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Alleviating arsenic stress affecting 
the growth of Vigna radiata 
through the application of 
Klebsiella strain ASBT-KP1 isolated 
from wastewater
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Arsenic contamination of soil and water is a major environmental issue. Bioremediation 
through plant growth-promoting bacteria is viable, cost-effective, and sustainable. 
Along with arsenic removal, it also improves plant productivity under stressful 
conditions. A crucial aspect of such a strategy is the selection of bacterial inoculum. 
The described study demonstrates that the indigenous wastewater isolate, ASBT-
KP1, could be a promising candidate. Identified as Klebsiella pneumoniae, ASBT-
KP1 harbors genes associated with heavy metal and oxidative stress resistance, 
production of antimicrobial compounds and growth-promotion activity. The 
isolate efficiently accumulated 30  μg/g bacterial dry mass of arsenic. Tolerance 
toward arsenate and arsenite was 120  mM and 70  mM, respectively. Plant biomass 
content of Vigna radiata improved by 13% when grown in arsenic-free soil under 
laboratory conditions in the presence of the isolate. The increase became even 
more significant under the same conditions in the presence of arsenic, recording 
a 37% increase. The phylogenetic analysis assigned ASBT-KP1 to the clade of 
Klebsiella strains that promote plant growth. Similar results were also observed 
in Oryza sativa, employed to assess the ability of the strain to promote growth, 
in plants other than V. radiata. This study identifies a prospective candidate in 
ASBT-KP1 that could be employed as a plant growth-promoting rhizoinoculant 
in agricultural practices.
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1 Introduction

Soil is a vital component of the terrestrial ecosystem since its influence extends from the 
growth of plants to the operation of biogeochemical nutrient cycles. Among the pollutants 
threatening soil fertility, heavy metals are the most severe (Oves et al., 2017). Cadmium, 
arsenic, mercury, chromium and copper are the most common heavy metal contaminants 
(Majumder et al., 2013; Hou et al., 2015; Oves et al., 2023). Among them, arsenic is a highly 
toxic, ubiquitous metalloid released into the environment through natural and man-made 
activities and is known to cause complications in living beings (Bahar et  al., 2013). The 
presence of arsenic in agricultural soils adversely affects soil biodiversity, fertility, and crop 
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productivity, ultimately resulting in the production of toxic 
agricultural products due to uptake by edible plant parts leading to 
bioaccumulation in humans and animals (Deng et al., 2015; Barra 
Caracciolo and Terenzi, 2021). Chronic exposure to inorganic arsenic 
disrupts the neurological, respiratory, digestive, endocrine, renal, 
cardiovascular, and reproductive systems (Mohammed Abdul et al., 
2015). Arsenic levels in soil usually range from 1 to 40 mg/kg, but 
applying pesticides and contaminated water for irrigation further 
increases this. Studies have found that many countries, including 
India, the USA, Chile, Bangladesh, and Nepal, have high 
concentrations of arsenic in their water and soil (Dahal et al., 2008; 
Murcott, 2012; Wilson, 2015; Raturi et al., 2023). Among the most 
severely affected areas is the Bengal Delta (West Bengal, Bangladesh, 
and Nepal), where dissolved arsenic concentrations exceed 200 g/L 
(Mohanty, 2017). Arsenic is found in four oxidation states in the soil, 
with the trivalent arsenite, As (III) and pentavalent arsenate, As (V), 
being the most predominant inorganic forms (Smedley and 
Kinniburgh, 2002; Bahar et al., 2012). Arsenite being highly soluble, 
is difficult to remove and hence is more toxic than arsenate (poorly 
water-soluble, thus reducing its bioavailability) (Neff, 1997; Majumder 
et al., 2013).

Currently, methods like chemical extraction and excavation, soil 
washing and flushing, and landfilling are used to remove arsenic from 
the soil. Due to the health risks associated with arsenic exposure and 
the high cost of expenditure associated with current remediation 
techniques, developing cost-effective technologies has become highly 
imperative. Bioremediation techniques assisted by biomass, microbes 
(Wang X. et al., 2017), and plants are cost-effective methods attracting 
widespread attention in removing heavy metal pollutants from 
agricultural land (Sher et  al., 2021). Microbial bioremediation 
leverages the capability of microorganisms found in wastewater and 
soil to combat arsenic-induced toxicity by developing various 
resistance mechanisms that mobilize, immobilize, and transform 
arsenic into non-toxic forms (Rosen and Tamás, 2010). This resistance 
mechanism includes arsenic adsorption, accumulation, exclusion, 
transformation, and precipitation (Mallick et  al., 2018). Two 
communities of arsenic-resistant bacteria help in the microbial 
remediation of arsenic: (i) those that render protection by uptake and 
eventual reduction of the bioavailable arsenic (Anderson and Cook, 
2004; Cavalca et al., 2010), and (ii) the other that oxidizes arsenite to 
arsenate (Ghosh et al., 2011; Wang et al., 2011). Arsenic resistance and 
adaptation in bacteria are acquired through transposons and 
chromosomal resistance mechanisms or are plasmid-induced. 
Detoxification of arsenic can be either an inorganic or organoarsenic 
detoxification process, mediated by arsenic resistance operons. The 
inorganic process involves ars operon-encoded proteins that confer 
resistance to arsenate, arsenite and arsenicals using the genes arsR, 
arsB, and arsC that encodes proteins arsenite-responsive trans-acting 
transcriptional repressor protein, arsenite antiporter and arsenate 
reductase, respectively (Hobman and Crossman, 2015). Other than 
these, ArsA and ArsD are two genes found in several operons of Gram-
negative bacteria that confer arsenic resistance. The organoarsenic 
detoxification process in bacteria involves Ars genes: ArsL, ArsM and 
ArsH which encode for the enzymes CeAs bond lyase, As(III) 
S-adenosylmethionine methyltransferase and methylarsenite oxidase, 
respectively (Yang and Rosen, 2016). One of the techniques commonly 
used to identify these genes in Gram-positive or Gram-negative 
bacteria is reverse transcriptase quantitative PCR (Firrincieli et al., 

