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Background: The study of the human microbiome is crucial for understanding 
disease mechanisms, identifying biomarkers, and guiding preventive measures. 
Advances in sequencing platforms, particularly 16S rRNA sequencing, have 
revolutionized microbiome research. Despite the benefits, large microbiome 
reference databases (DBs) pose challenges, including computational demands 
and potential inaccuracies. This study aimed to determine if full-length 16S rRNA 
sequencing data produced by PacBio could be used to optimize reference DBs 
and be applied to Illumina V3-V4 targeted sequencing data for microbial study.

Methods: Oral and gut microbiome data (PRJNA1049979) were retrieved 
from NCBI. DADA2 was applied to full-length 16S rRNA PacBio data to obtain 
amplicon sequencing variants (ASVs). The RDP reference DB was used to 
assign the ASVs, which were then used as a reference DB to train the classifier. 
QIIME2 was used for V3-V4 targeted Illumina data analysis. BLAST was used to 
analyze alignment statistics. Linear discriminant analysis Effect Size (LEfSe) was 
employed for discriminant analysis.

Results: ASVs produced by PacBio showed coverage of the oral microbiome 
similar to the Human Oral Microbiome Database. A phylogenetic tree was 
trimmed at various thresholds to obtain an optimized reference DB. This 
established method was then applied to gut microbiome data, and the 
optimized gut microbiome reference DB provided improved taxa classification 
and biomarker discovery efficiency.

Conclusion: Full-length 16S rRNA sequencing data produced by PacBio can 
be  used to construct a microbiome reference DB. Utilizing an optimized 
reference DB can increase the accuracy of microbiome classification and 
enhance biomarker discovery.
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Introduction

The study of the human microbiome serves several important 
purposes, encompassing a wide range of medical objectives. It can 
help identify the imbalances associated with various diseases, such as 
inflammatory bowel disease (IBD), diabetes, obesity, and 
cardiovascular diseases (Li et al., 2016; Jie et al., 2017; Haneishi et al., 
2023). Studying the human microbiome enables the identification of 
microbial biomarkers for early diagnosis, prognosis, and disease 
monitoring (Boppana et  al., 2024). It can also detect pathogenic 
microorganisms that may contribute to infections or chronic diseases 
(Dong et al., 2024). Additionally, microbiome profiles can be used to 
predict the risk of developing various diseases (He et al., 2024).

The development of sequencing platforms has revolutionized the 
study of microbial communities. The gold standard for studying the 
taxonomic composition of a bacterial community is the sequencing of 
the 16S rRNA gene (Woese and Fox, 1977). 16S rRNA gene is around 
1,500 bp long and has 9 variable regions that collect the main 
evolutionary changes among microbial taxa (Stackebrandt and 
Goebel, 1994). Compared to whole genome sequencing (WGS), 16S 
rRNA sequencing is more cost-effective, making it accessible for large-
scale studies and routine analysis. Also, the methodologies for 16S 
rRNA gene amplification, sequencing, and analysis are well-
established, providing a robust framework for researchers (Bolyen 
et al., 2019).

There are extensive public databases (DBs) (e.g., SILVA, 
Greengenes, RDP) for reference, facilitating accurate taxonomic 
assignment (Wang et al., 2007; Quast et al., 2013; DeSantis et al., 2006; 
Cole et  al., 2014). While large microbiome reference DBs offer 
numerous advantages, such as improved resolution and comprehensive 
taxonomic coverage, they also come with certain disadvantages. Large 
DBs require significant computational power and memory for 
searching and aligning sequences. The sheer volume of data in large 
reference DBs can lead to longer processing times for sequence 
alignment and classification (Baker, 2010). Large DBs often contain 
redundant sequences or highly similar entries, which can complicate 
classification and lead to ambiguities in taxonomic assignments. The 
likelihood of incorporating erroneous or misannotated sequences 
increases, which can reduce the accuracy of taxonomic classifications 
and potentially lead to false conclusions (Sczyrba et al., 2017). Thus, 
selecting an optimal reference DB is crucial for microbiome studies. 
An optimal reference DB ensures accurate identification and 
classification of microbial taxa, reducing the chances of 
misidentification or ambiguous results, which is essential for 
understanding the true composition of the microbiome (Monika 
Balvočiūtė et al., 2017).

The oral and gut microbiome are the two most commonly studied 
human microbiome. Studying the oral microbiome has several 
advantages over the gut microbiome. The oral microbiome typically 
has a lower microbial diversity compared to the gut microbiome 
(Human Microbiome Project C, 2012). Also, the oral microbiome has 
been extensively studied, resulting in well-characterized reference DBs 
such as Human Oral Microbiome Database (HOMD) specifically 
tailored for oral bacteria, which facilitates more accurate taxonomic 
assignment (Dewhirst et al., 2010).

For microbiome study, Illumina platform has been widely used. 
Illumina platforms can sequence millions of reads per run, making it 
suitable for large-scale studies. The cost of sequencing per base is 

relatively low, and it provides high accuracy with low error rates. 
However, typical sequencing read length is rather short (2 × 300 bps), 
which cannot cover the full-length of the 16S rRNA gene, which could 
lead to potential misclassification or ambiguous taxonomic assignment 
(Satam et  al., 2023). Pacbio and Nanopore can provide long read 
sequences to overcome this limitation. Especially, Pacbio system can 
provide improved sequencing quality with the development of circular 
consensus sequencing (CCS) protocols which generates highly 
accurate long high-fidelity reads, also known as HiFi reads (Wenger 
et al., 2019). Callahan et al. demonstrated that Pacbio HiFi could offer 
a single-nucleotide resolution by DADA2 approach based on 
Amplicon Sequence Variant (ASV) classification (Callahan et  al., 
2019). Thus, we hypothesized that full-length 16S rRNA sequencing 
data produced by PacBio could be used to optimize reference database 
in human microbiome studies.

