The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Aquatic Microbiology
Volume 15 - 2024 |
doi: 10.3389/fmicb.2024.1485281
On the diversity, phylogeny and biogeography of cable bacteria
Provisionally accepted- University of Antwerp, Antwerp, Belgium
Cable bacteria have acquired a unique metabolism, which induces long-distance electron transport along their centimeter-long multicellular filaments. At present, the cable bacteria are thought to form a monophyletic clade with two described genera. However, their diversity has not been systematically investigated. To investigate the phylogenetic relationships within the cable bacteria clade, 16S rRNA gene sequences were compiled from literature and public databases (SILVA 138 SSU and NCBI GenBank). These were complemented with novel sequences obtained from natural sediment enrichments across a wide range of salinities (2 -34). To enable taxonomic resolution at the species level, we designed a procedure to attain full-length 16S rRNA gene sequences from individual cable bacterium filaments using an optimized nested PCR protocol and Sanger sequencing. The final database contained 1876 long 16S rRNA gene sequences (≥800 bp) originating from 92 aquatic locations, ranging from polar to tropical regions and from intertidal to deep sea sediments. The resulting phylogenetic tree reveals 90 potential species-level clades (based on a delineation value of 98.7% 16S rRNA gene sequence identity) that reside within six genus-level clusters. Hence, the diversity of cable bacteria appears to be substantially larger than the two genera and 13 species that have been officially named up to now. Particularly brackish environments with strong salinity fluctuations, as well as sediments with low free sulfide concentrations and deep sea sediments harbor a large pool of novel and undescribed cable bacteria taxa.
Keywords: cable bacteria1, Microbial diversity2, phylogenetics3, 16S rRNA gene4, aquatic sediments5, biogeography6 Font: Not Italic
Received: 23 Aug 2024; Accepted: 05 Nov 2024.
Copyright: © 2024 Ley, Geelhoed, Vasquez-Cardenas and Meysman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Philip Ley, University of Antwerp, Antwerp, Belgium
Filip Meysman, University of Antwerp, Antwerp, Belgium
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.