2019). Studies have identified many arsenic-oxidizing and arsenic-
accumulating bacteria like Pseudomonas spp. (Ghosh et al., 2015), 
Klebsiella pneumoniae (Kumar et al., 2021), Bacillus spp. (Dey et al., 
2016), Acinetobacter junii (Marwa et  al., 2019), and Pseudomonas 
alcaligenes (Zhang et al., 2015) to alleviate arsenic from soil and water 
alike. These bacteria are usually isolated from soil (Das and Sarkar, 
2018), groundwater (Kao et al., 2013; Dey et al., 2016), sediments 
(Pepi et al., 2007), and root nodules (Seraj et al., 2020). The metabolic 
diversity of these microbes helps them survive and utilize a variety of 
substrates in highly complex environments, thus helping their ability 
to survive and thrive in toxic conditions. Plant-associated bacteria can 
improve phytoremediation efficiency directly by altering the 
accumulation of metals in plants and indirectly by promoting plant 
growth and productivity (Ali et  al., 2013). Plants and associated 
rhizospheric bacteria are a more effective bioremediation strategy for 
soil and water than plants and bacteria alone (Irshad et al., 2021). For 
example, the fern species Pteris vittata showed enhanced arsenic 
removal and plant growth promotion when inoculated with a 
consortium of bacterium, including Pseudomonas sp. P1III2, 
Pseudoxanthomonas sp. P4V6, Bacillus sp. MPV12, Variovorax sp. 
P4III4 and Delftia sp. P2III5 (Lampis et  al., 2015). Thus, arsenic-
resistant PGP (Plant Growth Promoting) bacteria are in great demand 
for arsenic removal from soil and other environments to minimize 
arsenic accumulation in food crops.

A recent study by Vineethkumar et  al. (2020) reported the 
presence of 20 ppb-43 ppb of arsenic in Kerala’s coastal sediments in 
the regions of Parayakadavu (9°05′03.9 “N 76°29′14.8” E) and Chavara 
(8°59′26.8 “N 76°31′23.4” E). Hence, the locale presents a suitable 
ecosystem for the bioprospection of heavy-metal tolerant bacterial 
PGPs. Moreover, the successful commercialisation of PGPBs (Plant 
Growth Promoting Bacteria) requires the development of site-specific, 
climate-resilient active formulations. Thus, indigenous 
microorganisms play a vital role in in situ bioremediation as it is more 
straightforward and economical compared to other methods.

The described study explores the potential of ASBT-KP1  in 
promoting growth in Vigna radiata and simultaneously removing 
arsenic. Plant growth and supportive function, biomass, chlorophyll 
production and arsenic accumulation in the presence of the isolate in 
arsenic-spiked soil were studied. The isolate was characterized with 
regard to plant growth-promoting traits, arsenic tolerance, and 
pathogenicity. Whole genome sequencing served to identify the isolate 
and genes associated with PGPR activity, while the 16S rRNA gene 
sequence was used to establish its phylogenetic relationship with 
recognized PGP strains. The amenability of this strategy in other 
plants was tested employing the Oryza sativa Kym 2-Bhagya variety, 
which also expands the prospective application of ASBT-KP1  in 
established agricultural practices involving different crops.

2 Materials and methods

2.1 Enrichment and isolation of PGP 
bacteria from wastewater

Wastewater samples were collected from the Effluent Treatment 
Plant, Amrita Vishwa Vidyapeetham, Amritapuri campus, Kerala. 
Ammonium Mineral Salt (AMS) agar supplemented with 20 μM LaCl3 
and 8% methanol (Skovran and Martinez-Gomez, 2015) was used for 
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isolation and culture. Amphotericin B (1.5 μg/mL) was used as an 
antifungal agent in the media. ASBT-KP1 is one among 11 priorly 
isolated bacterial strains from the wastewater collected from the 
effluent treatment plant (ETP) collection tank of the university 
campus of Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India. 
The collection tank receives sewage and sullage from the septic tanks 
of different campus departments. ASBT-KP1 was chosen for its 
maximum arsenic tolerance level when compared to others.

2.2 Characterization of ASBT-KP1

The isolate was characterized based on its morphological and 
physiological characteristics. The bacterial growth curve was studied 
as described by Anes et al. (2017). The growth optima of the strain 
ASBT-KP1 was studied at different pH (3–11) and temperatures 
(4–70°C) after 24 h incubation (Mukherjee et al., 2020). The sugar 
fermentation profile of the isolate was analyzed using the HiCarbo Kit 
(KB009A/KB009B1/KB009C) Hi-Media, India, as per the instructions 
given by the manufacturer. The Kirby-Bauer disk diffusion method 
was followed to test the antibiotic susceptibility of the isolate (Drew 
et  al., 1972). The following antibiotics were used for the study; 
Ceftazidime (30 μg), Ceftazidime/clavulanic acid (30/10 μg), 
Ticarcillin (75 μg), Ciprofloxacin (5 μg), Levofloxacin (5 μg), 
Co-Trimoxazole (25 μg), Tobramycin (10 μg), Aztreonam (30 μg), 
Meropenem (10 μg), Colistin (10 μg), Imipenem (10 μg), Gentamicin 
(120 μg), Piperacillin (30 μg), Minocycline (30 μg), Amikacin (30 μg).

2.3 Whole genome sequencing of 
ASBT-KP1

The genomic DNA (gDNA) of ASBT-KP1 was isolated using the 
protocol described in Sambrook and Russel, Fourth edition. The 
isolated DNA was used for whole genome shotgun sequencing and 
analysis using the Illumina HiSeq  2,500 Sequencing platform at 
DNAxperts Pvt. Ltd. (India). The gDNA sample was used to construct 
pair-end sequencing libraries using the Illumina Truseq protocol v3. 
The average fragment sizes for the pair-end libraries were 
2 × 100/2 × 150 bp. The de novo assembly and annotation of the gDNA 
sample were carried out using the tools from PATRIC (Wattam et al., 
2017, 2018) as per the user’s manual. The strain identification and 
annotation were carried out using RASTtk. Moreover, the predicted 
and annotated genes were compared manually with Klebsiella sp. D5A 
genome data (Liu et al., 2016), a known PGP bacteria for the presence 
of genes responsible for the PGP traits.

2.4 Phylogenetic analysis

The BLASTN analysis1 for identifying the closely related bacterial 
species was performed with the 16S rDNA sequence of ASBT-KP1 
(Accession number – MT815532.1). The known and closely related 
bacterial species of ASBT-KP1 and known PGP K. pneumoniae strains 

1 http://www.ncbi.nlm.nih.gov/

were first aligned using ClustalW with the Gap opening penalty and 
Gap extension penalty for Pairwise and multiple alignments set at 
10.00 and 1.00, respectively. The aligned sequence was then used for 
phylogenetic tree construction using the Neighbour-Joining method 
(Saitou and Nei, 1987) with the Partial deletion value set at 80%. The 
evolutionary distances were computed using the maximum composite 
likelihood method (bootstrap values, as a percentage of 1,000 
replicates) (Tamura et al., 2004) using the MEGA11 software (Tamura 
et  al., 2021). Erwinia persicina strain LMG 11254 was used as 
the outgroup.