Recently, there have been several studies that simultaneously 
utilized PacBio and Illumina platform for microbiome study and 
compared their performance (Buetas et al., 2024; Souza et al., 2023; 
Katiraei et al., 2022). Especially, She et al. have performed microbiome 
analysis on 53 sites of 7 surface human organs using both Illumina 
V3-V4 short read sequencing and Pacbio 16S rRNA full-length 
sequencing (She et al., 2024). In this study, we tested if full-length 16S 
rRNA sequencing data produced by Pacbio could be used to serve as 
a reference DB and compared it with commonly used reference DB 
(e.g., HOMD) for coverage and classification performance against 
V3-V4 short read sequencing data. To validate the method, we applied 
the optimization method to gut microbiome data. Optimized reference 
DB was constructed with ASVs, and it was compared to SILVA and 
Greengene reference DB in taxonomy assignment and biomarker 
discovery against Illumina V3-V4 short read sequencing data.

Materials and methods

Data

The raw sequencing data have been retrieved from NCBI 
GenBank BioProject ID PRJNA1049979. For oral microbiome study, 
32 samples were sequenced by Pacbio and 198 samples were sequenced 
by Illumina platform. For gut microbiome study, 45 samples were 
sequenced by Pacbio and 128 samples were sequenced by Illumina. 
Summary of sampling site and sample number is shown in Tables 1, 2.

Bioinformatic analysis, statistical analysis, 
and visualization

For PacBio 16S full-length sequencing data, DADA2 algorithm 
was applied to dereplicate the reads and filter chimeric sequences. The 
ASVs were taxonomically assigned using RDP DB. Rarefaction 
analyses were conducted by vagan package.

To run stand-alone Basic Local Alignment Search Tool (BLAST) 
tool kits for alignment statistics, blast reference DB was constructed 
with PacBio ASVs and eHOMD, respectively. BLAST was performed 
against Illumina V3-V4 short read sequencing data to determine the 
alignment score, length of nucleotide identity and percentage of identity.

Phylogenetic tree construction by using align-to-tree-mafft-fasttree 
implemented in QIIME2 and visualized using iTOL (Ivica Letunic 
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et al., 2021). Trimming phylogenetic was performed using drop.tip in 
ape package.

For gut microbiome, ASVs from PacBio sequencing data was 
trimmed and was used to construct reference DB. For Illumina 16S 
V3-V4 sequencing data, raw paired-end reads of 16S rRNA gene 
sequence were quality-filtered and analyzed using QIIME2 software 
with default parameters (version 2023.9.0) (Hall and Beiko, 1849) and 
associated plugins. Microbial community analysis, including 
α-diversity and β-diversity, were calculated using phyloseq R package. 
α-Diversity was evaluated by Choa1 index and Shannon’s index. 
β-diversity was measured by Bray-Curtis distance, and principal 
coordinates analysis (PCoA) was used for ordination analysis. Bacterial 
taxonomy was determined by pre-trained Naive Bayes classifier using 
either Greengene DB, SILVA DB or optimized PacBio reference DB.

Differentially enriched microbes were analyzed using Linear 
discriminant analysis (LDA) Effect Size (LefSe) (Segata et al., 2011), a 
methodology for performing differential abundance analysis of 
microbiome data. LDA score over 3 were considered significant. The 
codes are available at http://doi.org/10.5281/zenodo.13937633.

Results

Analysis of oral microbiome data

A total of 569,845 reads from the 32 oral samples were generated 
by PacBio long read sequencing. The mean number of sequences per 

sample was 12,951 ± 910, and the average read length was 1,457.7 ± 18.2 
(1,392 – 1,595). After removing sequencing errors and chimera, a total 
of 349,997 reads remained, for an average of 7,954 ± 1,894 reads per 
sample (Table 1).

The average ASVs detected in each sample was 247.4 ± 91.0 
(34–440). To assess the diversity and adequacy of sequencing depth, 
rarefaction curve was plotted for each sample. The rarefaction curve 
demonstrated good depth of coverage, leveling off at approximately 
5,000 reads (Figure 1A). Since human microbiome is highly diverse 
and variable among individuals, we randomly combined oral samples 
to test if combining samples could increase the coverage. When 4, 
8,16, and 32 samples were randomly combined, the average ASVs 
found in each combination was 940 ± 167, 1783 ± 228, 3267.5 ± 74, and 
5,950, respectively. Thus, the number of ASVs detected was increased 
as the number of samples combined was increased (Figure 1B).

Although combining more samples produces a greater number of 
ASVs, it also increases the effort and budget required for the analysis. 
Therefore, determining an optimal number of samples should 
be  essential. We  constructed a BLAST reference DB with various 
combination of samples and compared the results against the 
eHOMD, a reference commonly used for oral microbiome analysis. 
For PacBio data, the proportion of successful BLAST searches 
increased with the number of ASVs in the DB. Comparing eHOMD 
and PacBio_4, which had a similar number of ASVs, the proportion 
of read counts with high identity (>97%) was significantly higher in 
eHOMD. The PacBio sample combination that showed comparable 
BLAST search performance to eHOMD was PacBio_16. Furthermore, 

TABLE 1 Summary of sampling site, sample number and read counts during PacBio data preprocessing.

Platform Organ Site
Sample 
(n)

Input Primers Filtered Denoised
Non-
chimera

PacBio
Oral

Oral 

(pooled)
32 12,951 ± 910 9,945 ± 1,080 8,684 ± 1,781 8,098 ± 1,910 7,954 ± 1,895

Large 

Intestine
ANAL 14 12,911 ± 1,029 10,596 ± 977 10,167 ± 1,412 9,789 ± 1,331 9,644 ± 1,301

Small 

Intestine

IIC 10 13,475 ± 1,048 9,548 ± 1,102 8,805 ± 1,439 8,261 ± 1,550 7,892 ± 1,366

IICP 7 12,753 ± 751 9,641 ± 1,216 8,361 ± 1,253 7,542 ± 1,596 6,959 ± 1,476

JEJ100 14 12,734 ± 616 9,701 ± 836 7,316 ± 1,380 6,555 ± 1,328 6,380 ± 1,321

TABLE 2 Summary of sampling site, sample number and read counts during Illumina data preprocessing.

