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1 Introduction: lack of universal gut microbial
signatures associated with metabolic liver disease

Our understanding of the role of gut microbes in human health and disease has come
a long way since John M. Whipps et al. first defined the term “microbiome.” Since the
early 2000s, with the gradual lowering of the cost of commercial DNA sequencing, health
science has been flooded with 16S rRNA data. Unfortunately, despite a plethora of pre-
clinical and clinical publications on the gut–liver axis, the majority of our understanding
of the microbiota–liver reciprocal interaction remains limited to correlation analysis.
The most exciting part of such metagenomic studies is the sheer amount of “big data”
generated, which is rather easy to correlate with physiological variables; the bigger the
metagenomic data and number of independent variables, the more the chances to find
“significant” associations. Notably, our limited understanding of the gut–liver axis is
derived from the microbiome, rather than the microbiota. Therefore, the conclusions
obtained through microbiome-related correlation studies often do not reflect causation
and are not representative of a universal phenomenon, and there have been almost no true
microbial markers of dysbiosis linked to chronic liver disease.

2 Discussion

2.1 The boundary between the known and the unknown

Translational potentials of pre-clinical microbiota–liver associations in clinical disease
prediction and treatment have not been very successful despite enormous numbers
of interventional and observational studies. In fact, the relevance of utilizing rodents’
gut microbial signatures in understanding human diseases has been criticized due to
the massive difference in the gut microbes between both species, attributed to the
gastrointestinal biogeography and genetic makeup (Nguyen et al., 2015). Especially in
the high-fat diet model of metabolic disease, there is a lack of consistency between
good and bad microbes. In fact, diseases have also been associated with the strains
belonging to probiotics (e.g., Lactobacillus) and commensals (e.g., Akkermansia and
Faecalibacterium) (Dey and Ray Chaudhuri, 2023). Furthermore, confounding results
are obtained from chemical-induced metabolic disease models that are physiologically
mostly irrelevant (Dey, 2020) and data from germ-free mice that possess innate defects
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in various physiological processes (Jans and Vereecke, 2024). The
clinical progression of metabolic liver disease is distinct from pre-
clinical models of chronic liver disease in terms of timeline, cellular
phenotype, pathological complexity, the difference in immune
responses, andmetabolic machinery (Liu et al., 2013). Furthermore,
the innate and general differences between human and animal
disease models, such as biological differences (e.g., genetic
makeup, organ anatomy, and liver functional capacity), extent
of disease complexity (e.g., model specificity and co-influence
of comorbidities), ability to perform controlled experiments, and
predictive validity, make it challenging to conclude on clinical gut
microbial phenotypes based on pre-clinical data. Although there
have been emerging reports of in vitro models of the human
distal intestine (Qi et al., 2023), these models are physiologically
irrelevant given their host-independent nature.

Due to the advent of culturomics techniques and controlled
clinical studies, pre-clinical gut microbial patterns that were
initially considered associated with disease conditions, such as
Firmicutes-to-Bacteroides ratio, enrichment of energy-harvesting
species, and specific metabolic functions, seem to be falling
apart. For instance, γ-proteobacteria, due to the presence of
lipopolysaccharide (LPS), were previously thought to simply cause
hepatic inflammation. However, studies have identified that the
LPS–TLR4–inflammation axis cannot be generalized due to huge
differences in LPS structure dictating the extent of immune
response (Picarello, 2022) and that the majority of the luminal
LPS-supplying Bacteroides rather display immunosuppressive
characteristics (d’Hennezel et al., 2017). Today, it is strongly
recognized that the good, bad, and ugly nature of the gutmicrobiota
is condition-specific. Factors such as the availability of preferred
nutrients, pathoadaptive mutations, and potential to evade the
mucosal immune response have been recognized as critical factors
that define a specific microbial species as commensal or pathobiont
(Dey and Ray Chaudhuri, 2023; Dey, 2024). The bottom line is
that there is no proper clinical definition of dysbiosis and eubiosis
in terms of specific microbial features. However, the only aspect
almost universally accepted is that loss of gut microbial diversity
is associated with chronic liver disease, and when we talk about
the diversity, it is the community effects not disease causation by
a single species.

