
Frontiers in Microbiology 01 frontiersin.org

Subtractive genomics and 
comparative metabolic pathways 
profiling revealed novel drug 
targets in Ureaplasma urealyticum
Liesong Chen 1,2, Zhuojia Zhang 1,2, Qilin Zeng 1,2, Wei Wang 3, 
Hui Zhou 4* and Yimou Wu 1,2*
1 Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, 
University of South China, Hengyang, China, 2 Hunan Provincial Key Laboratory for Special Pathogens 
Prevention and Control, University of South China, Hengyang, China, 3 Special Inspection Department, 
Hengyang Traditional Chinese Medicine Hospital, Hengyang, China, 4 Center for Medical Test and 
Pathology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China

Introduction: Ureaplasma urealyticum is a commensal organism found in the 
human lower genitourinary tract, which can cause urogenital infections and 
complications in susceptible individuals. The emergence of antibiotic resistance, 
coupled with the absence of vaccines, underscores the necessity for new drug 
targets to effectively treat U. urealyticum infections.

Methods: We employed a subtractive genomics approach combined with 
comparative metabolic pathway analysis to identify novel drug targets against U. 
urealyticum infection. The complete proteomes of 13 Ureaplasma strains were 
analyzed using various subtractive genomics methods to systematically identify 
unique proteins. Subsequently, the shortlisted proteins were selected for further 
structure-based studies.

Results: Our subtractive genomics analysis successfully narrowed down the 
proteomes of the 13 Ureaplasma strains to two target proteins, B5ZC96 and 
B5ZAH8. After further in-depth analyses, the results suggested that these two 
proteins may serve as novel therapeutic targets against U. urealyticum infection.

Discussion: The identification of B5ZC96 and B5ZAH8 as novel drug targets marked 
a significant advancement toward developing new therapeutic strategies against U. 
urealyticum infections. These proteins could serve as foundational elements for the 
development of lead drug candidates aimed at inhibiting their function, thereby 
mitigating the risk of drug-resistant infections. The potential to target these proteins 
without inducing side effects, owing to their specificity to U. urealyticum, positions 
them as promising candidates for further research and development. This study 
establishes a framework for targeted therapy against U. urealyticum, which could 
be particularly beneficial in the context of escalating antibiotic resistance.
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1 Introduction

Ureaplasma urealyticum, which falls under the category of Mollicutes, is a prevalent 
mucosal commensal capable of self-replication and cell-free survival (Glass et al., 2000). This 
microorganism typically inhabits the lower urinary and reproductive systems in humans and 
can be transmitted through sexual contact (Kawai et al., 2015). Accumulating reports suggest 
that U. urealyticum is gaining recognition as a significant sexually transmitted pathogen. It is 

OPEN ACCESS

EDITED BY

Hazir Rahman,  
Abdul Wali Khan University Mardan, Pakistan

REVIEWED BY

Sandeep Tiwari,  
Federal University of Bahia (UFBA), Brazil
Razak Hussain,  
University of Illinois at Urbana-Champaign, 
United States

*CORRESPONDENCE

Hui Zhou  
 15802677570@163.com

Yimou Wu  
 yimouwu@sina.com

RECEIVED 21 August 2024
ACCEPTED 21 October 2024
PUBLISHED 30 October 2024

CITATION

Chen L, Zhang Z, Zeng Q, Wang W, 
Zhou H and Wu Y (2024) Subtractive 
genomics and comparative metabolic 
pathways profiling revealed novel drug 
targets in Ureaplasma urealyticum.
Front. Microbiol. 15:1484423.
doi: 10.3389/fmicb.2024.1484423

COPYRIGHT

© 2024 Chen, Zhang, Zeng, Wang, Zhou and 
Wu. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 30 October 2024
DOI 10.3389/fmicb.2024.1484423

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1484423&domain=pdf&date_stamp=2024-10-30
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1484423/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1484423/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1484423/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1484423/full
mailto:15802677570@163.com
mailto:yimouwu@sina.com
https://doi.org/10.3389/fmicb.2024.1484423
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1484423


Chen et al. 10.3389/fmicb.2024.1484423

Frontiers in Microbiology 02 frontiersin.org

causally associated with various conditions, including non-gonococcal 
urethritis, infertility, chorioamnionitis (Yang et al., 2020), prostatitis, 
epididymitis (Pollack, 2001), cervicitis, bacterial vaginosis, pelvic 
inflammatory disease, reactive arthritis, spontaneous abortion, 
prematurity, intrauterine growth retardation, postpartum fever, and 
extragenital disease (Capoccia et  al., 2013; Waites et  al., 2005). 
Additionally, it poses a serious threat to newborns and individuals 
with weakened immune systems as it can lead to severe infections 
(Bharat et al., 2015; Deetjen et al., 2014; Pollack, 2001; Sprong et al., 
2020). Noteworthy, U. urealyticum typically results in asymptomatic 
or chronic persistent infection with observable clinical symptoms. 
Currently, tetracycline, quinolone and macrolide antibiotics are 
generally considered the primary treatment options for U. urealyticum 
infection (Kawai et  al., 2015). However, the rapid emergence of 
antimicrobial resistance among clinical strains has compromised the 
effectiveness of these available drugs (Zhang et al., 2023; Ma et al., 
2021; Beeton et  al., 2009; Kong et  al., 2022; Yang et  al., 2020). 
Consequently, the treatment of U. urealyticum infection remains a 
formidable challenge.

The urgent need to explore new therapeutic targets in this 
bacterium is highlighted by the global increase in antibiotic resistance 
and the absence of a licensed vaccine. The post-genomic era and 
advancements in high-throughput sequencing have paved the way for 
the development of well-established tools for analyzing big data. These 
tools have opened up new avenues for identifying novel drug targets. 
Currently, subtractive genomics analysis is universally utilized to 
discover potential drug targets against various pathogenic bacteria, 
including Chlamydia trachomatis (Aslam et  al., 2021), Vibrio 
parahaemolyticus (Liu et  al., 2023), Mycobacterium tuberculosis 
(Uddin et al., 2018), Salmonella Typhi (Jalal et al., 2021), Staphylococcus 
aureus (Naorem et  al., 2022), Streptococcus pneumoniae (Khan 
K. et al., 2022), Mycoplasma genitalium (Nogueira et al., 2021), and 
Haemophilus ducreyi (de Sarom et al., 2018). This approach, which 
involves differentiating the pathogen proteome from the host 
proteome to identify non-host essential proteins, offers a more 
efficient and cost-effective alternative to traditional disease-based 
drug development methods. Through in-silico analysis, suitable drug 
targets for U. urealyticum can be explored.

