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Introduction: Accurate and rapid diagnosis is crucial for the effective treatment of 
parasitosis. Traditional etiological methods, especially microscopic examination, 
are time-consuming, labor-intensive, and prone to false or missed detections. In 
response to these challenges, this study explores the use of artificial intelligence (AI) 
for the detection and classification of human parasite eggs through the YOLOv4 
deep learning object detection algorithm.

Methods: Eggs from species such as Ascaris lumbricoides (A. lumbricoides), 
Trichuris trichiura (T. trichiura), Enterobius vermicularis (E. vermicularis), 
Ancylostoma duodenale (A. duodenale), Schistosoma japonicum (S. japonicum), 
Paragonimus westermani (P. westermani), Fasciolopsis buski (F. buski), Clonorchis 
sinensis (C. sinensis), and Taenia spp. (T. spp.) were collected and prepared as both 
single species and mixed egg smears. These samples were photographed under a 
light microscope and analyzed using the YOLO (You Only Look Once) v4 model.

Results: The model demonstrated high recognition accuracy, achieving 
100% for Clonorchis sinensis and Schistosoma japonicum, with slightly lower 
accuracies for other species such as E. vermicularis (89.31%), F. buski (88.00%), 
and T. trichiura (84.85%). For mixed helminth eggs, the recognition accuracy 
rates arrived at Group  1 (98.10, 95.61%), Group  2 (94.86, 93.28 and 91.43%), 
and Group 3 (93.34 and 75.00%), indicating the platform’s robustness but also 
highlighting areas for improvement in complex diagnostic scenarios.

Discussion: The results show that this AI-assisted platform significantly reduces 
reliance on professional expertise while maintaining real-time efficiency and 
high accuracy, offering a powerful tool for the diagnosis and treatment of 
parasitosis. With further optimization, such as expanding training datasets and 
refining recognition algorithms, this AI system could become a key resource in 
both clinical and public health efforts to combat parasitic infections.
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1 Introduction

Parasitic diseases rank among the most devastating and prevalent infectious diseases 
worldwide, affecting nearly two billion people with soil-transmitted helminths such as Ascaris 
lumbricoides, Ancylostoma duodenale, and Trichuris trichiura. In China, approximately 5.96% 
of the population suffers from these infections, with a total of around 38.59 million cases, 
predominantly due to helminths (Simarro et al., 2011; Momčilović et al., 2019). The effective 
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management of parasitic diseases hinges on accurate and rapid 
diagnosis, which is essential for timely treatment and control measures.

Currently, the use of manual microscopy to find parasitic eggs, 
larva, cyst, oocyst, or trophozoite as a low-cost test is still the gold 
standard for parasite diagnosis, which is widely used in clinical 
practice, especially in economically underdeveloped areas (Ricciardi 
and Ndao, 2015). The diagnosis of parasitosis in developing countries 
is severely hampered due to the lack of trained parasitosis microscopy 
specialists (Saeed and Jabbar, 2018). For molecular methods, the 
PCR-based tools offer diagnosticians with high sensitivity and 
accuracy (Djohan et al., 2015; Lempereur et al., 2017; Llewellyn et al., 
2016). However, this method is not without its challenges. It is labor-
intensive, time-consuming, and prone to errors such as misdiagnosis 
and missed cases, largely due to the reliance on skilled technicians 
(Ricciardi and Ndao, 2015; Weerakoon and McManus, 2016). The 
limitations of traditional diagnostic methods highlight the urgent 
need for innovative solutions that can enhance diagnostic accuracy 
and efficiency.

Artificial intelligence (AI) has emerged as a promising technology 
in various medical fields, demonstrating significant potential in 
diagnostic applications. By utilizing advanced algorithms, including 
deep learning techniques, AI can process and analyze complex 
datasets with remarkable speed and accuracy (He et  al., 2019). 
AI-assisted diagnostic tools have been successfully applied to CT 
image recognition of COVID-19 (Li et  al., 2020), the automatic 
analysis of microscope slide images (Smith et al., 2018) and association 
of genome sequencing and proteomic profiles with pathogen 
phenotypes (Jamal et  al., 2020; Lupolova et  al., 2019). These 
advancements suggest that AI could revolutionize parasitic disease 
diagnosis, making it more accessible, especially in resource-
limited settings.