Platform Organ Site
Sample 
(n)

Input Primers Filtered Denoised
Non-
chimera

Illumina Oral LC 33 89,809 ± 10,028 68,550 ± 9,666 66,691 ± 9,475 22,814 ± 10,563 5,418 ± 1,953

LL 33 96,880 ± 12,073 65,875 ± 9,331 58,444 ± 9,685 17,969 ± 10,157 6,117 ± 2,832

LM 33 89,682 ± 7,948 70,752 ± 8,397 66,226 ± 9,156 23,383 ± 11,379 6,803 ± 2,598

RC 33 88,192 ± 9,343 65,483 ± 6,869 63,748 ± 6,766 18,269 ± 9,126 3,552 ± 1,626

UL 33 92,227 ± 11,036 66,759 ± 8,188 61,644 ± 8,331 17,002 ± 8,369 4,131 ± 1,818

UM 33 100,157 ± 13,446 67,975 ± 10,536 63,106 ± 9,812 20,821 ± 11,657 6,522 ± 3,475

Large 

intestine
ANAL 33 88,919 ± 6,446 77,305 ± 6,658 74,090 ± 7,276 43,646 ± 12,858 8,647 ± 2,256

Small 

intestin

IIC 31 97,218 ± 11,533 67,811 ± 9,166 65,068 ± 9,595 38,822 ± 13,853 7,271 ± 1,772

IICP 33 90,417 ± 12,012 63,174 ± 11,567 60,082 ± 10,734 16,895 ± 13,204 4,465 ± 2,614

JEJ100 31 96,860 ± 24,706 74,051 ± 14,430 62,612 ± 12,818 9,310 ± 8,573 3,166 ± 1,791
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FIGURE 1

(A) Rarefaction curve for each oral sample. (B) Rarefaction curve for randomly combined oral samples. (C) Blast search result on Illunina V3-V4 oral 
microbiome data using various reference databases.
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PacBio_32, which had six times more ASVs than eHOMD, showed 
only a slight improvement (Figure 1C). Thus, using a DB with more 
ASVs did not necessarily result in the detection of higher identity.

To improve blast efficiency, we selected ASVs (+Pac) that showed 
high identity (>97%) by PacBio_32 while eHOMD showed less than 
97% identity. Generally, species are clustered by sequence homology 
above 97% (Yarza et al., 2014). Since biomarkers are typically identified 
at the species level, we selected 97% as the specificity threshold. If the 
BLAST search results show high identity in both eHOMD and 
PacBio_32, this indicates a good match, regardless of the reference 
DB. However, if the BLAST search results show high identity in 
PacBio_32 but low identity (below 97%) in eHOMD, it suggests that 
the ASV in the PacBio_32 may serve as a better reference, which is not 
found in eHOMD. When eHOMD was combined with 130 ASVs 
(eHOMD+Pac), highest taxonomic assignment efficiency in BLAST 
searches was achieved compared to other DBs (Figure 1C).

Phylogenetic tree-based optimization of 
PacBio ASVs

When a phylogenetic tree was constructed using PacBio_32 ASVs 
combined with eHOMD sequences, most of the trees included 
sequences from both DBs, suggesting that both DBs covered similar 
taxa (Figure 2).

Given the substantial size difference between the PacBio ASVs 
and eHOMD, we  sought to optimize the PacBio ASVs. To select 
representative sequences among similar ASVs, we employed the drop_
tip function from the vegan package with various threshold to remove 
terminal branches (Figures 3A–E). After constructing the BLAST DB 
with ASVs trimmed with various thresholds, we performed BLAST 
searches against Illumina V3-V4 oral microbiome data. As the 
threshold value increased, the number of ASVs included in the BLAST 
DB decreased, and the proportion of read counts with high identity 
(>97%) also decreased. With a trimming threshold of 0.0005, the 
number of ASVs in the BLAST reference DB was reduced by 
approximately 50%, yet the BLAST search performance remained 
similar to the original ASVs (Figure 3F). This approach allows for the 
efficient optimization of DB size while maintaining taxonomic 
assignment accuracy.

Analysis of gut microbiome data

Among various sampling sites in the gut, samples from small 
intestine (IIC, IICP, and JEJ100) and large intestine (ANAL) were 
selected for the analysis in this study. A total of 583,036 reads from the 
45 gut samples were generated by PacBio long read sequencing. The 
mean number of sequences per sample was 12,956 ± 900. After 
removing sequencing errors and chimera, a total of 351,966 reads 
remained, for an average of 7,821 ± 1,879 reads per sample (Table 2). 
The PacBio reference DB was constructed by optimizing the ASVs 
based on oral microbiome results. After constructing the phylogenetic 
tree, tree tips were trimmed using a threshold of 0.0005. A total of 126 
samples were tested from Illumina V3-V4 sequencing data.

Alpha diversity was measured to determine within microbiome 
diversity. The Chao1 index, reflecting richness, and Shannon index, 
reflecting evenness, were significantly different among gut sampling 

sites (Figures 4A,B). To compare bacterial community structure, beta-
diversity analyses were performed on the corresponding samples. In 
the Bray Curtis-based principal coordinates analysis (PCoA), gut 
microbial community structure showed significant difference 
depending on the sampling sites (Figure 4C).