To date, there have been no reported therapeutic targets concerning 
the metabolic pathways unique to U. urealyticum. In this study, we utilize 
extensive subtractive genomics and comparative analysis of metabolic 
pathways to uncover promising therapeutic targets against U. urealyticum 
by leveraging the existing sequenced genomes. Moreover, we performed 
virtual high-throughput screening of FDA-approved and 
FDA-experimental drugs, and identified potential candidates with 
inhibitory activity against shortlisted drug target proteins.

2 Materials and methods

The workflow used in this study for the prediction of putative 
drug targets against U. urealyticum infection is detailed in Figure 1.

2.1 Acquisition of genomics information 
and core proteomics investigation

The genetic information of selected strains within the Ureaplasma 
sp. (Supplementary Table S1) was gathered from the GenBank 

database at the National Center for Biotechnology Information 
(NCBI), which functions as a central repository for biomedical and 
genomics data. In order to maintain uniformity in genome 
annotations, the RAST server (Rapid Annotations using Subsystems 
Technology) (Overbeek et al., 2014) was utilized to annotate all of the 
genomes. The analysis of the core proteome among 13 genomes was 
conducted using reciprocal best BLAST hits of all coding sequences 
in the EDGAR version 3.0 software framework (Dieckmann et al., 
2021). For this analysis, the genome of U. urealyticum serovar 10 str. 
ATCC 33699 was chosen as the reference genome, and the genomes 
of the remaining strains were compared to the reference.

2.2 Identification of human host 
non-homologous essential proteins

The duplicated copies or redundant sequences from the main 
protein set were eliminated by implementing the CD-HIT module 
within the CD-HIT suite (Li and Godzik, 2006). To be  considered 
redundant, the sequence identity had to exceed a specific cutoff of 0.6 (or 
60%). For the subsequent analysis, priority was given to the protein 
sequences that were not duplicates. To identify the essential proteins of 
U. urealyticum, the core set of proteins was further assessed using 
GEPTOP version 2.0 (Naorem et al., 2022). An essentiality score cutoff 
of 0.24 was utilized. The GEPTOP platform was employed to detect 
essential genes in prokaryotic organisms. This was achieved by 
comparing the orthology and phylogeny of the query proteins with the 
experimentally defined datasets in the database of essential genes (DEG). 
After identifying non-duplicated protein sequences deemed essential, a 
BLASTp search against the Homo sapiens genome was conducted using 
the threshold E-value cutoff of 10−4. Any resulting sequences showing 
significant similarity to the human host were disregarded, while 
sequences with no homology were chosen for downstream analysis.

2.3 Identification of metabolic pathways in 
the pathogen and human host

To identify metabolic pathways in the human host and 
U. urealyticum, we  utilized the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and the Automatic Annotation Server (KAAS). 
Using the KEGG database, we retrieved unique identification numbers 
for the metabolic pathways in H. sapiens and U. urealyticum. We then 
conducted a manual comparison to distinguish exclusive from shared 
pathways. Pathways exclusive to the pathogen were labeled as unique 
metabolic pathways, while those found in both the human host and 
the pathogen were identified as common metabolic pathways. In this 
research, the protein sequences implicated in the pathogen’s unique 
metabolic pathways, as well as proteins annotated with KO numbers 
but not associated with neither specific nor common pathways, were 
screened for subsequent detailed analysis.

2.4 Analysis of subcellular localization

To prioritize proteins found in the cytoplasm for assessing 
potential therapeutic targets, we first utilized the PSORTb version 
3.0.3 server (Yu et al., 2010) to predict the subcellular localization of 
these proteins. To enhance the credibility of the PSORTb version 3.0.3 
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findings, we  subsequently validated them through the BUSCA 
(Savojardo et  al., 2018) and CELLO version 2.5 (Yu et  al., 2006) 
servers. The most accurate results from the localization analysis were 
determined by aggregating the data from these three servers. The final 
protein localization result was the same location predicted by two or 
more servers.

2.5 Druggability analysis of screened proteins

The ability of a target to bind with drugs and drug-like molecules 
at a high affinity determines its druggability. To evaluate the 
druggability of crucial cytoplasmic proteins, Blastp was used to search 
for them in the DrugBank database, accessible at https://go.drugbank.
com/. DrugBank is a valuable resource for bioinformatics and 
cheminformatics, offering extensive information on drugs and their 
targets. Potential drug targets or drugs were identified by considering 
proteins with an E value below 10−5. In instances where no matches to 
known drugs or drug targets were found, these proteins were classified 
as novel drug targets of U. urealyticum (Khan M. T. et al., 2022). The 
DrugBank non-homologous proteins were then prioritized for 
druggability assessment based on druggability probability via the 
PockDrug server (Hussein et  al., 2015) and their protein–protein 
interaction characteristics retrieved from STRING version 12.0 
database (Szklarczyk et al., 2023).

2.6 Anti-target analysis of shortlisted novel 
drug targets

In the field of host cell biology, proteins that act as anti-targets are 
of great significance due to their ability to bind with potential 
therapeutic compounds designed to combat corresponding pathogens. 
Among the human population, a comprehensive search of the existing 
literature discovered 210 such proteins (Fatoba et  al., 2021). 
Noteworthy examples of these proteins include P-glycoprotein 
(referred to as P-gly), adrenergic receptor, dopaminergic receptor, and 
ether-a-go-go-related protein. In order to minimize any negative 
consequences resulting from the interaction between these anti-target 
proteins and the proposed drug targets, a thorough analysis was 
performed. The novel drug targets were subjected to a search using 
NCBI BLASTp against these 210 anti-target proteins, applying the 
following criteria: an E-value of less than 0.005, a query coverage 
greater than 30%, and an identity below 30%.

2.7 Analysis of non-homologous proteins 
in the human microbiome

Accidental blockage or unintentional inhibition of proteins found 
within the gastrointestinal microflora may result in dysbiosis, 
significantly affecting the microenvironment and possibly causing 
toxicity with adverse effects on the human host (Sarker et al., 2023). 
Essential non-homologous proteins, identified as potential novel drug 
targets, underwent screening via BLASTp, applying an E-value 
threshold of less than 0.005, a query coverage exceeding 30%, and an 
identity percentage below 30%. This analysis utilized the dataset 
available on the Human Microbiome Project server1 under “43,021 
(BioProject)” (Khan K. et al., 2022; Peterson et al., 2009). Proteins 
exhibiting less than 30% similarity were classified as novel therapeutic 
targets and proceeded to the subsequent phase.