This study makes several significant contributions: Adaptation of 
YOLOv4 for Parasitology: By applying the YOLOv4 object detection 
algorithm to recognize and classify parasitic helminth eggs, this work 
advances AI’s application in parasitology. This adaptation 
demonstrates that a widely used object detection model can be tailored 
to the unique morphology of parasite eggs, which are often challenging 
to distinguish manually. Evaluation Across Single and Mixed Species 
Samples: Unlike previous studies that primarily focused on single-
species samples, this work explores both single and mixed species, 
revealing insights into the model’s robustness and limitations in 
handling complex, real-world diagnostic scenarios. Comprehensive 
Accuracy Analysis: By achieving high detection accuracy rates (e.g., 
100% for Clonorchis sinensis and Schistosoma japonicum), this study 
provides an accuracy benchmark for future AI-based parasitology 
diagnostics, establishing a baseline for ongoing model improvements. 
Potential for Resource-Limited Settings: This research underscores 
AI’s capacity to reduce reliance on expert microscopy, making 
parasitic disease diagnosis more accessible. Such advancements could 
transform diagnostics in areas with limited access to specialized 
technicians, aligning with global health efforts to combat 
parasitic infections.

In this study, we  aim to leverage the You  Only Look Once 
(YOLOv4) object detection algorithm to detect and classify the 
morphology of human parasitic eggs, specifically focusing on nine 
common helminths: A. lumbricoides, T. trichiura, E. vermicularis, 
A. duodenale, S. japonicum, P. westermani, F. buski, C. sinensis, and 
T. spp. We evaluated and analyzed the recognition accuracy of our 

detection platform for both single and mixed egg specimens. Our 
findings indicate that this AI-assisted platform exhibits high efficiency 
and accuracy in identifying and classifying human parasites.

By integrating AI technology into parasitic disease diagnostics, 
this research aims to reduce the dependency on professional expertise, 
thereby enhancing diagnostic capabilities in both clinical and field 
settings. Ultimately, the rapid, accurate identification of parasitic 
infections will contribute significantly to the global efforts against 
parasitosis, providing a vital tool for public health.

2 Materials and methods

2.1 Sample collection and preparation

All helminth egg suspensions, including A. lumbricoides, 
T. trichiura, E. vermicularis, A. duodenale, S. japonicum, P. westermani, 
F. buski, C. sinensis, and Taenia spp., were purchased from Deren 
Scientific Equipment Co. Ltd. (Charoensuk et al., 2019). Two drops of 
vortex-mixed egg suspension (approximately 10 μL) were taken on a 
slide and covered with a coverslip (18 mm × 18 mm), taking care to 
avoid air bubbles, and the species of eggs were confirmed under the 
microscope. Subsequently, the eggs of A. lumbricoides and T. trichiura, 
eggs of A. lumbricoides, T. trichiura, and A. duodenale, eggs of 
C. sinensis and Taenia spp. were mixed and named Group 1, 2, and 3, 
respectively. All these sample slides were photographed via a light 
microscope (Nikon E100). As shown in the Figure 1.

2.2 Data collection and preprocessing

For YOLOv4, the dataset is divided into a training set, a 
validation set and a test set at a ratio of 8:1:1. The training set data are 
used to train the classification model, the validation set data are used 
to adjust the parameters of the model and optimize the model, and 
the test set data are used to test the classification performance of the 
model. Since the background color of the original image is 
inconsistent, we need to consider images with different background 
colors when selecting the test set to improve the reliability of the 
classification results.

For image cropping, an appropriate window size is selected by 
using a sliding window-like method, and the program is written to 
automatically crop one original image into 20 small images of the 
same size with a step size of the window size, with the size of each 
image being 518 × 486, which facilitates detection in the model.