2.5 Quantitative estimation of PGP traits of 
ASBT-KP1

Plant Growth Promoting traits, including Indole Acetic Acid 
(IAA) production, siderophore production, precursor 
1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme 
production, phosphate solubilization, Hydrocyanic acid (HCN) 
production and production of extracellular ammonia for the strain 
ASBT-KP1 were analyzed. The ability of ASBT-KP1 to produce IAA 
was detected by the Salkowski method (Glickmann and Dessaux, 
1995; Gang et al., 2019). The siderophore production was tested using 
a modified blue agar chrome azurol sulfonate (CAS) assay protocol by 
Schwyn and Neilands (Louden et al., 2011; Arora and Verma, 2017). 
Production of an orange-yellow zone around the inoculated bacterial 
colonies indicated a positive reaction. For measuring the ACC 
deaminase activity, the method described by the researchers Penrose 
and Glick was followed (Penrose and Glick, 2003; Mukherjee et al., 
2020). Bradford method was used for estimating the protein 
concentration of the samples (Kruger, 2009). The phosphate 
solubilization ability of ASBT-KP1 was tested on Pikovskaya agar 
medium (M520, HiMedia, India) plates. The presence of a halo zone 
around the colony indicated a positive result. Phosphate solubilization 
was estimated using the modified phospho-molybdenum method 
described by the researchers (Wang Z. et al., 2017). The resultant blue 
color was measured at 700 nm. The ability of ASBT-KP1 to produce 
ammonia was tested in peptone water following the protocol of 
Ahmad et al. (2008). A change in color from yellow to brown with the 
precipitate formation on adding Nessler’s reagent indicated a positive 
result. The HCN production was studied as per the protocol 
(Indiragandhi et al., 2008). A color change from yellow to reddish 
brown indicated HCN production.

2.6 Salinity and heavy metal tolerance

The salt tolerance for the isolate was studied by culturing it in 
R2-A broth supplemented with NaCl at different concentrations – 0, 
0.1, 0.5, 1, 2, 5, 10, and 20% for 24 h at 37 ± 2°C. Absorbance at 600 nm 
was measured following incubation. Heavy metal tolerance of the 
isolate was studied in R2-A broth supplemented with various 
concentrations (1 μM–10 mM) of heavy metals. The heavy metals used 
were copper (II) (CuSO4·5H2O), arsenate (V) (Na2HAsO4. 7H2O), 
arsenite (III) (NaHAsO4) and mercury (II) (HgCl2). Growth of 
ASBT-KP1 was estimated by serially diluting and plating the culture 
suspension onto LB plates to determine the colony count after 
incubation for 48 h at 37°C (Mukherjee et al., 2020). The resistance 
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exhibited by ASBT-KP1 to Arsenite (III) and Arsenate (V) was studied 
in R2-A broth supplemented with increasing concentrations of As 
(III), from 0 to 100 mM and As (V), from 0 to 150 mM. The negative 
control for the experiment was the bacterial cultures without As (III) 
and As (V) treatment. The treated and untreated cells were incubated 
at 37°C for 48 h. The growth was measured at OD600nm in a microplate 
reader (BioTek, United States) and serially diluted and plated onto LB 
plates to determine the colony count. The minimal inhibitory 
concentrations (MIC) of As (III) and As (V) were determined for 
ASBT-KP1.

2.7 Analyzing the effect of arsenic on 
ASBT-KP1 using SEM–EDX and ICP-MS

Scanning electron micrographic images were used to analyze the 
morphological changes in the bacterial population in the presence of 
1 mM of arsenate. Untreated bacterial cells were kept as a control. The 
samples for SEM were prepared as described by Chakravarty and 
Banerjee (2008). Following incubation for 48 h, the treated and control 
cells were harvested (7,000 × g, 5 min, 4°C) and washed 3 times with 
0.1 M phosphate-buffered saline (PBS, pH 7.4). The cells were then 
fixed overnight with 2% glutaraldehyde at 4°C. The cells were again 
washed thrice with 0.1 M PBS and then dehydrated with alcohol 
concentrations of 10, 30, 50, 70, and 90% and absolute ethanol. Before 
imaging, the samples were placed on glass slides (1 cm × 1 cm) and 
sputter-coated with gold. The Jeol 6390LAv was used for the SEM 
imaging (Focardi et  al., 2010; Mallick et  al., 2018). An energy 
dispersive X-ray spectrometry (EDX) was carried out with an Oxford 
XMX N (Oxford Instruments, United Kingdom) probe to estimate the 
adsorption of As onto the cells.

The arsenic bioaccumulation capability of ASBT-KP1 was 
determined by ICP-MS analysis of the bacterial sample grown in 
25 mL of R2-A broth supplemented with 1 mM of As (V) for 72 h. 
ASBT-KP1 culture was pelleted down and washed with sterile water, 
followed by a wash with 0.1 M of EDTA to remove any arsenic 
adsorbed to the surface of the cells. The sample was washed twice with 
sterile water and dried overnight at 70°C. The sample was weighed 
and digested with concentrated nitric acid before being analyzed in an 
iCAP RQ (Thermo Scientific) using Helium KED mode.

2.8 Biofilm formation

The isolate was studied for its ability to form biofilm using the 
quantitative biofilm assay described by the researchers (Gómez et al., 
2016). On a sterile 24-well plate (Tarson, Korea), R2-A broth 
supplemented with arsenic (50 mM) and bacterial suspension of 
ASBT-KP1 of OD600nm 0.5 ± 0.05 was added to each well with four 
replicates and incubated overnight at 37°C. The plates were washed 
thrice with 2 mL of sterile distilled water, after which 2 mL of 
methanol was added to each well to fix the biofilm for 15 min. After 
incubation, methanol was removed, and 2% (v/v) of crystal violet was 
added and stained for 5 min. The plate was placed under gently 
running tap water to remove excess stains. The stain from the 
adherent cells was released by adding 2 mL of 33% (v/v) glacial acetic 
acid. The absorbance in each well was measured at 595 nm in a 
microplate reader (BioTek, United  States). R2-A broth devoid of 

culture was kept as the negative control. The negative control’s mean 
OD600nm value was kept as the OD cut-off value (ODC). Based on the 
OD600nm, the strain was classified as strong biofilm producers if their 
OD > ODC × 4. The strains are said to be moderate biofilm producers 
if 2 × ODC < OD ≤ 4 × ODC, weak biofilm producers if 
ODC < OD ≤ 2 × ODC, and non-biofilm producers if OD ≤ ODC 
(Borges et al., 2012).