2.8 Structure modeling and validation

The target proteins analyzed in this study underwent structure 
prediction using the SWISS-MODEL program (Waterhouse et al., 
2018) accessed through the Expasy web server, known for its 
comprehensive homology modeling service. The accurate evaluation 
of the 3D model is of paramount importance in the field of 
computational structure prediction (Senior et  al., 2020). Recent 
advancements in sequencing techniques have led to groundbreaking 
discoveries in computational structural biology (Mendez et al., 2023; 
Tripathi et al., 2019). The introduction of widely accepted and efficient 
techniques for structure evaluation has enabled the qualitative 
estimation of protein structures. In this research, three distinct tools, 
namely PROCHECK (Laskowski et al., 1996), ERRAT (Colovos and 
Yeates, 1993) and ProsA-web (Wiederstein and Sippl, 2007), were 
utilized to assess the stereochemical quality and accuracy of the 
predicted models (Hooda et al., 2012).

2.9 Ligand library preparation for virtual 
screening

To identify a suitable target for drug development, it is essential to 
investigate the interactions between the drug target and potential drug 
or drug-like compounds. Consequently, it is necessary to search for 

1 https://www.hmpdacc.org/hmp/

FIGURE 1

Systemic workflow of novel drug targets identification using subtractive genomics and comparative metabolic pathways analysis (By Figdraw).
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suitable ligand molecules that are capable of binding to the target 
proteins. In preparing the ligands library, we  selected the 
FDA-approved drug library, which contains 2,470 drugs, along with 
an experimental drug library comprising 6,041 drugs (Gan et  al., 
2023). All drug molecules were obtained from DrugBank in the 
structured data file (SDF) format. The structures of these drug 
molecules were subjected to energy minimization and subsequently 
compiled into a ligands library designed for virtual screening.

2.10 Virtual high-throughput screening

The recently developed DrugRep server2 facilitated the execution 
of virtual high-throughput screening as an online tool for computer-
aided drug discovery. In the process of virtual screening with 
DrugRep, the structures of well-prepared drug target proteins 
underwent receptor-based virtual screening against a library of ligands 
that included 8,511 distinct drug molecules. For the docking 
procedure, the DrugRep server employed Autodock Vina (Trott and 
Olson, 2010) to identify potential inhibitors against the drug target 
proteins and returned 100 best molecules based on estimated binding 
affinities (kcal/mol).

2.11 Receptor–ligand complex analysis

To elucidate the interaction dynamics between the receptors 
(shortlisted drug target proteins) and the ligands (the top-ranked drug 
molecules), the tools AutoDock Vina and PoseEdit were employed. 
The PoseEdit tool was sourced from the ProteinsPlus Server.3 An 
examination was performed on both receptors alongside their 
respective ligands to evaluate interactions, binding conformations, 
and affinities. Furthermore, the Top-10 screened drugs underwent 
filtering based on Lipinski’s rule of five (RO5). Ultimately, the ligands 
that demonstrated the most advantageous binding affinities were 
selected according to their optimal docking scores and 
adherence to RO5.

2.12 Molecular dynamics simulations

All-atom MD simulations were conducted using small molecule-
protein complexes derived from docking as the initial structures, 
employing Gromacs 2023.3 software (Pronk et al., 2013; Rodríguez-
Martínez et al., 2024). Both the small molecule and the protein were 
represented using the AMBER protein force field (Wang et al., 2004; 
Maier et al., 2015). The pdb2gmx tool was utilized to incorporate 
hydrogen atoms into the system, followed by the addition of a 
truncated cubic TIP3P water box at a distance of 10 Å from the system. 
Sodium (Na+) and chloride (Cl−) ions were included to neutralize the 
system’s charge (Bejagam et al., 2018). Subsequently, the topological 
and parameter files for the simulations were generated. MD 
simulations were executed with Gromacs 2023.3 software for a total 

2 http://cao.labshare.cn:10180/DrugRep/php/index.php

3 https://proteins.plus/

simulation duration of 100 ns (Case et  al., 2005). Prior to the 
simulations, energy minimization was performed using the mdrun 
command and the steepest descent method within the NVT ensemble, 
with an initial step size of 0.01 nm and a maximum force tolerance of 
1,000 kJ/mol•nm. Following energy minimization, a 100 ps NVT 
(isothermal-isochoric) ensemble simulation was conducted at 
constant volume, with gradual heating from 0 to 310.15 K to facilitate 
the even distribution of solvent molecules within the solvent box. This 
was succeeded by a 100 ps NPT (isothermal-isobaric) ensemble 
simulation, employing the Berendsen barostat to equilibrate the 
system pressure at 1 bar. During the MD simulations, all hydrogen 
bonds were constrained using the LINCS algorithm, with an 
integration step size of 2 fs. Long-range electrostatic interactions were 
calculated using the Particle Mesh Ewald (PME) method, with a cutoff 
of 1.2 nm. The cutoff for nonbonded interactions was set to 10 Å, and 
these interactions were updated every 10 steps. The resulting 
trajectories underwent periodic boundary condition removal, after 
which root-mean-square deviation (RMSD), root-mean-square 
fluctuation (RMSF), and radius of gyration (Rg) analyses 
were performed.

3 Results

3.1 Prediction of the core proteome

In our study, a total of 396 coding DNA sequences (CDs) were 
discovered to be present in all 13 strains. These CDs were converted 
into protein sequences and defined as the core proteome 
(Supplementary Sequence file 1). In order to verify the uniqueness of 
the identified protein sequences, we employed the CD-HIT web server 
with a 60% identity cutoff. Our analysis conclusively showed that all 
396 protein sequences were distinct from any paralogous counterparts.

3.2 Identification of human host 
non-homologous essential proteins

The 396 unique protein sequences underwent analysis using the 
GEPTOP server, identifying 170 sequences as essential proteins 
(Supplementary Sequence file 2). These vital proteins, crucial for the 
pathogen’s survival within the host, serve as potential targets for drug 
development. However, these proteins must not bear resemblance to 
human proteins to avoid potential drug-related complications. To 
address this requirement, the 170 essential proteins were compared 
against human (H. sapiens) proteins using BLASTp, resulting in 94 
sequences identified as essential and non-homologous proteins 
(Supplementary Sequence file 3).