Each V3-V4 paired-reads were taxonomically assigned by 
pre-trained Naive Bayes classifier using either Greengene DB, SILVA 
DB or DB constructed by gut PacBio ASVs. At genus level, the overall 
relative abundance showed similar proportion regardless of the 
DB. However, there were some differences depending on the reference 
DB. The abundance of Ruminococcus was much higher in ANAL, IIC, 
and IICP using Greengene DB and while it showed low proportion 
using Pacbio DB. The abundance of Clostridium was much higher in 
ANAL samples using Greengene DB compared to other references 
(Figure 5A). In addition, when alpha diversity was measured at genus 
level, SILVA showed significantly higher indexes compared to PacBio 
and Greengene (Supplementary Figures S1A,C).

At the species level, we compared the abundance of Bacteroides 
and Prevotella. For Bacteriodes, Greengene and SILVA could not 
classify more than 50% to the species level and named them as 
Bacteriodes, while Pacbio distinguished most of the Bacteroides to the 
specific species. Moreover, some species were only found in PacBio. 
For example, B. cellulosilyticsu, B. dorei, B. thetaiotaomicron and 
B. xylanisolvens were assigned using Pacbio DB in all gut sampling 
sites, whereas they were not found in the other two DBs. Similarly, 
B. clarus was only found in Pacbio in IIC (Figure 5B). In Prevotella, 
there was some discrepancy in the proportion of the bacteria 
depending on the sampling site. The abundance of Prevotella was 
lower in IICP and JEJ compared to other reference DBs. However, 
Pacbio DB distinguished most of the Prevotella to the specific species, 
while Greengene and SILVA failed to assign to the specific species. 
Also, Pacbio was able to assign eight more Prevotella species. 
P. bergensis, P. corporis and P. timinensis were only found in 
ANAL. P. intermedia and P. loescheii were found in various small 
intestines (Figure 5C). In addition, when alpha diversity was measured 
at species level, PacBio showed significantly higher indexes compared 
to SILVA and Greengene (Supplementary Figures S1B,D). Taken 
together, an improvement in species assignment was observed when 
the PacBio DB was used across all four gut microbiome samples 
compared to the other two DBs.

Species taxa comparison in depending on 
reference DB

Finally, LEfSe was applied to evaluate the differential analysis in 
bacterial species abundance among gut sampling sites using the taxa 
assigned by each reference DB. Despite analyzing the same raw data, 
the results demonstrated a clear difference in the identification of 
significant taxa depending on the reference DBs. PacBio identified 
significantly more species compared to the other two reference DBs. 
The number of significant taxa varied depending on the DB. Five 
species were found significant across all reference DBs: Bacteroides 
caccae, B. fragilis, B. plebeius, Bifidobacterium bifidum, and 
Campylobacter ureolyticus. Additionally, 30 species overlapped 
between the Greengenes and PacBio DBs, while 11 species 
overlapped between the SILVA and PacBio DBs. Prevotella pallens 
was identified as significant by both Greengenes and SILVA DBs. 
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There were some unique taxa identified significant depending on 
the reference DB. The Greengenes DB found 11 unique species, 
PacBio identified 114 unique species, and SILVA detected 32 unique 
species. Interestingly, the Greengene DB identified 4 significant 
Clostridium species, while the SILVA DB identified 4 significant 
Clostridiales bacterium and PacBio DB identified 6 unique 
Clostridium species. Additionally, the PacBio DB identified several 
genera with multiple unique significant taxa, including 7 unique 
Anaerococcus species, 9 Bacteroides species, 5 Corynebacterium 
species, 8 Eubacterium species, 7 Peptoniphilus species, and 8 
Prevotella species (Figure  6). Taken together, marked variations 
were observed in the identification of bacterial species depending 
on the reference DBs, with PacBio demonstrating highest number 
of unique and significant taxa, suggesting the importance of 
reference DB.

Discussion

Sequencing of the 16S rRNA gene is a widely accepted standard 
for analyzing the taxonomic composition of bacterial communities 
(Woese and Fox, 1977). Extensive public databases (e.g., SILVA, 
Greengenes, RDP) facilitate taxonomic assignment. Optimizing 
reference databases is crucial for human microbiome studies to 
ensure accurate identification and classification of microbial taxa, 
thereby reducing the chances of misidentification or ambiguous 
results (Monika Balvočiūtė et  al., 2017). Recent advancements in 
PacBio technology can generate highly accurate, long high-fidelity 
reads, offering single-nucleotide resolution (Wenger et  al., 2019; 
Callahan et al., 2019). In this study, we tested whether 16S full-length 
sequencing data produced by PacBio could be used to construct a 
reference database and evaluated its application using Illumina 

FIGURE 2

Phylogenetic trees of combined with eHOMD reference sequences and ASVs obtained from PacBio. In inner ring, colors represent phyla assigned by 
eHOMD. In outer ring, bar height represents number of oral samples present with the corresponding ASVs.
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FIGURE 3

Phylogenetic trees of gut ASVs obtained from PacBio reads were trimmed with various thresholds. (A) Total ASVs, (B) threshold 0.0005, (C) threshold 
0.001, (D) threshold 0.002, (E) threshold 0.001, (F) Blast search result on Illunina V3-V4 gut microbiome data using ASVs trimmed at various threshold 
as reference DB.

FIGURE 4

Bacterial community comparisons among gut sampling sites. Alpha diversity was used to describe the microbial richness and evenness within samples 
using the (A) Chao1 and (B) Shannon index. (C) Beta diversity of gut microbiome depending on sampling sites. Principal coordinate analysis (PCoA) of 
the Bray-Curtis distance was performed to determine the microbial community structure. *p < 0.05, **p < 0.01, ***p < 0.001.
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V3-V4 targeted short read sequencing data in human 
microbiome studies.