3 Model selection

3.1 Parameter settings and evaluation 
metrics

3.1.1 Training parameter settings
For YOLOv4, it was conducted using the Python 3.8 programming 

environment and the PyTorch framework running on an NVIDIA 
GeForce RTX 3090 GPU. During training, the images are compressed to 
a specific size. The k-means algorithm is initially employed for clustering 
to determine new anchor sizes. Mosaic data augmentation and mixup 
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data augmentation are used for sample expansion. The initial learning 
rate is set to 0.01 with a learning rate decay factor of 0.0005. The Adam 
optimizer is utilized with a momentum value of 0.937, and the BatchSize 
is set to 64. A total of 300 epochs are trained, with the backbone feature 
extraction network frozen for the first 50 epochs to expedite convergence. 
If there is no further improvement in model performance after 200 
epochs, the training is automatically stopped to save time 
(Supplementary Figure 1). The model is trained using the training set, 
and parameter optimization is performed using the validation set. 
Finally, the best model weights are output and saved. These weights are 
then used to predict the location and classify parasites in images.

3.1.2 Evaluation metrics
Similar to other machine learning models, in object detection, 

there are true positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN) for the predicted results. To calculate the 
mean average precision (MAP), first, the recall (R) and precision (P) 
are computed. Recall reflects the cases of missed parasite detection, 
and its calculation formula is as follows.

 
TPRecall TP FN= +

Precision reflects cases of false parasite detection, and its 
calculation formula is as follows.

 
TPPrecision TP FP= +

Object detection algorithms typically use average precision (AP) 
and mean average precision (MAP) to assess the accuracy of model 

detection results. The AP measures the detection accuracy for a single 
target class by evaluating the trade-off between precision and recall. 
The MAP represents the mean of all class AP values and is used to 
evaluate multiclass detection accuracy. It offers insight into the model’s 
performance across all classes. The calculation formula for MAP is 
as follows.

 

1

0
AP PRdR= ∫
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4 Results

4.1 General information

A total of 2083 images containing helminth eggs were obtained 
from the scanned slides. Of these images, 467 were mixed helminth 
egg images, which were used as the testing dataset.

4.2 Recognition of single species parasitic 
helminth eggs

The optimized YOLOv4 model was employed to detect individual 
human helminth eggs. For individual eggs of a single species, the 

FIGURE 1

The collected egg suspensions were made into single species egg smears and mixed species smears, and the obtained images were classified and 
establish a dataset. The ratio of training set, verification set and test set was 8:1:1, and then YOLOv4 recognition model was established.
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TABLE 1 Recognition results of human helminth eggs by YOLOv4.

Class Parasitic helminth eggs MAP Recall Precision

Nematode Ascaris lumbricoides 100.00% 100.00% 95.24%

Enterobius vermicularis 93.88% 95.83% 89.31%

Ancylostoma duodenale 100.00% 100.00% 95.24%

Trichuris trichiura 95.99% 93.33% 84.85%

Trematoda Schistosoma japonicum 100.00% 100.00% 100.00%

Fasciolopsis buski 99.45% 100.00% 88.00%

Paragonimus westermani 93.41% 85.19% 85.19%

Clonorchis sinensis 100.00% 100.00% 100.00%

Cestoidea Taenia spp. 99.73% 96.15% 92.59%

Mean average precision (MAP); Taenia solium and Taenia seginata eggs are difficult to distinguish under the microscope, and they are collectively referred to as Taenia spp. in this study.

accuracy rates were 100.00% for C. sinensis, 100.00% for S. japonicum, 
95.24% for A. lumbricoides, 95.24% for A. duodenale, 92.59% for 
Taenia spp., 89.31% for E. vermicularis, 88.00% for F. buski, 85.19% 
for P. westermani, and 84.85% for T. trichiura as depicted in Figure 2 
and Table 1.

4.3 Recognition of mixed species parasitic 
helminth eggs

In order to further verify the model, the mixture of eggs from 
different species were used for testing. For mixed helminth eggs, the 

FIGURE 2

Detection outcomes of human helminth eggs using YOLOv4. (A) Fertilized eggs of Ascaris Lumbricoides; (B) Eggs of Enterobius vermicularis; (C) Eggs 
of Ancylostoma duodenale; (D) Eggs of Trichuris trichiura; (E) Eggs of Schistosoma japonicum; (F) Eggs of Fasciolopsis buski; (G) Eggs of Paragonimus 
westermani; (H) Eggs of Clonorchis sinensis; (I) Eggs of Taenia spp.
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accuracy rates for Group 1 (A. lumbricoides and T. trichiura) were 
98.10 and 95.61%; For Group 2 (A. lumbricoides, T. trichiura, and 
A. duodenale), they were 94.86, 93.28, and 91.43%, and for Group 3 
(C. sinensis and Taenia spp.), they stood at 93.34 and 75.00%, as 
illustrated in Figure 3 and Table 2.