2.9 In vitro study of Vigna radiata under 
arsenic stress

To study the plant growth promotion effect of ASBT-KP1 on 
V. radiata, the seeds of V. radiata were procured from the local market 
in bulk to keep the sample uniform for all the experiments. The seeds 
and the resulting plants were identified as V. radiata and assigned an 
accession number SNCH 4518 by Dr. Kiranraj MS, Curator of 
Herbarium, Sree Narayana College Herbarium, Sree Narayana 
College, Kollam, Kerala. The study was conducted according to the 
local and national guidelines for the cultivation of plants. Surface 
sterilized seeds of V. radiata were placed in Petri plates with Murashige 
and Skoog medium (PT103, HiMedia) for germination at 25–27°C for 
3 days in the dark. The seedlings were bacterized with ASBT-KP1 for 
8 h and then planted in seedling trays. The soil for the study was 
collected from a previously wastewater-irrigated site in Kollam, 
Kerala, India.

The basic properties of the soil are as follows: pH, 5.5; total N, 
0.14%; total organic carbon, 0.16%; available phosphate, 16.7 mg/kg; 
total soil As content was below the detection limit of 0.1 mg/kg 
(Supplementary Table S3). The soil was sieved and sterilized before 
being used for the study. To study the effect of arsenic toxicity, 
seedlings were grown in seedling trays filled with soil supplemented 
with 10 mg/kg of sodium arsenate, which was relevant to the As 
concentrations recorded in polluted soil environments (Majumder 
et al., 2013). The soil was left for proper acclimatization of arsenic for 
1 week before use. The planted seedlings were rhizoinoculated with 
ASBT-KP1 (108 CFU/mL); in the soil, the bacterial load was 107 CFU/g. 
Soil, without culture on the seedlings, was kept as control. The plants 
were harvested after 21 days, and their morphological and biochemical 
growth parameters were analyzed. The morphological parameters 
studied were shoot length, root length and dry biomass. Biochemical 
parameter, chlorophyll (Chl-a. chl-b, and total chl.) content was 
measured. The arsenic uptake by V. radiata from the soil was 
determined by ICP-MS analysis of the digested plant samples.

The rhizospheric soil from ASBT-KP1 treated plants and untreated 
control was collected to study the ability of ASBT-KP1 to establish 
itself in the rhizospheric soil. The soil was serially diluted and cultured 
on nutrient-rich media, LB and Klebsiella spp. specific media, 
Klebsiella Blue agar (KBA) (Prasad et al., 2022). The systemic uptake 
of ASBT-KP1 was tested by inoculating 7-day-old V. radiata seedlings 
grown in unsterile soil with 2 mL of ASBT-KP1 (108 CFU/mL). 
Uninoculated plants were kept as control. Six plants were randomly 
selected from each group and surface sterilized with 2% sodium 
hypochlorite supplemented with 0.1% Tween 20, followed by three 
washes with sterile distilled water (Sahu et al., 2022). The samples were 
macerated and plated onto LB and KBA media and incubated at 37°C 
for 24 h. Growth in KBA media indicates the presence of ASBT-KP1, 
owing to the specificity of the media.
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2.10 In vitro study of Oryza sativa under 
arsenic stress

Seven-day-old O. sativa Kym 2 – Bhagya variety (seeds procured 
from Onattukara Regional Agricultural Research Station, Kerala 
Agricultural University, Kayamkulam, Kerala, India) saplings were 
replanted onto non-sterile soil spiked with 10 mg/kg of sodium 
arsenate. Three sets of 12 saplings each were employed for test and 
control experiments. Rhizoinoculation of ASBT-KP1 was 
performed as described in section 2.11, involving the V. radiata 
experiment. The plants were harvested after 15 days, and their 
morphological and biochemical growth parameters were analyzed. 
The morphological parameters studied were shoot length, root 
length and dry biomass. The arsenic uptake by O. sativa from the 
soil was determined by ICP-MS analysis of the digested 
plant samples.

The ability of ASBT-KP1 to establish itself in the rhizospheric soil 
of O. sativa was studied as previously described in section 2.11, for 
V. radiata. The systemic uptake of ASBT-KP1 was tested by plating the 
surface sterilized parts of plants onto KBA media. Growth in KBA 
media indicates the presence of ASBT-KP1, owing to the specificity of 
the media.

2.11 Caenorhabditis elegans-based 
virulence testing

ASBT-KP1 was assessed for its virulence using two different 
methods. Firstly, the string test was performed to check for 
hypervirulence, as described by the researchers (Hagiya et al., 2014). 
Secondly, Caenorhabditis elegans was used for studying the virulence 
of ASBT-KP1 (Salim et al., 2022). Caenorhabditis elegans strain N2 
(wildtype strain) were grown in nematode growth media (NGM; 
Peptone 2.5 g/L, NaCl 2.9 g/L, Bacto-Agar 17 g/L, CaCl2 1 mM, 
cholesterol 5 μg/mL, KH2PO4 25 mM, MgSO4 1 mM) having a lawn 
culture of E. coli OP50. The C. elegans larvae were synchronized by 
isolating the eggs from gravid adults using a sucrose density-
gradient-based separation technique (Shaham, 2006). The isolated 
eggs were hatched overnight in M9 buffer supplemented with 
cholesterol (1 mg/mL). The L1-stage worms were resuspended in M9 
buffer, and the test bacteria –ASBT-KP1 (washed with sterile 
distilled water and resuspended in M9 buffer at an OD of 0.1). 
Uninfected C. elegans with E. coli OP50 was used as a control. The 
survival of the L1 worms to adults for the next 5 days was observed 
and plotted as a survival curve using Kaplan and Meier survival plot 
using Graph Pad Prism (v9.0.0).

2.12 Statistical analysis

The data collected were analyzed statistically using Graph Pad 
Prism (V 9.0). All experiments were conducted in triplicates or 
otherwise specified. The statistical difference for the plant growth 
studies was assessed using the One-way ANOVA followed by 
Dunnett’s multiple comparisons test for multiple comparisons 
between the control and treated samples. The O. sativa growth studies 
were tested using Welch’s t-test to compare control and test samples. 

The data were represented as the mean ± standard deviation of 
replicates, and the significance level was studied at a p-value <0.05.

