018). This effect may be due to 
alterations to the VFA profile, which may themselves be related to 
changes in rumen outflow rate and thus the rate and extent of organic 
matter fermentation (Crompton et al., 2011). van Lingen et al. (2021) 
is the only rumen model incorporating AFA and a diurnal feed intake 
pattern and therefore capable of evaluating the combined effects of 
feeding frequency and diet composition and degradation 
characteristics on rumen fermentation dynamics. However, this 
model includes static rumen outflow rates and cannot account for the 
potential effects of feeding level and frequency on rumen outflow. A 
model incorporating state variables and controls reviewed herein, 
such as AFA, complex representations of diet fractions, feed intake 

patterns, and rumen outflow, could be used to design basal diet and 
supplementation schedules that minimize CH4 emissions and test 
these in vivo.

However, data needs for the inclusion of these controls 
exemplify the trade-offs inherent to mechanistic modeling, 
whereby accurate predictions are typically only achievable given 
extensive inputs which may be practically infeasible to obtain 
(Ross et  al., 2024). Increased synergies between in vivo AFA 
efficacy studies and modeling exercises, such as using optimal 
experimental design for model parameterization (e.g., Bandara 
et al., 2009; Morgavi et al., 2023) or using mechanistic models to 
design AFA optimization schemes to test in vivo, may help fill 
these data gaps. Some models are available online or are available 
in open-access software such as R (Beukes et al., 2020; Muñoz-
Tamayo et  al., 2021; van Lingen et  al., 2021), but increased 
adoption of Open Science practices may accelerate the exchange 
of data and concepts and the improvement of rumen models 
(Muñoz-Tamayo et  al., 2022). Simple yet accurate statistical 
approaches to predicting CH4 production under AFA 
supplementation, such as meta-analysis accounting for key 
explanatory variables (Dijkstra et al., 2018; Kebreab et al., 2023), 
may be  useful tools as more studies in cattle under AFA 
supplementation become available. However, Kebreab et  al. 
(2023) argue that the unknown mechanism of increased efficacy 
of 3NOP with greater starch and lower NDF content of the diet 
emphasizes the need for more complex mechanistic models to 
explain these relationships. Expansion of models of in vitro 
fermentation (e.g., Muñoz-Tamayo et al., 2016, 2021; Wang et al., 
2013) to include additional H2 sinks such as lipid metabolism 
may be a compromise between statistical models and much more 
complex rumen models that still allows mechanistic interrogation 
of H2 allocation, including under CH4-inhibiting.

We here have comprehensively reviewed mechanistic models that 
make significant contributions to the mathematical representation of 
rumen fermentation. While some previous reviews have compared 
certain aspects of these models (Bannink et al., 2016; Bannink and De 
Visser, 1997; Ellis et al., 2008; Kebreab et al., 2009), none of these 
articles review more recent models that incorporate CH4-inhibiting 
AFA, nor do they discuss microbial and nutritional elements that are 
key to modeling the rumen under CH4-inhibition. We emphasized 
elements that should be included in future mechanistic models of 
rumen fermentation specifically under CH4-inhibition to more 
accurately predict microbial nutrient metabolism, H2 and energy 
partition, and CH4 emissions and thereby improve the use of 
mechanistic models as research tools. Currently, no rumen 
mechanistic model incorporates multiple AFA, thermodynamic 
control of VFA pathways, additional H2-utilizing microbial groups, 
and mechanistic control of rumen outflow and pH, although these 
controls may be critical for accurately predicting rumen fermentative 
dynamics under CH4-inhibition.
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