To evaluate whether PacBio long-read sequencing data could 
be used to construct a microbiome reference database, we used oral 
microbiome data for testing. The oral microbiome typically has lower 
microbial diversity compared to the gut microbiome (Human 
Microbiome Project C, 2012) and has been extensively studied, resulting 

in well-characterized reference DBs (18). First, we plotted the number 
of ASVs obtained from an individual to determine the minimum 
number of samples required to represent a population. For an individual 
oral sample, the average ASV count was 247, ranging from 34 to 440. 
Since combining and resequencing samples was not feasible, 
we randomly combined samples to simulate mixtures. When 4, 8, 16, 
and 32 samples were randomly combined, the number of ASVs detected 

FIGURE 5

Average relative abundance of microbiome depending on various reference database. (A) Genus level, (B) Bacteroides at species level. (C) Prevotella at 
species level.
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increased gradually with the number of samples in the group 
(Figure  1B). To assess their efficiency in classifying Illumina data, 
we constructed a BLAST reference database using the PacBio ASVs 
obtained from various combinations. A stand-alone BLAST search was 
performed against Illumina data, and the results were compared against 
eHOMD to obtain discrete statistics. BLAST operates by aligning query 
sequences to a database of sequences, identifying regions of similarity 
using a heuristic algorithm to find high-scoring sequence alignments 
quickly. It produces a list of sequences in the database that are most 
similar to the query sequence, along with alignment scores and statistics, 
including identical nucleotide length and percentage (Altschul et al., 
1990; Camacho et al., 2009).

When comparing eHOMD and PacBio_4 (4 samples mixed), 
which had a similar number of reference counts, the proportion 
of high identity (>97%) was significantly higher using eHOMD, 
while the overall positively blasted (>90%) percentage of reads was 
over 95% for both. Generally, sequence identity of 97, 95, and 90% 
or less for 16S rRNA genes is considered distinctive for species, 
genera, and family, respectively (Yarza et al., 2014; Tindall et al., 
2010). The combination that showed comparable high identity 
performance to eHOMD was PacBio_16 (16 samples mixed). 
Thus, a minimum of 4 samples was sufficient to determine 95% of 

reads at the family level, while at least 16 samples were required 
to determine 95% of reads at the species level. Given that 
PacBio_32 included nearly 6,000 ASVs compared to eHOMD’s 
1,032 sequences, we  tested whether the eHOMD could 
be  enhanced by adding ASVs from PacBio_32. Specifically, 
we  filtered Illumina reads that showed less than 97% identity 
against eHOMD but higher than 97% identity against PacBio 
ASVs. We  identified 130 ASVs, and the database created by 
combining eHOMD with these 130 ASVs (eHOMD+Pac) 
demonstrated the highest taxonomic assignment performance 
(Figure 1C). Taken together, with sufficient samples, PacBio full-
length sequencing data can be utilized to construct a reference DB 
from a scratch for oral microbiome study.

To investigate any discrepancies in microbiome coverage between 
the PacBio DB and eHOMD, a phylogenetic tree was constructed 
using PacBio_32 OTU sequences combined with 
eHOMD. Phylogenetic analysis, which can be  used for biological 
classification (de Queiroz and Gauthier, 1994) and predicting 
characteristics of clonal populations and unstudied species (Pearson 
et al., 2009), revealed that most of the trees included sequences from 
both databases, suggesting that both databases cover similar taxa 
(Figure 2).

FIGURE 6

Comparisons of microbiota among various gut sampling sites that presented significantly different depending on reference database. (A) Greengene, 
(B) PacBio ASVs, (C) SILVA. The analysis was performed using linear discriminant analysis (LDA) and effect size analysis. LDA score  >  3.0 are displayed.
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Given the substantial size difference between the PacBio_32 ASVs 
and eHOMD databases, we aimed to optimize the PacBio ASVs. One 
method to optimize the database is by constructing a phylogenetic 
tree, trimming closely related branches, and retaining the 
representative taxa (Mikula, 2018). To find the optimal condition, 
terminal branches were trimmed at various thresholds. When these 
trimmed ASVs were used to BLAST Illumina sequencing data, a 
negative correlation was observed between the threshold and identity 
outcome. With a trimming threshold of 0.0005, the number of ASVs 
in the BLAST reference database was reduced by 50%, while the 
BLAST search performance remained similar to that of the PacBio_32 
ASVs (Figure 3F). Taken together, this approach allows for efficient 
database optimization while maintaining high taxonomic 
assignment accuracy.

To evaluate whether PacBio ASVs could be applied to other less-
studied microbiomes, we tested them against gut microbiome data. 
The gut microbiome, particularly in the small intestine, presents 
unique challenges. The microbial community composition in the 
small intestine differs from that in fecal or oral samples, often 
containing a higher proportion of fastidious and less well-
characterized bacteria, which complicates taxonomic identification 
(Thadepalli et al., 1979; Villmones et al., 2022). Obtaining samples 
from the small intestine typically requires invasive procedures such as 
endoscopy or intubation, which are more complex, costly, and 
uncomfortable for patients compared to non-invasive fecal or oral 
sample collection (Booijink et  al., 2007). Additionally, the small 
intestine has a lower microbial biomass compared to the colon, 
making it more difficult to obtain sufficient microbial DNA for 
analysis (Hayashi et  al., 2005). We  constructed optimized gut 
microbiome reference DB using gut PacBio ASVs.