3 Results

3.1 Identification and characterization of 
ASBT-KP1

ASBT-KP1 is a non-motile bacillus of a size range of 1.2–2.3 μm 
long. The sugar utilization profile of ASBT-KP1 includes lactose, 
xylose, fructose, dextrose, trehalose, sucrose, l-arabinose, mannose, 
galactose, inositol, maltose, adonitol, and arabitol but not d-arabinose, 
sorbose, inulin, glycerol, and dulcitol (Supplementary Table S1). The 
generation time of the isolate is 29 min (Figure 1A). The organism 
grew in a pH and temperature range of 5–9 pH (Figure  1B) and 
4–50°C, respectively (Figure 1C). ASBT-KP1 showed sensitivity to all 
the tested antibiotics except ceftazidime, ciprofloxacin and ticarcillin 
(Figure  1D). Based on the whole genome sequence analysis, 
ASBT-KP1 is identified as K. pneumoniae. Throughout the manuscript, 
ASBT-KP1 is used as the strain designation, implying that it is 
Klebsiella pneumoniae. The phylogenetic tree of ASBT-KP1 was 
constructed using 16S rRNA gene sequences of known and closely 
related bacterial species and those of PGP K. pneumoniae strains 
(Figure 1E) (Tamura et al., 2021). The evolutionary relatedness of 
ASBT-KP1 reiterates its potential as a PGPB.

3.2 ASBT-KP1 genome

The genome of K. pneumoniae ASBT-KP1 has a total of 
5,533,283 bp with an average G + C content of 57.10% (Figure 2A). The 
genome has 5,564 coding sequences, of which 4,775 genes of the 
predicted CDS were assigned biological roles while 789 coding 
sequences were classified as proteins with hypothetical functions. 
ASBT-KP1 has five rRNA genes comprising two 5S rRNA, two 16S 
rRNA, and a 23S rRNA. Moreover, it has 84 tRNA genes representing 
21 amino acids and one pseudo tRNA.

3.3 Genotypic PGP characterization

Supplementary Table S2 summarizes the genes in the ASBT-KP1 
attributed to phosphate solubilization and uptake, Indole Acetic Acid 
production, siderophore synthesis, resistance to oxidative stress, and 
resistance to heavy metals like arsenic, copper, zinc, and cadmium. 
Phosphate solubilization genes include those that encode glucose 
dehydrogenase (GDH) and redox cofactor Pyrrolo-quinolone quinine 
(pqq) and pqqBDEF, responsible for the synthesis of gluconic acid and 
PstBACS and PhnCDE2E1.The strain encodes 8 copies of genes for 
siderophore receptors and genes responsible for the synthesis of 
siderophores viz., TonB-dependent receptors, IroN receptors, 
ferrichrome-iron receptor, TonB-dependent hemin ferrichrome 
receptor, TonB-dependent ferric enterobactin, colicins B, D receptors, 
entBF and entS. Additionally, the strain has 49 genes that encode for 
iron transport proteins. The presence of ABC transporter and associated 
genes indicate that the strain can heterologously obtain siderophores 
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produced by other soil bacteria. Genes that confer resistance to heavy 
metals like arsenic (arsCBRD), copper (copDC and related genes), and 
zinc are present in the strain. The genome has an ars gene cluster that 
confers arsenic resistance through the production of arsenate reductase. 
From the circos plot (Figure 2B), it could be deduced that the genes for 
arsenical resistance operon repressor (arsR), arsenite permease (arsB) 
and arsenate reductase (arsC) exhibit strong synteny (contig 4, 
fig|1162296.25.peg.1694–1,696). These genes code for a transcription 
repressor, an expulsion pump, and a reductase enzyme essential in the 
arsenic bioremediation potential of ASBT-KP1. Genes that protect 
plants against phytopathogens are hosted by ASBT-KP1, such as phzF, 
involved in phenazine synthesis, which functions as an antibiotic. A 
gene which encodes chitinase enzyme, known to degrade the cell walls 
of pathogenic fungal and insect pests, is also present.

Additionally, the strain has gabR and associated genes involved in 
gamma-aminobutyric acid production. The genome also encoded 

proteins that protect the cell from oxidative stress: three superoxide 
dismutases, five glutathione-S-transferases, and six peroxidases. The 
antibiotic resistance profile of ASBT-KP1 indicates its sensitivity to 
most tested antibiotic classes (Figure  1E). This observation was 
confirmed by an in vitro antibiotic susceptibility test followed by 
validation using the ResFinder tool hosted at CGE 
(Supplementary Data Sheet 1). Additionally, none of the classic 
antibiotic-resistance point mutations indicative of functional ramR, 
acrR, ompK36, ompK35, ompK37, gyrA, gyrB, rpsL or parC genes are 
identified that accounts for the sensitivity profile of ASBT-KP1.

3.4 Phenotypic PGP characterization

ASBT-KP1 produced 120 ± 5 μg/mL of IAA (Table 1). The strain 
showed an increase in the production of IAA in the presence of 

FIGURE 1

Growth characteristics, antibiogram and phylogenetic tree of ASBT-KP1. (A) Growth curve to estimate the generation time; 29  min. (B) Optimal pH and 
(C) temperature of ASBT-KP1. (D) Antibiotic susceptibility profile (LE, levofloxacin; IMP, imipenem; CAZ., ceftazidime; CIP, ciprofloxacin; CL, colistin; 
MRP, meropenem; TOB, tobramycin; CAC, ceftazidime/clavulanic acid; GEN, gentamicin; COT, co-trimoxazole; TI, ticarcillin; PI, piperacillin; MI, 
minocycline; AK, amikacin; AT, aztreonam and, CTX, cefotaxime). (E) Phylogenetic tree demonstrating the evolutionary relationship of the strain with 
other plant growth promoting Klebsiella spp., using MEGA 11. ‘*’ shows the studied strain, ASBT-KP1.
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arsenite (III), 165 μg/mL, and arsenate (V), 270 ± 5 μg/mL. The strain 
solubilized the calcium phosphate in the medium with a distinct zone 
of clearance (Supplementary Figure S1A). Qualitatively, 210 ± 5 mM 
of phosphate was solubilized. ASBT-KP1 expressed ACC deaminase 
with a specific 4.04 nmol/mg/h activity. HCN production was 
observed with a color change in the media from yellow to darker 
yellow-orange (Supplementary Figure S1B).

3.5 Heavy metal and salinity tolerance

The strain showed differential tolerance levels toward mercury, 
arsenate, arsenite and copper at different concentrations. ASBT-KP1 
tolerated >75 mM of As (V) (Figure  3A), >25 mM of As (III) 
(Figure 3B), ~250 μM of Cu (II) (Figure 3C), and ~ 10 μM of HgCl2 
(Figure 3D). ASBT-KP1 showed a tolerance of up to 7.5% of NaCl 
(Figure 3E).