5 Discussion

Parasitosis, caused by the invasion of parasites into the human 
body, leads to various pathological changes depending on the species 
and parasitic sites, making accurate diagnosis critical. The current 
gold standard for parasitic disease diagnosis is manual microscopy; 
however, this method is time-consuming, prone to error, and heavily 
reliant on experienced technicians. It is also lack of objectivity and 
accuracy and poor repeatability (Shen et al., 2016). This study aimed 
to enhance diagnostic efficiency by employing YOLOv4, a deep 
learning algorithm, to automatically recognize and classify parasite 
eggs in human fecal microscopic images. While the YOLOv4-based 
model demonstrated promising results, with high accuracy for some 
parasites, variability in detection accuracy was observed across 
species. For example, the model achieved 100% accuracy for 
Clonorchis sinensis and Schistosoma japonicum, but lower rates for 
species like E. vermicularis (89.31%), F. buski (88.00%), P. westermani 
(85.19%), and T. trichiura (84.85%).

In comparison, our model’s accuracy for detecting Clonorchis 
sinensis and Schistosoma japonicum was 100%, which outperforms the 
results from Lee et al. (2022) in their Helminth Egg Analysis Platform 

(HEAP), which reached 91.2% for C. sinensis using Faster 
R-CNN. Similarly, our model demonstrated higher accuracy than the 
YOLOv5-based approach in Huo et al. (2021), which achieved an 
average accuracy of 89.4% for single-species detection but struggled 
in distinguishing overlapping or mixed infections. The YOLOv4 
model in this study provides an advantage in terms of sensitivity and 
specificity for these specific parasite types, likely due to its high 
detection resolution and optimized training process.

However, for mixed infections, our model’s accuracy varied. For 
instance, Group 1 (A. lumbricoides and T. trichiura) achieved high 
recognition rates of 98.10 and 95.61%, respectively, showing an 
improvement over HEAP’s mixed infection detection rate of 85.5%. 
Yet, accuracy dropped to 75% for Group 3 (mixed C. sinensis and 
Taenia spp.), revealing the model’s limitations in complex, 
overlapping scenarios. This drop aligns with the challenges noted in 
previous studies, such as the 79% accuracy reported in Huo et al. 
(2021) for similar overlapping cases, which emphasizes that mixed 
infections remain a difficult task for automated detection systems. 
Given that traditional microscopy can provide accurate diagnoses 
when performed by skilled technicians, it remains a robust diagnostic 
tool. However, AI-based methods offer distinct advantages in terms 
of speed and automation, especially in resource-limited settings 
where trained professionals may not always be available.

Several factors can significantly influence the performance of 
AI-assisted parasite detection. The quality of sample preparation is 
crucial; improperly prepared samples can obscure egg morphology, 
leading to misclassification. Additionally, the size of parasitic eggs can 
affect recognition accuracy, as variations can complicate the detection 

FIGURE 3

Detection outcomes of mixed human helminth eggs using YOLOv4 (A) Eggs of A. lumbricoides and T. trichiura; (B) Eggs of Taenia spp. and Clonorchis 
sinensis (C) Eggs of A. lumbricoides, T. trichiura, and A. duodenale.

TABLE 2 Recognition of mixed helminth eggs by YOLOv4.

Group Parasitic helminth eggs MAP Recall Precision

Group 1 Trichuris trichiura 99.01% 97.48% 98.10%

Ascaris lumbricoides 96.84% 93.16% 95.61%

Group 2 Trichuris trichiura 97.28% 94.86% 94.86%

Ascaris lumbricoides 90.73% 48.03% 93.28%

Ancylostoma duodenale 96.39% 90.14% 91.43%

Group 3 Clonorchis sinensis 86.61% 82.01% 93.34%

Taenia spp. 66.58% 55.81% 75.00%

Mean average precision (MAP).
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algorithms. Furthermore, preservation methods play a vital role; poor 
preservation can cause morphological changes that hinder accurate 
recognition. Addressing these factors is essential for enhancing the 
reliability of AI diagnostics.