2.2A critical lack of liver-specific
longitudinal studies

A recent systematic review and meta-analysis of 54 clinical
studies have indicated substantial inter-study heterogeneity in gut
microbial taxonomic identification, in which the enrichment of
inflammation-inducing genera was more closely associated with
non-alcoholic fatty liver disease, but no genera were identified
to provide long-term disease risk-predictive value (Su et al.,
2024). To date, there have been more than 100 cross-sectional
studies to identify the predominant gut microbes associated with
metabolic liver disease, yet no absolute core microbiome related to
progressive liver disease has been identified. Although longitudinal
studies are considered superior to cross-sectional studies and
that informed understanding of disease pathogenesis can only

be obtained through the former, there have been only a few
longitudinal studies undertaken to link the gut microbiome with
liver health. One study from Kyoto (Japan) evaluated the gut
microbial alterations from pre-transplantation to 2 months post-
surgery in 38 liver transplant patients (Kato et al., 2017). Data
show an initial decline and later increase of microbial diversity,
along with the overall increase of Bacteroides, Enterobacteriaceae,
Streptococcaceae, and Bifidobacteriaceae, while a depletion in the
abundance of Lactobacillaceae, Enterococcaceae, Clostridiaceae,
Peptostreptococcaceae, and Ruminococcaceae was noted. The
authors acknowledged that variations in antibiotic regimes,
food, synbiotics, and patient heterogeneity (e.g., various donors
and underlying diseases) likely influence the study’s findings.
Confounding variables and data on relative microbial abundance
were among the limitations. In line, a relatively recent study from
the National Institutes of Health, USA, investigated the gut–liver
axis in hepatitis C patients, taking into account varied degrees of
fibrosis severity (Ali et al., 2023). The investigation was performed
6 months after HCV was undetectable (n = 23) and before (n
= 29) attaining a durable virologic response. Data suggest that
increased hepatic fibrosis was correlated with Anaerostipes hadrus,
while Bacteroides vulgatus with portal inflammation in HCV. A
prolonged virologic response suggests that Methanobrevibacter

smithii may have a beneficial effect on indicators of the severity
of liver disease. Although this longitudinal investigation made it
possible to compare HCV-infected individuals with a supposedly
improved viral clearance state, they were unable to report gut
microbial patterns in healthy controls due to the unavailability
of samples. Another recent study from Stanford examines the
gut microbial composition at various body sites (including
gut) and correlated with host multi-omics, immunological, and
clinical indicators (including hepatic) (n = 86) over 6 years
to comprehend the dynamic interaction between the human
microbiomes and host throughout health and illness (Zhou
et al., 2024). Despite identifying microbial compositional and
diversity patterns associated with host physiological parameters
and metabolites, no temporal associations were derived between
the gut microbiota and the measured liver-specific parameters (e.g.,
transaminases). Emerging studies claim the causative effects of
oral microbiota in the pathogenesis of chronic metabolic disease,
including liver disease (Gupta and Dey, 2023), and there has
been no longitudinal study undertaken in this line to date. Thus,
understanding the true nature of gut microbial dynamics under
the course of hepatic disease pathogenesis and remission remains
largely unknown.