The minimum inhibitory concentration for the strain against 
arsenate (V) and arsenite (III) was 120 and 70 mM, respectively. 
ASBT-KP1 has a relatively reduced tolerance to arsenite (III) 
compared to arsenate (V) (Figures 4A,B).

3.6 SEM, SEM–EDX and ICP-MS analysis of 
arsenate-treated ASBT-KP1

Scanning electron micrograph revealed that the arsenic-treated 
cells showed changes in the morphology and size of the cells. The 
average size of untreated cells was 1.7 ± 0.5 μm (Figure 5A), while the 
treated cells shrunk in size with an average decrease of 0.79 ± 0.25 μm 
(Figure  5B). The outer membrane of the cells did not show any 
significant changes, while there was visible vacuolation due to As (V) 
stress (Figure 5B).

The surface of the treated and control cells was further analyzed 
using SEM–EDX to study the arsenic adsorption by the bacterial cells. 
The surface of neither treated nor control cells showed any peak 
corresponding to arsenic (Figures 5C,D), indicating the absence of 
arsenic adsorption onto the cell surface. The buffer solution, glass slide 
and coating material contributed to the few unrelated peaks obtained 
in the analysis. The bioaccumulation potential was determined using 
ICP-MS analysis of the cell pellet. The analysis showed that the strain 
accumulated 30 ± 2 μg/g of bacterial dry mass when incubated in 
1 mM of arsenate (V) for 72 h.

3.7 Biofilm production

The microtiter plate assay for biofilm formation showed that 
ASBT-KP1 was a strong biofilm producer with an OD600nm of 1.21, 14 
times greater than the OD cut-off value (Borges et al., 2012). The isolate 
also formed biofilm in the presence of arsenate (Supplementary Figure S2).

3.8 Effect of ASBT-KP1 on Vigna radiata

The pH of the soil, total suspended solids, organic carbon, 
nitrogen, total phosphate, and arsenic levels were measured 
(Supplementary Table S3) to characterize the soil used for the study. 
The soil pH was slightly acidic (pH 5.5), and the total organic 
carbon was 0.78%. The plant growth study revealed that the mean 
dry plant weight (26.34 ± 0.402 mg) of plants inoculated with 
ASBT-KP1 (Figure 6D) was significantly higher than (p < 0.001) 
than the uninoculated plants (23.31 ± 0.257 mg). Similarly, the 
chlorophyll content of the plants inoculated with ASBT-KP1 
(8.81 ± 0.125 μg/g) was significantly increased than the uninoculated 
plants (2.74 ± 0.089 μg/g) (Figure 6E). Statistical analysis of growth, 
in terms of mean shoot and root length, revealed that the inoculated 

FIGURE 2

Whole genome analysis of ASBT-KP1. (A) Genomic features of K. 
pneumoniae strain ASBT-KP1 and (B) the circular genome of K. 
pneumoniae strain ASBT-KP1 with CDS in the forward (Dark green) 
and the reverse (Violet) strand constructed using Circos in BV-BRC 
(https://www.bv-brc.org/).

TABLE 1 Plant growth-promoting traits of the isolate ASBT-KP1.

Plant growth-promoting traits Data

Ammonia production (μM) 1,690 ± 5

IAA concentration of (μg/mL) 120 ± 5

IAA concentration (μg/mL) in presence of As (V) 270 ± 5

IAA concentration (μg/mL) in presence of As (III) 165 ± 5

Concentration of soluble phosphate (mM) 210 ± 5

ACC deaminase activity (nmol g−1 h−1) 4.04

HCN production Positive
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FIGURE 3

Heavy metal tolerance and halotolerance of ASBT-KP1. Tolerance toward (A) As (V); (B) As (III); (C) Cu (II); (D) Hg (II); and (E) NaCl.

FIGURE 4

Minimum inhibitory concentration of ASBT-KP1 toward different forms of arsenic. The tolerance of ASBT-KP1 toward (A) As (V) and (B) As (III).
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V. radiata plants exhibited a more significant growth (9.6 ± 0.506 cm) 
when compared to the uninoculated plants (12.0 ± 1.40 cm) 
(p < 0.001). In the presence of Arsenic, V. radiata showed an 
increased mean shoot length (11.7 ± 1.32 cm) mean dry biomass 
(28.6 ± 2.24 mg) and chlorophyll content (10.6 ± 0.59 μg/g) 
compared to those without bacterial inoculation (8.37 ± 1.33 cm; 
20.9 ± 2.77 mg; 7.77 ± 1.57  μg/g respectively) (Figures  6B–E), 
(p < 0.001). It is evident from the results that the strain protects the 
plants from the toxic effects of arsenic and improves growth 
compared to the uninoculated control. Even under normal 
physicochemical conditions, i.e., in the arsenic-free condition, 
ASBT-KP1 inoculated plants showed significant improvement in 
growth. The colonization of the ASBT-KP1  in the rhizospheric 
environment of the V. radiata plants helped significantly decrease 
the plants’ arsenic uptake by 91% (Figure 6F).

The bacterial load in the test soil was higher (5.5 × 106 CFU/mL) 
in comparison to that in the control soil (3.5 × 106 CFU/mL) when 
quantified in nutrient-rich media. ASBT-KP1 was effectively 
established after its introduction since its presence was detected 
(1.4 × 105 CFU/mL) after 8 days of incubation. Additionally, to test the 
infiltration of ASBT-KP1 into the various parts, the plant’s root, stem 
and leaves were tested for its presence in both LB and KBA. Except in 
roots (8.2 × 103 CFU/mL), none of the parts showed the presence of the 
strain. However, other bacterial endophytes were uniformly present in 
both the control (root – 1.93 × 105 CFU/mL; stem – 1.33 × 105 CFU/
mL; leaves – 8.67 × 104 CFU/mL) and test (root – 2.4 × 105 CFU/mL; 
stem – 1.4 × 105 CFU/mL; leaves – 8.67 × 104 CFU/mL).