3.3 Metabolic pathways analysis

The KEGG database currently catalogs 44 metabolic pathways for 
U. urealyticum and 358 for human. By manually comparing these 
metabolic pathways between the pathogenic U. urealyticum and its 
human host, we identified 9 unique pathways specific to the pathogen 
and 35 pathways that are common to both the pathogen and the host, 
as detailed in Table 1. Furthermore, an analysis conducted using the 
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TABLE 1 Unique and common metabolic pathways of U. urealyticum with reference to human host.

Serial no. Unique pathways (KEGG) KEGG pathway ID Total proteins

1 Methane metabolism uue00680 6

2 Two-component system uue02020 2

3 Quorum sensing uue02024 13

4 Phosphotransferase system (PTS) uue02060 1

5 Bacterial secretion system uue03070 7

6 Biosynthesis of secondary metabolites uue01110 29

7 Microbial metabolism in diverse environments uue01120 20

8 Carbon fixation by Calvin cycle uue00710 6

9 Other carbon fixation pathways uue00720 4

Serial no. Common pathways (KEGG) KEGG pathway ID Total proteins

1 Glycolysis/Gluconeogenesis uue00010 8

2 Pentose phosphate pathway uue00030 8

3 Fructose and mannose metabolism uue00051 5

4 Oxidative phosphorylation uue00190 12

5 Purine metabolism uue00230 13

6 Pyrimidine metabolism uue00240 11

7 Cysteine and methionine metabolism uue00270 3

8 Taurine and hypotaurine metabolism uue00430 2

9 Selenocompound metabolism uue00450 3

10 Glutathione metabolism uue00480 2

11 Glycerolipid metabolism uue00561 4

12 Glycerophospholipid metabolism uue00564 6

13 Pyruvate metabolism uue00620 3

14 Propanoate metabolism uue00640 2

15 One carbon pool by folate uue00670 4

16 Thiamine metabolism uue00730 3

17 Riboflavin metabolism uue00740 2

18 Nicotinate and nicotinamide metabolism uue00760 7

19 Folate biosynthesis uue00790 2

20 Aminoacyl-tRNA biosynthesis uue00970 51

21 ABC transporters uue02010 22

22 Ribosome uue03010 57

23 RNA degradation uue03018 7

24 RNA polymerase uue03020 4

25 DNA replication uue03030 11

26 Protein export uue03060 9

27 Base excision repair uue03410 4

28 Nucleotide excision repair uue03420 5

29 Mismatch repair uue03430 9

30 Homologous recombination uue03440 13

31 Sulfur relay system uue04122 2

32 Carbon metabolism uue01200 16

33 Biosynthesis of amino acids uue01230 14

34 Nucleotide metabolism uue01232 16

35 Biosynthesis of cofactors uue01240 16
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https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2024.1484423

Frontiers in Microbiology 06 frontiersin.org

KAAS server demonstrated that out of 94 proteins screened from the 
previous step, 92 had assigned KEGG orthology (KO) identifiers. 
Notably, among these 92 proteins, four were only linked with unique 
metabolic pathways exclusive to the pathogen, as illustrated in Table 2, 
and 21 were involved in neither unique nor common metabolic 
pathways (Supplementary Table S2). All of these 25 proteins were 
selected for further investigation. The remaining 67 proteins were 
excluded from further analysis because they were found to participate 
in the common metabolic pathways.

3.4 Subcellular localization prediction

The analysis conducted with the PSORTb, BUSCA, and CELLO 
servers identified that among the 25 proteins screened, a significant 
majority, specifically 24 proteins, were categorized as cytoplasmic 
proteins, as detailed in Supplementary Table S3. This classification 
indicates that these cytoplasmic proteins might play pivotal roles 
within cellular processes, enhancing their relevance in drug 
development. Consequently, given their potential as effective drug 
target candidates, these proteins were selected for subsequent more 
in-depth investigation.

3.5 Novel drug target prediction

A total of five proteins exhibited similarity to the available drug 
targets documented in the DrugBank database (Table 3). Conversely, the 
other 19 proteins displayed no matches with any entries currently 
identified in DrugBank. This observation indicates their potential as 
novel drug targets for U. urealyticum. Among those 19 proteins, 18 
possess suitable binding pockets that have a druggability probability 
exceeding 0.5 (Table 4). Additionally, protein–protein interaction (PPI) 
analysis recognized 15 of these proteins as hub proteins, fulfilling the 
requisite threshold of a node degree of at least 5 (Aslam et al., 2021), as 
indicated in the STRING version 12.0 database (Table 4). Following the 
elimination of the five proteins that did not meet the specified 
parameters, each of the remaining 14 hub proteins was found to interact 
with several proteins (Figure 2). These hub proteins are integral to a 
variety of functions, and the inhibition of their activities may affect the 
functions of other interacting proteins. Moreover, these 14 unique 
therapeutic proteins lacked similarity to 210 identified human “anti-
targets.” Furthermore, a BLASTp analysis conducted on all microbial 
strains from the Human Microbiome Project (HMP) utilizing the NCBI 
blast server demonstrated that only two out of the 14 proteins showed a 
similarity of less than 30%. Given their unique properties and the 

absence of overlaps with common host-pathogen pathways and human 
“anti-targets,” it is advisable to assess these two proteins (B5ZC96 and 
B5ZAH8) as promising candidates for drug targeting.

3.6 Comparative structure homology 
modeling and validation

Due to the unavailability of the desired protein 3D structures in 
the Protein Data Bank (PDB), the homology modeling for each 
protein was conducted by utilizing the FASTA sequences sourced 
from the UniProt database, specifically for the proteins with accession 
numbers B5ZC96 and B5ZAH8. The AlphaFold DB model of 
C0AGN1 was selected as the template for the homology modeling of 
B5ZC96 (Figure 3A) based on optimal GMQE values and sequence 
similarities, while the AlphaFold DB model of C0AGQ9 served as the 
template for modeling B5ZAH8 (Figure  3B). With these chosen 
template proteins, the 3D structures of both proteins were 
successfully modeled.