A pre-trained Naive Bayes classifier was prepared using the 
Greengene DB, SILVA DB, and gut PacBio ASVs. Gut Illumina 
V3-V4 paired-reads microbiome data from the ileum, jejunum, 
and anus were taxonomically assigned by each classifier. Unlike 
BLAST, the Naive Bayes classifier assigns taxonomy to rRNA 
sequences by calculating the probability of the sequence belonging 
to a particular taxon. It is fast and efficient for classifying large 
numbers of sequences and provides taxonomic assignments with 
confidence scores, which depend on the quality and 
comprehensiveness of the training DB (Wang et al., 2007). At the 
genus level, the overall relative abundance showed similar 
proportions regardless of the DB used (Figure 5A). At the species 
level, classifiers trained with Greengene and SILVA DBs assigned 
more than 50% of the operational taxonomic units (OTUs) as 
Bacteroides, while the classifier trained with the PacBio DB 
distinguished most OTUs to specific species. Moreover, some 
species were only identified by the PacBio DB-trained classifier. 
Our results support that a well-curated, microbiome-specific DB 
can improve the reliability of 16S sequencing analyses and 
taxonomic annotations (Ritari et  al., 2015; Sierra et  al., 2020). 
Taken together, an improvement in species assignment was 
observed when using the PacBio DB across all four gut microbiome 
samples compared to the other two DBs.

One of the primary purposes of microbiome studies is to 
discover biomarkers for diseases (Hajjo et  al., 2022). Biomarker 
discovery can provide a deeper understanding of disease 
mechanisms (Cani, 2018) and can be applied to disease prediction 
and treatment (Veziant et al., 2021; Marcos-Zambrano et al., 2021). 

We applied LEfSe to evaluate the biomarker discovery efficiency 
using classifiers trained with various reference DBs. The choice of 
reference DB significantly impacted the identification of significant 
taxa. The PacBio reference DB identified significantly more species 
compared to the other reference DBs. Although further validation is 
necessary, having more candidate species increases the likelihood of 
identifying important taxa.

In addition, recent advancements in the accuracy of 
sequencing long DNA reads using Nanopore technology, 
particularly in homopolymer regions, may present a new potential 
method for preparing microbiome reference DBs (Mantas Sereika 
et al., 2022).

Conclusion

In conclusion, full-length 16S rRNA sequencing data produced 
by PacBio can be  used to construct an optimized microbiome 
reference database that demonstrates coverage and efficiency 
comparable to the well-established HOMD in oral microbiome 
studies. Applying these optimization methods to gut microbiome 
data indicated that this approach could be  extended to other 
microbiomes, enhancing the accuracy of microbiome classification 
and improving biomarker discovery.

Data availability statement

The raw sequencing data have been retrieved from NCBI 
GenBank BioProject ID PRJNA1049979. For oral microbiome 
study, 32 samples were sequenced by Pacbio and 198 samples were 
sequenced by Illumina platform. For gut microbiome study, 45 
samples were sequenced by Pacbio and 128 samples were 
sequenced by Illumina. Summary of sampling site and sample 
number is shown in Tables 1, 2.

Author contributions

HH: Writing – original draft, Writing – review & editing, 
Methodology, Software. YC: Data curation, Funding acquisition, 
Investigation, Software, Writing – original draft, Writing – review & 
editing. SK: Methodology, Writing – original draft, Writing – review 
& editing, Visualization. JP: Validation, Writing – original draft, 
Writing – review & editing. JC: Supervision, Writing – original draft, 
Writing – review & editing. HN: Conceptualization, Supervision, 
Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This research 
was supported by Basic Science Research Program through the 
National Research Foundation of Korea (NRF), funded by the Ministry 
of Education (NRF-2017M3A9B6062021, NRF-2023R1A2C2002783). 
This work was supported by a 2-Year Research Grant of Pusan 
National University.

https://doi.org/10.3389/fmicb.2024.1485073
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Han et al. 10.3389/fmicb.2024.1485073

Frontiers in Microbiology 11 frontiersin.org

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2024.1485073/
full#supplementary-material

References
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic 

local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/
S0022-2836(05)80360-2

Baker, M. (2010). Next-generation sequencing: adjusting to data overload. Nat. 
Methods 7, 495–499. doi: 10.1038/nmeth0710-495

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., 
Al-Ghalith, G. A., et al. (2019). Reproducible, interactive, scalable and extensible 
microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/
s41587-019-0209-9

Booijink, C. C., Zoetendal, E. G., Kleerebezem, M., and de Vos, W. M. (2007). 
Microbial communities in the human small intestine: coupling diversity to 
metagenomics. Future Microbiol. 2, 285–295. doi: 10.2217/17460913.2.3.285

Boppana, K., Almansouri, N. E., Bakkannavar, S., Faheem, Y., Jaiswal, A., Shergill, K., 
et al. (2024). Alterations in gut microbiota as early biomarkers for predicting 
inflammatory bowel disease onset and progression: a systematic review. Cureus 
16:e58080. doi: 10.7759/cureus.58080

Buetas, E., Jordan-Lopez, M., Lopez-Roldan, A., D'Auria, G., Martinez-Priego, L., De 
Marco, G., et al. (2024). Full-length 16S rRNA gene sequencing by PacBio improves 
taxonomic resolution in human microbiome samples. BMC Genomics 25:310. doi: 
10.1186/s12864-024-10213-5

Callahan, B. J., Wong, J., Heiner, C., Oh, S., Theriot, C. M., Gulati, A. S., et al. 
(2019). High-throughput amplicon sequencing of the full-length 16S rRNA gene 
with single-nucleotide resolution. Nucleic Acids Res. 47:e103. doi: 10.1093/
nar/gkz569

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. 
(2009). BLAST+: architecture and applications. BMC Bioinform. 10:421. doi: 
10.1186/1471-2105-10-421

Cani, P. D. (2018). Human gut microbiome: hopes, threats and promises. Gut 67, 
1716–1725. doi: 10.1136/gutjnl-2018-316723

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., et al. (2014). 
Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic 
Acids Res. 42, D633–D642. doi: 10.1093/nar/gkt1244

de Queiroz, K., and Gauthier, J. (1994). Toward a phylogenetic system of biological 
nomenclature. Trends Ecol. Evol. 9, 27–31. doi: 10.1016/0169-5347(94)90231-3