3.9 Effect of ASBT-KP1 in O. sativa

The study on O. sativa (Supplementary Figure S3) revealed that 
the mean dry plant weight (42.8 ± 6.31 mg) of plants inoculated with 
ASBT-KP1  in the presence of arsenate was higher 
(Supplementary Figure S4D) than the uninoculated plants 
(37.6 ± 6.06 mg). The analysis of growth in terms of mean shoot and 
root length, revealed that the inoculated O. sativa exhibited a 
significantly higher shoot and root length (19.9 ± 2.51 cm; 
6.83 ± 1.46 cm) (Supplementary Figures S4A,B) when compared to 
uninoculated plants (17 ± 2.08 cm; 5.38 ± 1.28 cm) (p < 0.05). Thus, 
from the results, we can ascertain the ability of ASBT-KP1 to improve 
the growth of the O. sativa plants under arsenic-stressed conditions. 
By colonizing the roots of O. sativa, ASBT-KP1 significantly reduced 
the plants’ arsenic uptake by 74.19% (Supplementary Figure S4E).

The soil inoculated with ASBT-KP1 showed a higher total 
bacterial load (1.11 × 106 CFU/mL) than untreated soil (9.5 × 105 CFU/
mL) when cultured in a nutrient-rich media. The test soil had 
5.9 × 104 CFU/mL of ASBT-KP1 indicating its ability to establish itself 
in the rhizosphere of the O. sativa plants.

3.10 Survival of ASBT-KP1 infected C. 
elegans

The negative result for the string test indicated a reduced virulent 
nature of ASBT-KP1. The Caenorhabditis elegans infected with 

FIGURE 5

Morphological changes in ASBT-KP1 (A) without As (V), and (B) with 1 mM of As (V). The red arrow in (B) shows the vacuole formation in the treated 
cells. SEM-EDX analysis of ASBT-KP1 (C) without As (V) and (D) with 1 mM of As (V), respectively.
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ASBT-KP1 5 days post-infection were viable and healthy compared to 
Escherichia coli OP50-treated control (Figure 7A). The worms in the 
ASBT-KP1 infected wells showed active pharyngeal pumping and 
movement and were reproductively active and laid eggs (Figure 7C). 
The worms that were scored dead appeared rigid (Figure 7D) and did 
not show any movement compared to the E. coli OP50-treated worms 
(Figure 7B). Therefore, the strain is non-pathogenic in the surrogate 
worm model.

4 Discussion

Most of the culturable arsenic-resistant PGP bacteria are isolated 
from soil, the rhizosphere of mangroves, and industrial effluents (Butt 
and Rehman, 2011; Mesa et al., 2015; Mallick et al., 2018). Conversely, 
the arsenic-resistant PGP bacteria in the present study were isolated 
from domestic wastewater. Of the 11 isolates that grew on ASM plates, 
ASBT-KP1 and KP_PP2_2016 were the most promising. ASBT-KP1 

FIGURE 6

Effect of ASBT-KP1 on arsenic stress induced V. radiata. (A) Phenotypic expression of the V. radiata plants under arsenic stress: plant (I), plant under As 
stress (II), and plant under As stress treated with ASBT-KP1(III). Estimation of different plant growth-promoting properties of ASBT-KP1 under As stress 
(B) shoot length; (C) root length; (D) plant biomass; (E) total chlorophyll content [I – only plant, II – plant + ASBT-KP1, III – plant + As, IV – plant + As + 
ASBT-KP1] and; (F) As accumulation in the V. radiata treated with ASBT-KP1 compared to control sets without any inoculation [I  =  plant +As, II  =  plant + 
ASBT-KP1  +  As]. The symbols “*, **, ***” indicate the statistical significance with, * – p  ≤  0.05, ** – p  ≤  0.01 and *** – p  ≤  0.001.
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was selected for further studies based on comparative PGP 
characteristics (Table 1) and high arsenic resistance (Figures 4A,B).

Over the years, different PGP rhizobacteria have been studied as 
potential candidates for improving plant growth quality and 
controlling diseases directly or indirectly. Many bacterial genera, 
including Enterobacter spp., Klebsiella spp., Pseudomonas spp., 
Burkholderia spp., Bacillus spp., and Serratia spp., have been identified 
for their potential to act as PGP rhizobacteria (Kim et al., 2022).

ASBT-KP1 was identified as Klebsiella pneuominae based on the 
whole genome sequence analysis. Tolerance of ASBT-KP1 to a pH 
range of 5–9, temperature resistance of 4–50°C (Figures 1B,C) and its 
ability to grow in high saline conditions make it an ideal candidate for 
operation in extreme soil conditions.

Most PGP bacteria are IAA and ACC deaminase producers and 
phosphate solubilisers that facilitate the absorption of nutrients from 
the soil, which promotes plant growth. Phosphorus is an essential 
nutrient for plants, and its availability is limited (1 μmol/L or less) by 
its existence primarily as an insoluble form in the soil. Hence, one of 
the essential functions of PGP bacteria is to solubilize mineral 
phosphate to soluble phosphorus and make it available for plants 
(Sashidhar and Podile, 2010). PGP bacteria stimulate plant growth 
directly by synthesizing the hormone IAA, which controls many 
physiological functions such as tissue differentiation, root initiation, 
cell enlargement and division, and phototropism (Leveau and Lindow, 
2005). Organic acid production, such as HCN, implicated in 

protection against phytopathogens and hastening phosphate 
solubilization, is also an ideal feature (Rijavec and Lapanje, 2016). 
ASBT-KP1 possessed these favorable features of phosphate 
solubilization, IAA, and organic acids production (Table 1).

Whole genome sequence analysis consolidated these laboratory 
observations as the genes attributed to the IAA production, phosphate 
solubilization, and HCN production were identified in the genome of 
the ASBT-KP1. In addition, other PGP trait coding genes, including 
siderophore synthesis, acetoin, 2,3-butanediol synthesis, and those 
that confer fitness, were also identified. Similar findings were also 
reported in the species of Klebsiella (Liu et al., 2016) isolated from the 
rhizosphere soil of Festuca arundinacea L. PGP bacteria are also 
known to indirectly support plant growth by suppressing pathogenesis 
by producing antimicrobial compounds like phenazine, chitinase, and 
– ɣ aminobutyric acid. A similar profile is seen in the genome of 
ASBT-KP1, lending credence to its potential as a PGP bacterium 
(Supplementary Table S2). The genome of ASBT-KP1 also encodes 
enzymes such as superoxide dismutase, peroxidases, and glutathione 
transferases, which are known to suppress oxidative stress in plants. 
Comparative genomics analysis of ASBT-KP1 with Klebsiella spp. D5A 
strain and other related Klebsiella strains (Liu et al., 2016) establish its 
PGPR potential.