The validation of the developed models was performed using the 
PROCHECK, ERRAT, and ProSA-Web tools. For the protein B5ZC96, 
the Ramachandran plot revealed that approximately 88.1% of the 
residues are situated in the most favored regions, with 11.1% located 
in the additionally allowed regions, and both 0.4% of the residues 
found in the generously allowed and disallowed regions, as illustrated 
in Figure 3C. Conversely, concerning B5ZAH8, the Ramachandran 
plot indicated that nearly 92.9% of the residues resided in favorable 
areas, 7.1% in additionally allowed regions, and neither the generously 
allowed nor disallowed regions contained any residues (Figure 3D). 
Furthermore, the ERRAT plot provided an overall quality factor of 
87.2038 for B5ZC96 and a perfect score of 100 for B5ZAH8, suggesting 
that the proposed models exhibit excellent quality. Additionally, the 
ProSA tool’s cross-validation of the modeled structures yielded a 
Z-score of −6.11 for B5ZC96 and −8.36 for B5ZAH8, indicating that 
these models are consistent with structures derived from 
NMR/X-ray crystallography.

3.7 Virtual high-throughput screening

The DrugRep server conducted a virtual high-throughput 
screening involving a set of 8,511 unique drug molecules. Our 
docking analysis indicated that the docking scores for the top 10 
candidates ranged from −8.7 to −7.8 kcal/mol at the B5ZC96 active 

TABLE 2 Screened proteins involved in pathogen-specific metabolic pathways.

Serial 
no.

KO assignment UniProt ID Gene name Protein name Metabolic pathway

1 K02313 B5ZAH4 UUR10_RS00005 Chromosomal replication initiator protein 

DnaA

Two-component system

2 K06881 B5ZBR4 UUR10_RS02265 Bifunctional oligoribonuclease and PAP 

phosphatase NrnA

Microbial metabolism in diverse 

environments

3 K02078 B5ZC11 UUR10_RS02850 Acyl carrier protein Biosynthesis of secondary metabolites

4 K00997 B5ZBN9 UUR10_RS02135 Holo-(Acyl-carrier-protein) synthase Biosynthesis of secondary metabolites
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TABLE 3 Identified druggable targets with names of corresponding drugs.

Serial no. UniProt ID Gene name DrugBank ID Drug name

1 B5ZBN9 UUR10_RS 02135 DB01992 Coenzyme A

DB04447 1,4-Dithiothreitol

DB01812 Adenosine 3′,5′-diphosphate

2 B5ZAR1 UUR10_RS00430 DB00537 Ciprofloxacin

DB01059 Norfloxacin

DB01044 Gatifloxacin

DB06771 Besifloxacin

DB11943 Delafloxacin

DB00218 Moxifloxacin

DB00365 Grepafloxacin

DB00467 Enoxacin

DB00487 Pefloxacin

DB00685 Trovafloxacin

DB00978 Lomefloxacin

DB01137 Levofloxacin

DB01155 Gemifloxacin

DB01165 Ofloxacin

DB01208 Sparfloxacin

DB01405 Temafloxacin

DB00827 Cinoxacin

DB04576 Fleroxacin

DB09047 Finafloxacin

DB12924 Ozenoxacin

DB00817 Rosoxacin

DB04395 Phosphoaminophosphonic

DB05022 Amonafide

DB05488 Technetium Tc-99m ciprofloxacin

DB06042 ZEN-012

DB06362 Becatecarin

DB06421 Declopramide

DB00694 Daunorubicin

DB08651 3'-THIO-THYMIDINE-5'-PHOSPHATE

DB00380 Dexrazoxane

DB00773 Etoposide

DB00997 Doxorubicin

DB00970 Dactinomycin

DB00276 Amsacrine

DB00385 Valrubicin

DB00444 Teniposide

DB01177 Idarubicin

DB01204 Mitoxantrone

DB00445 Epirubicin

DB01179 Podofilox

DB01645 Genistein

DB05129 Elsamitrucin

DB04975 Banoxantrone

DB04978 SP1049C

DB04967 Lucanthone

DB05920 RTA 744

DB05706 13-deoxydoxorubicin

DB06263 Amrubicin

DB06420 Annamycin

DB06013 Aldoxorubicin

(Continued)
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site, implying a significant affinity for this target protein (Table 5). 
Regarding RO5, the compounds 2-[3-({Methyl[1-(2-Naphthoyl)
Piperidin-4-Yl]Amino}Carbonyl)-2-Naphthyl]-1-(1-Naphthyl)-2-
Oxoethylphosphonic Acid, Irinotecan, and 3-(1 h-Indol-3-Yl)-2-[4-
(4-Phenyl-Piperidin-1-Yl)-Benzenesulfonylamino]-Propionic Acid 
showed violations associated with molecular weight (MW), exceeding 
the ideal upper limit of 500 g/mol. Additionally, both 2-[3-({Methyl[1-
(2-Naphthoyl)Piperidin-4-Yl]Amino}Carbonyl)-2-Naphthyl]-1-(1-
Naphthyl)-2-Oxoethylphosphonic Acid and Pimozide went beyond 
the LogP constraint, exceeding the suggested threshold of 5. 
Furthermore, 2-[3-({Methyl[1-(2-Naphthoyl)Piperidin-4-Yl]Amino}
Carbonyl)-2-Naphthyl]-1-(1-Naphthyl)-2-Oxoethylphosphonic Acid 
also violated the criteria for rotatable bonds, surpassing the preferred 
number of less than 10. Nevertheless, since Irinotecan and Pimozide 
have previously received FDA approval, it is unlikely that these two 
inhibitors will adversely impact pharmacokinetic properties. The 
remaining drugs complied closely with the RO5 criteria.

In addition, the binding energy for the leading 10 drugs 
concerning the B5ZAH8 receptor was significantly higher than that 
for the top 10 drugs targeting B5ZC96 (Table 6). The energy values for 
the top 10 drugs were established to be between −9.8 and − 9.0 kcal/
mol. All top 10 drugs fulfilled the required RO5 parameters, with the 
exceptions of Zk-806450, 3-(2-aminoquinazolin-6-yl)-1-(3,3-
dimethylindolin-6-yl)-4-methylpyridin-2(1H)-one and Arotinoid 
acid, each of which demonstrated a LogP violation exceeding 5, and 
Fluazuron, which violates both the LogP threshold greater than five 
and the MW limit of 500 g/mol (Table 6).

3.8 Receptor–ligand complex analysis

Following the docking and sorting processes, the Top-10 
molecules evaluated for each drug target demonstrated the lowest 
docking scores. According to RO5 filtering criteria, the compound 
1-(5-{2-[(1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)amino]ethyl}-
1,3-thiazol-2-yl)-3-[3-(trifluoromethyl) phenyl]urea was identified 
as the best ligand for B5ZC96, while ZK-806711 was recognized as 
the optimal ligand for B5ZAH8. The two-dimensional structure and 
binding conformations of the best ligand for each target protein were 
illustrated in Figure 4. These binding configurations were generated 
utilizing the DrugRep server. Following the completion of the 
docking process, further analysis revealed that the compound 
1-(5-{2-[(1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)amino]

ethyl}-1,3-thiazol-2-yl)-3-[3-(trifluoromethyl)phenyl]urea mediated 
two pi bonds with Phe111 and Tyr114 (Figure  5A), whereas 
ZK-806711 mediated three pi bonds with Phe55 and single hydrogen 
bond with Ser111(Figure 5B).