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. 
(2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench 
compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072. doi: 10.1128/
AEM.03006-05

Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., Yu, W. H., et al. (2010). 
The human oral microbiome. J. Bacteriol. 192, 5002–5017. doi: 10.1128/JB.00542-10

Dong, T., Liang, Y., Xie, J., Fan, W., Chen, H., and Han, X. (2024). Integrative analyses 
identify opportunistic pathogens of patients with lower respiratory tract infections based 
on metagenomic next-generation sequencing. Heliyon 10:e30896. doi: 10.1016/j.
heliyon.2024.e30896

Hajjo, R., Sabbah, D. A., and Al Bawab, A. Q. (2022). Unlocking the potential of the 
human microbiome for identifying disease diagnostic biomarkers. Diagnostics 12:1742. 
doi: 10.3390/diagnostics12071742

Hall, M., and Beiko, R. G. (1849). 16S rRNA gene analysis with QIIME2. Methods Mol. 
Biol. 1849, 113–129. doi: 10.1007/978-1-4939-8728-3_8

Haneishi, Y., Furuya, Y., Hasegawa, M., Picarelli, A., Rossi, M., and Miyamoto, J. 
(2023). Inflammatory bowel diseases and gut microbiota. Int. J. Mol. Sci. 24:3817. doi: 
10.3390/ijms24043817

Hayashi, H., Takahashi, R., Nishi, T., Sakamoto, M., and Benno, Y. (2005). Molecular 
analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S 
rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. 
Microbiol. 54, 1093–1101. doi: 10.1099/jmm.0.45935-0

He, B., Cao, Y., Zhuang, Z., Deng, Q., Qiu, Y., Pan, L., et al. (2024). The potential value 
of oral microbial signatures for prediction of oral squamous cell carcinoma based on 
machine learning algorithms. Head Neck 46, 1660–1670. doi: 10.1002/hed.27795

Human Microbiome Project C (2012). Structure, function and diversity of the healthy 
human microbiome. Nature 486, 207–214. doi: 10.1038/nature11234

Ivica LetunicBork, P. (2021). Interactive tree of life (iTOL) v5: an online tool for 
phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296. doi: 
10.1093/nar/gkab301

Jie, Z., Xia, H., Zhong, S. L., Feng, Q., Li, S., Liang, S., et al. (2017). The gut microbiome 
in atherosclerotic cardiovascular disease. Nat. Commun. 8:845. doi: 10.1038/
s41467-017-00900-1

Katiraei, S., Anvar, Y., Hoving, L., JFP, B., van Harmelen, V., and Willems van Dijk, K. 
(2022). Evaluation of full-length versus V4-region 16S rRNA sequencing for 
phylogenetic analysis of mouse intestinal microbiota after a dietary intervention. Curr. 
Microbiol. 79:276. doi: 10.1007/s00284-022-02956-9

Li, L., Wang, Z., He, P., Ma, S., Du, J., and Jiang, R. (2016). Construction and analysis 
of functional networks in the gut microbiome of type 2 diabetes patients. Genom. 
Proteom. Bioinform. 14, 314–324. doi: 10.1016/j.gpb.2016.02.005

Mantas SereikaKirkegaard, R. H., Karst, S. M., Michaelsen, T. Y., Sørensen, E. A., 
Wollenberg, R. D., et al. (2022). Oxford Nanopore R10.4 long-read sequencing enables 
the generation of near-finished bacterial genomes from pure cultures and metagenomes 
without short-read or reference polishing. Nat. Methods 19, 823–826. doi: 10.1038/
s41592-022-01539-7

Marcos-Zambrano, L. J., Karaduzovic-Hadziabdic, K., Loncar Turukalo, T., 
Przymus, P., Trajkovik, V., Aasmets, O., et al. (2021). Applications of machine learning 
in human microbiome studies: a review on feature selection, biomarker identification, 
disease prediction and treatment. Front Microbiol. 12:634511. doi: 10.3389/
fmicb.2021.634511

Mikula, O. (2018). Cutting tree branches to pick OTUs: A novel method of provisional 
species delimitation. bioRxiv. 419887. [Preprint].

Monika BalvočiūtėHuson, D. H. (2017). SILVA, RDP, Greengenes, NCBI and OTT 
— how do these taxonomies compare? BMC Genomics 18:114. doi: 10.1186/
s12864-017-3501-4

Pearson, T., Okinaka, R. T., Foster, J. T., and Keim, P. (2009). Phylogenetic 
understanding of clonal populations in an era of whole genome sequencing. Infect. 
Genet. Evol. 9, 1010–1019. doi: 10.1016/j.meegid.2009.05.014

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The 
SILVA ribosomal RNA gene database project: improved data processing and web-based 
tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219

Ritari, J., Salojarvi, J., Lahti, L., and de Vos, W. M. (2015). Improved taxonomic 
assignment of human intestinal 16S rRNA sequences by a dedicated reference database. 
BMC Genomics 16:1056. doi: 10.1186/s12864-015-2265-y

Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S., et al. (2023). 
Next-generation sequencing technology: current trends and advancements. Biology 
12:997. doi: 10.3390/biology12070997

Sczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., Janssen, S., Droge, J., et al. (2017). 
Critical assessment of metagenome interpretation-a benchmark of metagenomics 
software. Nat. Methods 14, 1063–1071. doi: 10.1038/nmeth.4458

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al. 
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. doi: 
10.1186/gb-2011-12-6-r60

She, J. J., Liu, W. X., Ding, X. M., Guo, G., Han, J., Shi, F. Y., et al. (2024). Defining the 
biogeographical map and potential bacterial translocation of microbiome in human 
'surface organs'. Nat. Commun. 15:427. doi: 10.1038/s41467-024-44720-6