A key point for determining whether AI-based image analysis is 
superior to traditional methods lies in statistical validation. Statistical 
analysis comparing the AI model’s performance to microscopy and 
other diagnostic tools (such as PCR or immunological assays) would 
be  essential for drawing firm conclusions. This analysis would 
quantify whether the AI system offers statistically significant 
improvements in accuracy, sensitivity, and specificity. For instance, a 
comprehensive study comparing the false-positive and false-negative 
rates between AI-based diagnostics and traditional methods would 
highlight the strengths and weaknesses of each approach. While the 
overall recognition accuracy of 94.41% in our model is promising, it 
still falls short of the ideal accuracy needed for a diagnostic tool to 
fully replace microscopy in complex cases, particularly in 
mixed infections.

As seen in previous studies, such as the Helminth Egg Analysis 
Platform (HEAP) by Lee et al. (2022), challenges with overlapping 
eggs and underrepresented species also affect the performance of 
AI models. Huo et  al. (2021) reported similar findings with 
YOLOv5, noting that while AI-based models exhibit higher speed 
and efficiency, they require further optimization to handle real-
world variability in fecal samples. Both our study and theirs 
suggest that expanding training datasets, enhancing image 
augmentation techniques, and potentially integrating multi-model 
approaches (e.g., ensemble learning) could improve 
overall accuracy.

In conclusion, while AI-based models like YOLOv4 show 
significant potential to reduce the reliance on manual microscopy, 
especially in less specialized settings, they are not yet ready to 
completely replace traditional methods. Instead, hybrid approaches 
that combine the strengths of AI with expert review could be more 
effective in ensuring accurate diagnosis, particularly for parasites 
with lower detection accuracy or in complex infection scenarios. 
Addressing the factors influencing AI performance and further 
refinement of these technologies are critical steps toward improving 
the efficiency and reliability of parasitic disease diagnostics in 
the future.

6 Conclusion

The YOLOv4-based automatic recognition system for parasite 
eggs achieved an overall recognition accuracy of 94.41%, 
demonstrating significant potential to enhance the speed and 
efficiency of parasitic disease diagnosis. However, the variability in 
detection accuracy across different parasite species, particularly in 
mixed infections, highlights the model’s limitations. For example, 
accuracy rates for species like E. vermicularis (89.31%), F. buski 
(88.00%), P. westermani (85.19%), and T. trichiura (84.85%) were 
lower than expected, and in mixed infections such as Group 3 (mixed 
C. sinensis and T. spp.), the recognition accuracy dropped to 75%. 
These results indicate that while the AI model performs well for 
certain parasites, it struggles with complex diagnostic scenarios, such 
as mixed infections, where traditional microscopy still holds an 
advantage due to its ability to detect subtle variations in 
parasite morphology.
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SUPPLEMENTARY FIGURE 1

YOLO v4 structure (A) Overall structure. YOLOv4 is comprised of three main 
components: Backbone, Neck, and Head. (B) CSPNet structure. YOLOv4 

employs CSPDarknet-53 as the primary feature extraction network, which 
involves modifications to the residual blocks of Darknet-53 and the 
integration of the CSPNet (Cross Stage Partial Networks) architecture. 
(C) ASPP Structure. ASPP (Atrous Spatial Pyramid Pooling) uses dilated 
convolutions with different dilation rates to capture multi-scale features 
while maintaining the spatial dimensions, thereby enhancing the network's 
ability to recognize objects of varying sizes. (D) SE Structure. The final feature 
layer incorporates Spatial Pyramid Pooling Layers (SPP Layers) and integrates 
the Squeeze-and-Excitation (SE) attention mechanism. This mechanism 
models inter-channel relationships through Squeeze and Extraction 
operations, enabling the model to adaptively learn the importance of each 
channel and assign varying weights based on task requirements.
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