3.9 MD simulations analyses

The receptor-ligand complexes underwent 100 ns MD simulations 
using Gromacs. RMSD was employed to assess stability, with lower 
values indicating greater stability. For B5ZC96, the RMSD curve 
initially increased as the small molecule adapted within the binding 
cavity, stabilizing around 10 ns at 0.2 nm. Oscillations were observed 
around 50 ns but stabilized by 75 ns. Throughout the simulation, the 
small molecule maintained stable interactions, with minor 
adjustments reflected in the RMSD fluctuations (Figure 6A). In the 
case of B5ZAH8, the RMSD curve raised to 0.5 nm before stabilizing 
around 0.45 nm, subsequently dropping to 0.3 nm near the end of the 
simulation. The small molecule exhibited no significant displacement 
relative to the protein, maintaining stable interactions. Minor 
adjustments and the rotation of an alkyl chain contributed to the 
fluctuations observed in the RMSD curve (Figure 6B).

RMSF, assessed by the average deviation for each residue, was 
analyzed to evaluate receptor-ligand binding and protein dynamics. 
For B5ZC96, overall RMSF values were low, with increased values 
observed at the N- and C-termini due to their less constrained 
positions. Elevated RMSF in other regions may result from small 
molecule interactions or intrinsic flexibility (Figure 6C). Similarly, for 
B5ZAH8, RMSF values also remained low, with higher values at the 
N- and C-termini for analogous reasons. Increased RMSF in other 
regions might stem from small molecule interactions or inherent 
flexibility (Figure 6D). Low RMSF values suggest minimal fluctuations, 
indicating stable vibrations in the solvent environment and consistent 
sampling and analysis throughout the simulation.

Rg was a metric that reflected the compactness of protein 
structures and can also be utilized to assess changes in the looseness 
of the protein’s polypeptide chain during simulations. For B5ZC96, the 
analysis of the Rg curve indicated that during the initial 60 ns of the 
simulation, Rg exhibited fluctuations, gradually decreasing from 
approximately 2.20 nm to around 2.15 nm. In the subsequent 40 ns, Rg 
stabilized, exhibiting minimal fluctuations around 2.15 nm until the 
end of the simulation (Figure  6E). In contrast, for B5ZAH8, the 
examination of the Rg curve demonstrated that the protein’s Rg values 

Serial no. UniProt ID Gene name DrugBank ID Drug name

3 B5ZC78 UUR10_RS03240 DB01752 S-adenosyl-L-homocysteine

4 B5ZC20 UUR10_RS02905 DB04082 Decyloxy-Methanol

5 B5ZBF9 UUR10_RS01745 DB08874 Fidaxomicin

DB08226 Myxopyronin B

DB08266 Methyl [(1E,5R)-5-{3-[(2E,4E)-2,5-dimethyl-

2,4-octadienoyl]-2,4-dioxo-3,4-dihydro-2H-

pyran-6yl}hexylidene] carbamate

TABLE 3 (Continued)
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TABLE 4 Druggability analysis of predicted potential novel drug target proteins.

Serial no. UniProt ID Gene name Druggability probability Number of pocket residues Average node degree

1 B5ZAH4 UUR10_RS00005 0.87 25 4.36

2 B5ZC11 UUR10_RS02850 0.55 9 6.18

3 B5ZBR4 UUR10_RS02265 0.65 18 6.36

4 B5ZAN8 UUR10_RS00315 0.94 10 10

5 B5ZB36 UUR10_RS01080 0.39 8 10

6 B5ZBA7 UUR10_RS01445 0.95 11 10

7 B5ZBQ3 UUR10_RS02205 0.7 13.0 5.27

8 B5ZBC7 UUR10_RS01585 1.0 16.0 10

9 B5ZB93 UUR10_RS01370 1.0 14.0 5.45

10 B5ZAQ6 UUR10_RS00405 0.99 12.0 5.64

11 B5ZC96 UUR10_RS03335 0.86 12.0 9.45

12 B5ZB62 UUR10_RS01210 0.83 7.0 10

13 B5ZB23 UUR10_RS01015 0.99 10.0 4.55

14 B5ZBD0 UUR10_RS01600 1.0 11 8.73

15 B5ZBC0 UUR10_RS01550 1.0 10 5.56

16 B5ZAH8 UUR10_RS00025 0.79 19 5.27

17 B5ZAQ5 UUR10_RS00400 0.61 12 5.11

18 B5ZBI2 UUR10_RS01860 0.9 10 4

19 B5ZBB5 UUR10_RS01525 1.0 19 3
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FIGURE 2

Schematic PPI network generated through the string v12.0 server for (A) B5ZC11, (B) B5ZBR4, (C) B5ZAN8, (D) B5ZBA7, (E) B5ZBQ3, (F)B5ZBC7, 
(G) B5ZB93, (H) B5ZAQ6, (I) B5ZC96, (J) B5ZB62, (K) B5ZBD0, (L) B5ZBC0, (M) B5ZAH8 and (N) B5ZAQ5.
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oscillated within a narrow range of 1.72 nm to 1.76 nm throughout the 
entire duration of the simulation (Figure 6F).

4 Discussion

U. urealyticum has emerged as an important parasitic pathogen 
associated with various urogenital infections, underscoring the 
pressing need for effective treatment options. The management of 
U. urealyticum infection is further complicated by the increasing 
prevalence of antibiotic resistance. Commonly used antibiotics are 
losing their efficacy due to the development of resistance mechanisms, 
including genetic mutations (Kawai et al., 2015; Piccinelli et al., 2017) 
and biofilm formation (Feng et al., 2015; García-Castillo et al., 2008). 
This escalating resistance not only makes treatment more challenging 
but also raises concerns about the potential for treatment failures and 
the risk of recurrent infections. In light of the limitations of current 
therapeutic approaches and the troubling rise in resistance, it is 

imperative to explore new drug targets and therapeutic strategies. 
Therefore, addressing the challenges posed by antibiotic resistance and 
the need for innovative treatment options is vital for enhancing 
clinical outcomes for patients. Notably, the distinct biological 
characteristics of U. urealyticum, including its genomic adaptations 
and metabolic pathways (Pollack, 2001), offer a chance to discover 
new antimicrobial agents that can effectively combat the increasingly 
resistant landscape. Consequently, the primary objective of this study 
was to identify and evaluate novel drug targets through an integrated 
approach that combines subtractive genomics with comparative 
metabolic pathway profiling.