2.3 Machine learning in pattern recognition
along the gut–liver axis

Beyond the availability of longitudinal gut microbial data, a
fundamental difficulty in analyzing large-scale microbiome big-
data lies in their high dimensionality (Advani and Ganguli,
2016). In classically designed experiments, a small number of
carefully selected variables (V) are measured to test a specific
hypothesis, with a large number of measurements (M) for each
variable. Thus, the measurement density is very large (M/V
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→ ∞). Such datasets are referred to as low-dimensional,
and much of classical statistics operates within this framework.
In contrast to this classical scenario, the recent technological
capacity for high-throughput sequencing has led to a different
statistical regime. It is commonplace to simultaneously measure
many variables (V), such as the abundance of hundreds of taxa
at the individual level. However, due to constraints on time or
resources, often it is possible only to make a limited number
of simultaneous measurements. Thus, while both M and V are
large, the measurement density (M/V) is much smaller than in
conventional experiments. Such datasets are referred to as high
dimensional, that is, they consist of a small number of points
in a high-dimensional space. Microbiome datasets consist of the
composition of thousands of microbial taxa in an individual
gut. Hence, understanding the role of gut microbiome in liver
health requires us to use machine learning (ML) approaches
to dissect such a high-dimensional dataset. Utilizing these
approaches enhances our understanding of the complex host–
microbe reciprocal, helping in tracking disease progression over
time or monitoring treatment responses, which is valuable for
personalized medicine.

In recent years, ML approaches have been widely used
to shed light on how gut microbiome impacts various liver
diseases. These studies have identified microbiome biomarkers
associated with metabolic liver diseases (Ruuskanen et al.,
2021; Zhang et al., 2021; Liu et al., 2022; Park et al., 2024).
However, not only that majority of these studies are mostly
cross-sectional in nature but also these ML approaches suffer
from a number of limitations. First, it is extremely difficult to
detect patterns in microbiome datasets that can provide useful
biological insight with translational value. High-dimensional data
analysis techniques such as PCA, ICA, or t-SNE are useful for
reducing dimensionality and detecting patterns. However, since
the resulting axes represent linear combinations of a large number
of features (e.g., taxa abundance), interpreting the analysis or
making experimental predictions is often difficult (Donoho and
Tanner, 2009; Furchtgott et al., 2017). Identifying patterns becomes
even more challenging as the proportion of relevant features
decreases at higher taxonomic levels (Donoho and Tanner, 2009).
In fact, decades of research related to the gut microbiome have
shown that specific combinations of a few microbes can be
associated with a disease. This indicates that the composition of
a small subset of microbes may be most relevant for making
accurate computational inferences. Therefore, there is a need
to develop novel methods to detect sparse patterns in high-
dimensional datasets.

The second challenge is to extract meaningful models
from high-dimensional datasets that can predict interventional
outcomes and guide translational implications of research
findings. Building complex models describing microbial
networks involves hundreds of parameters. Unfortunately, in
most cases, the parameters remain completely unknown. As
Von Neumann once said: “with four parameters I can fit an

elephant, and with five I can make him wiggle his trunk.” The
challenges involving microbial networks are clearly exacerbated
since even the simplest of models would require hundreds of
parameters. Hence, the available data are always limited and

can never constrain the space of models completely. Given
the underconstrained nature of the problem, there exist an
infinite number of combinations of the parameters that can
successfully replicate the data. Hence, making predictions
based on such underconstrained gut microbial networks has
proven to be challenging. Moreover, most of the studies trained
their models on specific datasets, such as Western or Chinese
datasets, that may not generalize to different populations, limiting
their overall applicability. Often these studies used a small
patient population size. Some of these studies suffered from
the absence of population characteristics such as the lack of
lifestyle information (e.g., diet, socioeconomic status, tobacco,
and alcoholism). Furthermore, in some cases, the lack of patient
clinical, metagenomic, and metabolomic profiles hampered
garnering a comprehensive understanding of the various causal
aspects of the disease.

3 Conclusion

The complexity of the gut microbial dynamics and its
function in metabolic liver disease remains largely unknown.
The progressive character and course of liver disorders are not
well captured by pre-clinical and cross-sectional investigations.
We suggest using cutting-edge ML methods in conjunction
with longitudinal research to address these issues. Hence, it is
imperative to first develop methods to detect sparse relevant
features that can then be used to find patterns in the data
and train predictive models. By addressing these limitations and
building new computational approaches, we can fully harness the
potential of ML approaches to deepen our understanding of the
gut microbiome’s role in liver disease and other areas. By doing
this, we can pinpoint certain gut microbial patterns associated with
the advancement of liver disease, resulting in the development of
more potent preventative and therapeutic approaches. For gut–
liver axis research to reach its full potential, machine learning must
be included.
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