Sierra, M. A., Li, Q., Pushalkar, S., Paul, B., Sandoval, T. A., Kamer, A. R., et al. 
(2020). The influences of bioinformatics tools and reference databases in analyzing 

https://doi.org/10.3389/fmicb.2024.1485073
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1485073/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1485073/full#supplementary-material
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1038/nmeth0710-495
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.2217/17460913.2.3.285
https://doi.org/10.7759/cureus.58080
https://doi.org/10.1186/s12864-024-10213-5
https://doi.org/10.1093/nar/gkz569
https://doi.org/10.1093/nar/gkz569
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1136/gutjnl-2018-316723
https://doi.org/10.1093/nar/gkt1244
https://doi.org/10.1016/0169-5347(94)90231-3
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/JB.00542-10
https://doi.org/10.1016/j.heliyon.2024.e30896
https://doi.org/10.1016/j.heliyon.2024.e30896
https://doi.org/10.3390/diagnostics12071742
https://doi.org/10.1007/978-1-4939-8728-3_8
https://doi.org/10.3390/ijms24043817
https://doi.org/10.1099/jmm.0.45935-0
https://doi.org/10.1002/hed.27795
https://doi.org/10.1038/nature11234
https://doi.org/10.1093/nar/gkab301
https://doi.org/10.1038/s41467-017-00900-1
https://doi.org/10.1038/s41467-017-00900-1
https://doi.org/10.1007/s00284-022-02956-9
https://doi.org/10.1016/j.gpb.2016.02.005
https://doi.org/10.1038/s41592-022-01539-7
https://doi.org/10.1038/s41592-022-01539-7
https://doi.org/10.3389/fmicb.2021.634511
https://doi.org/10.3389/fmicb.2021.634511
https://doi.org/10.1186/s12864-017-3501-4
https://doi.org/10.1186/s12864-017-3501-4
https://doi.org/10.1016/j.meegid.2009.05.014
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1186/s12864-015-2265-y
https://doi.org/10.3390/biology12070997
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1038/s41467-024-44720-6


Han et al. 10.3389/fmicb.2024.1485073

Frontiers in Microbiology 12 frontiersin.org

the human Oral microbial community. Genes (Basel) 11:878. doi: 10.3390/
genes11080878

Souza, A. K., Zangirolamo, A. F., Droher, R. G., FGC, B., and Alfieri, A. A. (2023). 
Carvalho da Costa M, et  al. investigation of the vaginal microbiota of dairy cows 
through genetic sequencing of short (Illumina) and long (PacBio) reads and associations 
with gestational status. PLoS One 18:e0290026:e0290026. doi: 10.1371/journal.
pone.0290026

Stackebrandt, E., and Goebel, B. M. (1994). Taxonomic note: a place for DNA-DNA 
Reassociation and 16S rRNA sequence analysis in the present species definition in 
bacteriology. Int. J. Syst. Evol. Microbiol. 44, 846–849. doi: 10.1099/00207713-44-4-846

Thadepalli, H., Lou, M. A., Bach, V. T., Matsui, T. K., and Mandal, A. K. (1979). 
Microflora of the human small intestine. Am. J. Surg. 138, 845–850. doi: 
10.1016/0002-9610(79)90309-X

Tindall, B. J., Rossello-Mora, R., Busse, H. J., Ludwig, W., and Kampfer, P. (2010). 
Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. 
Evol. Microbiol. 60, 249–266. doi: 10.1099/ijs.0.016949-0

Veziant, J., Villeger, R., Barnich, N., and Bonnet, M. (2021). Gut microbiota as 
potential biomarker and/or therapeutic target to improve the Management of Cancer: 

focus on Colibactin-producing Escherichia coli in colorectal Cancer. Cancers (Basel) 
13:2215. doi: 10.3390/cancers13092215

Villmones, H. C., Svanevik, M., Ulvestad, E., Stenstad, T., Anthonisen, I. L., 
Nygaard, R. M., et al. (2022). Investigating the human jejunal microbiota. Sci. Rep. 
12:1682. doi: 10.1038/s41598-022-05723-9

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier 
for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. 
Microbiol. 73, 5261–5267. doi: 10.1128/AEM.00062-07

Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P. C., Hall, R. J., Concepcion, G. T., 
et al. (2019). Accurate circular consensus long-read sequencing improves variant 
detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162. doi: 
10.1038/s41587-019-0217-9

Woese, C. R., and Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: 
the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088–5090. doi: 10.1073/
pnas.74.11.5088

Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F. O., Ludwig, W., Schleifer, K. H., et al. 
(2014). Uniting the classification of cultured and uncultured bacteria and archaea using 
16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645. doi: 10.1038/nrmicro3330

https://doi.org/10.3389/fmicb.2024.1485073
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.3390/genes11080878
https://doi.org/10.3390/genes11080878
https://doi.org/10.1371/journal.pone.0290026
https://doi.org/10.1371/journal.pone.0290026
https://doi.org/10.1099/00207713-44-4-846
https://doi.org/10.1016/0002-9610(79)90309-X
https://doi.org/10.1099/ijs.0.016949-0
https://doi.org/10.3390/cancers13092215
https://doi.org/10.1038/s41598-022-05723-9
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1073/pnas.74.11.5088
https://doi.org/10.1073/pnas.74.11.5088
https://doi.org/10.1038/nrmicro3330

	Optimizing microbiome reference databases with PacBio full-length 16S rRNA sequencing for enhanced taxonomic classification and biomarker discovery
	Introduction
	Materials and methods
	Data
	Bioinformatic analysis, statistical analysis, and visualization

	Results
	Analysis of oral microbiome data
	Phylogenetic tree-based optimization of PacBio ASVs
	Analysis of gut microbiome data
	Species taxa comparison in depending on reference DB

	Discussion
	Conclusion

	References