Through extensive proteome analysis, we identified 170 essential 
non-homologous proteins in U. urealyticum. To ensure the reliability 
of our findings, we  employed a rigorous methodology. Utilizing 
EDGAR v3.0 software, we conducted a core proteome analysis on 13 
Ureaplasma strains, encompassing 7,689 proteins and revealing 396 
core proteins. Subsequent BLAST comparisons validated the 
consistent presence of these core proteins across all strains. 
We employed the CD-HIT server to confirm the absence of paralogous 

FIGURE 3

Modeled structure of shortlisted drug targets: (A) Three-dimensional structure of B5ZC96, (B) Ramachandran plot of B5ZC96, (C) Three-dimensional 
structure of B5ZAH8, and (D) Ramachandran plot of B5ZAH8.
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TABLE 5 Binding affinities as well as Lipinski’s rule of five of top-10 inhibitors targeting B5ZC96.

Drug ID Drug name Score MW HBD HBA RB Rings LogP

DB04016 2-[3-({Methyl[1-(2-

Naphthoyl)Piperidin-4-Yl]

Amino}Carbonyl)-2-

Naphthyl]-1-(1-Naphthyl)-

2-Oxoethylphosphonic 

Acid

−8.7 670.6895 2 6 11 7 6.4

DB07362 1-(5-{2-[(1-methyl-1H-

pyrazolo[4,3-d]pyrimidin-

7-yl)amino]ethyl}-1,3-

thiazol-2-yl)-3-[3-

(trifluoromethyl)phenyl]

urea

−8.6 462.451 3 5 8 4 3.0

DB07360 1-{5-[2-(thieno[3,2-d]

pyrimidin-4-ylamino)

ethyl]-1,3-thiazol-2-yl}-3-

[3-(trifluoromethyl)

phenyl]urea

−8.5 464.487 3 4 8 4 4.4

DB00762 Irinotecan −8.4 586.678 1 5 7 7 4.6

DB02449 3-(1 h-Indol-3-Yl)-2-[4-(4-

Phenyl-Piperidin-1-Yl)-

Benzenesulfonylamino]-

Propionic Acid

−8.3 503.613 2 4 9 5 4.9

DB08896 Regorafenib −8.1 482.815 3 3 8 3 4.1

DB08512 6-amino-2-[(1-

naphthylmethyl)amino]-

3,7-dihydro-8H-

imidazo[4,5-g]quinazolin-

8-one

−8.0 356.3806 2 3 3 5 4.5

DB01100 Pimozide −7.9 461.5462 0 1 7 5 6.9

DB06210 Eltrombopag −7.9 442.4666 3 4 7 4 4.7

DB15233 Avapritinib −7.8 498.57 1 5 5 6 1.8
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TABLE 6 Binding affinities as well as Lipinski’s rule of five of top-10 inhibitors targeting B5ZAH8.

Drug ID Drug name Score MW HBD HBA RB Rings LogP

DB03373 ZK-806711 −9.8 455.5746 1 1 6 5 3.7

DB07514 3-(2-aminoquinazolin-6-yl)-1-

(3,3-dimethylindolin-6-yl)-4-

methylpyridin-2(1H)-one

−9.7 397.4723 2 3 2 5 5.3

DB02112 Zk-806450 −9.4 489.6107 1 0 6 6 5.2

DB07586 5-(4-METHYL-

BENZOYLAMINO)-

BIPHENYL-3,4’-

DICARBOXYLIC ACID 

3-DIMETHYLAMIDE-4’-

HYDROXYAMIDE

−9.3 417.4571 3 4 9 3 3.0

DB07397 (5S)-5-(2-amino-2-oxoethyl)-4-

oxo-N-[(3-oxo-3,4-dihydro-2H-

1,4-benzoxazin-6-yl)methyl]-

3,4,5,6,7,8-hexahydro[1]

benzothieno[2,3-d]pyrimidine-

2-carboxamide

−9.1 467.498 3 5 6 5 2.1

DB02877 Arotinoid acid −9.1 348.4779 1 2 4 3 7.4

DB06976 1-(5-OXO-2,3,5,9B-

TETRAHYDRO-1H-

PYRROLO[2,1-A]ISOINDOL-

9-YL)-3-(5-PYRROLIDIN-2-

YL-1H-PYRAZOL-3-YL)-

UREA

−9.1 366.417 3 3 5 5 0.5

DB15583 Fluazuron −9.1 506.21 2 3 7 3 6.0

DB07430 (10R)-10-methyl-3-(6-

methylpyridin-3-yl)-9,10,11,12-

tetrahydro-8H-[1,4]

diazepino[5′,6′:4,5]thieno[3,2-f]

quinolin-8-one

−9.0 374.459 2 3 1 5 4.0

DB07261 THIENO[3,2-B]PYRIDINE-2-

SULFONIC ACID 

[1-(1-AMINO-ISOQUINOLIN-

7-YLMETHYL)-2-OXO-

PYRROLDIN-3-YL]-AMIDE

−9.0 453.537 2 5 5 5 2.2
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proteins and further analyzed the core proteome using the GEPTOP 
server, leading to the identification of 170 essential protein sequences. 
Our results were cross-verified with the DEG database, acknowledging 
that while this database may list proteins that are not essential during 
the in vivo infection phase, it has been well-documented in existing 
literature as identifying reliable novel drug targets. The 170 essential 
proteins are likely vital for the pathogen’s survival within the host. 
However, targeting these proteins may have detrimental consequences 
and disrupt metabolic processes. Therefore, we  conducted Blastp 
analyses to select non-homologous proteins absent in the H. sapiens 
proteome, thereby minimizing potential adverse effects and cross-
reactivity. Our analysis indicated that 94 of the 170 essential proteins 
exhibited no significant similarity to the human proteome. By focusing 
on these proteins, we could potentially eradicate the bacteria and 
address associated diseases. Consequently, these non-homologous 
essential proteins should be  prioritized as targets in the future 
development of antimicrobial drugs and vaccines. It is meritorious to 
note that with a view to exhaustively validating our screening outputs, 
genome-level target knockout of 94 selected genes will be a necessary 
task in subsequent in-depth studies.

In a comparative analysis of metabolic pathways, we identified 
differences between the metabolic pathways of U. urealyticum and 
the human host. Previous studies have predominantly focused on 
proteins involved in the unique metabolic pathways of pathogens 
(Khan M. T. et  al., 2022; Aslam et al., 2021; Alhamhoom et al., 

2022). Our method also includes the proteins with KO numbers 
that do not participate in unique metabolic pathways or in shared 
metabolic pathways. This strategy not only enhances the specificity 
of drug targeting and minimizes potential off-target effects, but also 
broadens the effective scope of drug target exploration, thereby 
addressing the methodological limitations present in most prior 
studies. Our results indicated that out of 94 proteins screened, 67 
were involved in common metabolic pathways, while 12 were 
involved in metabolic pathways unique to U. urealyticum. Notably, 
four proteins were found to be  exclusively involved in specific 
pathways of the pathogen. Additionally, we identified 21 proteins 
with KO numbers that were not associated with any metabolic 
pathway. We conducted a Blastp analysis on these 21 proteins using 
the DrugBank server and discovered that seven of them were 
related to documented drug targets, suggesting that 
non-homologous proteins in pathogen-specific pathways may not 
be  the only avenue for drug development. Consequently, our 
subsequent studies should include the 25 proteins derived from our 
refined screening criteria, which encompass proteins solely involved 
in pathogen-specific metabolic pathways and those with KO 
numbers not linked to any metabolic pathways. Furthermore, 
exploring cross-reactive proteins in shared pathways can yield 
valuable insights, as demonstrated by the successful development 
of pantothenate synthase as a therapeutic target across multiple 
pathogens (Umland et al., 2012). This underscores the necessity for 

FIGURE 4

Two-Dimensional structures of optimal ligands and their binding configurations with respective target protein: (A) Two-Dimensional structure of 
1-(5-{2-[(1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)amino]ethyl}-1,3-thiazol-2-yl)-3-[3-(trifluoromethyl)phenyl]urea (left) and binding configurations 
with B5ZC96 (right), and (B) Two-Dimensional structure of ZK-806711 (left) and binding configurations with B5ZAH8 (right).

https://doi.org/10.3389/fmicb.2024.1484423
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2024.1484423

Frontiers in Microbiology 15 frontiersin.org

a nuanced approach to identifying drug targets, considering both 
unique and shared metabolic pathways to enhance efficacy against 
U. urealyticum.

In this study, we  approached the identification of druggable 
proteins in U. urealyticum through a comprehensive evaluation of 
their druggability probability, protein–protein interactions (PPI), 
anti-target analysis, and human microbiome non-homology analysis, 
adhering to specific thresholds. Following these assessments, 
molecular docking analyses were conducted to validate the findings. 
Statistical values were employed to select and prioritize suitable 
therapeutic targets, resulting in the identification of several 
prioritized drug targets against pathogenic U. urealyticum. Notably, 
novel targets absent from existing drug libraries exhibited significant 
interactions with multiple proteins, potentially serving as hubs 
during PPI network examinations. By leveraging the central lethality 
principle, developing knockdown models or inhibiting these proteins 
may effectively combat pathogen survival (He and Zhang, 2006). 

Under stringent criteria of comparative sequence analysis, a total of 
19 essential and unique druggable proteins were prioritized as 
potential drug targets against U. urealyticum. Ultimately, two 
proteins, B5ZC96 and B5ZAH8, were selected for further virtual 
screening as potential drug targets. B5ZC96 is annotated as 
“Transcription termination/antitermination protein NusG,” a general 
transcription factor that has retained vital functions while rapidly 
evolving to meet the demands of bacterial pathogenicity (Wang and 
Artsimovitch, 2021; Tomar and Artsimovitch, 2013). Accumulating 
evidence demonstrated that compensatory evolution in NusG 
enhances the fitness of various pathogens, indicating that this protein 
could serve as a crucial molecule for pathogen survival (Eckartt et al., 
2024; Cardinale et al., 2008). Conversely, B5ZAH8 is identified as 
“L-threonylcarbamoyladenylate synthase,” a critical enzyme in the 
synthesis of N(6)-threonylcarbamoyladenosine in tRNAs, which is 
essential for pathogen metabolism. Thus, these two proteins emerge 
as promising antibacterial targets for further exploration.

FIGURE 5

Docking of optimal ligands with their respective drug target proteins. (A). Three-Dimensional and two-Dimensional interaction diagram of 
1-(5-{2-[(1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)amino]ethyl}-1,3-thiazol-2-yl)-3-[3-(trifluoromethyl)phenyl]urea with B5ZC96, and (B) Three-
Dimensional and two-Dimensional interaction diagram of ZK-806711with B5ZAH8.
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5 Conclusion

In the computational analysis conducted in this study, a 
comprehensive bioinformatics approach combining subtractive 
proteo-genomics with comparative metabolic pathway profiling led to 
the identification of two promising novel drug targets for treating 
U. urealyticum infections. While developing new drug candidates 
aimed at these protein functions has the potential to eliminate 
U. urealyticum from the host effectively, these proposed drug targets 
require further in-depth investigation and experimental validation. 
The findings of this study encompass all significant and viable drug 
targets associated with U. urealyticum, potentially aiding future 
researchers in the development of effective therapeutic compounds 
against this pathogen.
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FIGURE 6

Trajectory analyses of receptor-ligand complexes over 100  ns molecular dynamics simulation. (A) RMSD analysis of B5ZC96–1-(5-{2-[(1-methyl-1H-
pyrazolo[4,3-d]pyrimidin-7-yl)amino]ethyl}-1,3-thiazol-2-yl)-3-[3-(trifluoromethyl)phenyl]urea, (B) RMSD analysis of B5ZAH8-ZK-806711, (C) RMSF 
analysis of B5ZC96–1-(5-{2-[(1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)amino]ethyl}-1,3-thiazol-2-yl)-3-[3-(trifluoromethyl)phenyl]urea, (D) RMSF 
analysis of B5ZAH8-ZK-806711, (E) Rg analysis of B5ZC96–1-(5-{2-[(1-methyl-1H-pyrazolo[4,3-d]pyrimidin-7-yl)amino]ethyl}-1,3-thiazol-2-yl)-3-[3-
(trifluoromethyl)phenyl]urea, and (F) Rg analysis of B5ZAH8-ZK-806711.
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