Similarly, ASBT-KP1 compares well with Klebsiella D5A 
regarding IAA production, phosphate solubilization, acetoin and 
2,3-butanediol synthesis, and production of antimicrobial 

FIGURE 7

Survival assay of C. elegans after treatment with ASBT-KP1. (A) Kaplan–Meier curve shows the ability of C. elegans to survive after infection with ASBT-
KP1. E. coli OP50 was the negative control. (B) Image of gravid adults scored as live when fed with E. coli OP50 (white arrow). (C) Live gravid adult 
worms infected with ASBT-KP1 (white arrow). (D) Worms scored as dead (red arrow). p-values  ≥  0.05 were considered non-significant from three 
independent experiments with replicates.
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compounds. The genes involved in the survival of microorganisms 
under saline and temperature-stressed conditions were also detected 
in the ASBT-KP1 genome. Apart from these genes, the ASBT-KP1 
genome also has acriflavin resistance protein A (acrA), stress 
response genes induced in bacteria upon plant colonization. AcrAB-
TolC is an efflux pump that plays a vital role in removing toxic waste 
and the extrusion of drugs (Fouts et  al., 2008). Under stressed 
conditions, these genes are activated and show an increased 
expression that could serve as a strategy to survive in arsenic-stressed 
conditions, marked by its ability to tolerate 120 mM of arsenate 
(Figure 4A,B). Another factor contributing to its tolerance toward 
high concentrations of arsenate is its ability to form biofilm. When 
compared to Kocuria flava and Bacillus vietnamensis, PGPBs with 
arsenic bioremediation capability (Mallick et al., 2018), ASBT-KP1 
could also form a strong biofilm at a concentration of 50 mM of As 
(V). Biofilm and planktonic cells have varying degrees of tolerance to 
heavy metals, as biofilm helps sequestrate heavy metals, thus 
retarding the diffusion of heavy metals into the biofilm. Hence, 
biofilm formation is essential for heavy metal resistance (Harrison 
et al., 2004, 2007; Chien et al., 2013).

Klebsiella spp. are well-known arsenic-resistant bacteria that have 
been studied for their multi-heavy metal-resistant characteristics. 
RnASA11, a Klebsiella pneumoniae strain isolated from an arsenic-
contaminated soil site, is one such isolate which could tolerate up to 
600 mM of arsenate (V) (Kumar et  al., 2021). To the best of our 
knowledge, Klebsiella pneumonia isolated from wastewater with a 
tolerance level of 120 mM toward arsenate (V) and 70 mM toward 
arsenite (III) has not been reported previously. ASBT-KP1 is thus an 
environmental isolate showing similarity to established Klebsiella PGP 
rhizobacteria. The strain’s antibiotic resistance (3 out of 16 antibiotics 
representing different classes) mechanism could be attributed to the 
resistance ASBT-KP1 shows against heavy metals and toxic 
metabolites. Although genes for virulence were predicted, 
pathogenicity testing in the C. elegans model yielded non-infectivity 
(Figure 7A). It is becoming highly imperative that the apprehensions 
about using apparent human pathogenic organisms as PGPR must 
be overcome to tap the immense potential to promote plant growth in 
polluted and stressed environmental conditions.

Promoting plant growth and reducing heavy metal toxicity and 
bioaccumulation in plants are research areas of focus in developing an 
eco-friendly and cost-effective strategy for sustainable agriculture 
(Mallick et al., 2018). Xenobiotics, like heavy metals, pesticides and 
similar other emerging pollutants, are likely to create physiological 
stress on the biological system (Mishra et al., 2021). Hence, exploring 
the potential microbes and plants that can effectively combat stress is 
paramount. Several bacterial isolates with multi-heavy metal 
resistance and varied salt tolerance have been studied for their 
potential as PGP bacteria and bio-remedial properties. Klebsiella spp. 
isolated from wastewater and soil alike has been extensively studied 
for its salt and heavy metal tolerance. In a study by Sapre et al. (2018), 
Klebsiella spp. isolated from the roots of wheat plants showed an 
enhancement in the growth of Avena sativa plants under heightened 
salinity conditions. In another study, K. pneumoniae and K. variicola 
isolated from industrial effluent were studied and employed to 
bioremediate arsenic-containing wastes (Butt and Rehman, 2011). 
Both, K. pneumoniae and K. variicola showed tolerance with a MIC of 
26.6 and 24 mM, respectively, toward arsenic (Butt and Rehman, 
2011). In comparison, ASBT-KP1 isolated from domestic wastewater 
tolerated up to 120 mM. Similarly, the phosphate solubilizing – 120 μg/

mL and IAA production capacity – 210 mM, of the strain ASBT-KP1 in 
comparison to other known PGPBs, namely Brevundimonas diminuta 
(Singh et al., 2016), Pseudomonas mosselii and Bacillus thuringiensis 
(Aw et al., 2020) (phosphate solubilization – 96 μg/mL, 1.32 mg/L and 
1.30 mg/mL; 57 μg/mg, 6.36 μg/mL and 14.95 μg/mL respectively) is 
higher. Thus, the findings of this study are consistent with published 
literature and indicate the potential of ASBT-KP1 as a rhizoinoculant.

Finally, the study establishes the role of ASBT-KP1 in alleviating 
arsenic stress in V. radiata. Inoculation with ASBT-KP1 improved the 
plant growth function and the dry biomass and chlorophyll content in 
the presence of arsenic. The decrement in plant shoot and root length 
in uninoculated V. radiata might be due to the toxic effect of arsenic 
on plants. The influence includes modification of oxidative stress, 
inactivation of metabolic enzymes and proteins due to their affinity to 
sulfhydryl groups, and localization in roots leading to disruption in 
symbiotic N2 fixation and assimilation (Finnegan and Chen, 2012). A 
91% reduction in arsenic plant bioaccumulation (shoot) was observed 
on treatment with the PGP bacteria (Figure 6F). At the shoot and root 
length level, a significant difference is seen in the presence and absence 
of ASBT-KP1 (Figures 6B,C). Similar enhancement is also reflected in 
total plant biomass (Figure 6D). These establish the growth promotion 
potential of ASBT-KP1. The productivity also increased significantly 
which is indicated by the difference in total chlorophyll content of the 
ASBT-KP1-inoculated plants when compared to control (Figure 6E). 
It is also interesting to note that these parameters did not vary 
significantly when the stressed, inoculated plants were compared with 
their stress-free inoculated counterparts. Though shoot and root 
length showed a marginal decrease of 0.09 and 0.36 cm, respectively, 
plant biomass and chlorophyll content, on the contrary, showed an 
increase of 7.75 and 17.2%, respectively. Active absorption of heavy 
metal by ASBT-KP1 consolidates its role in relieving the arsenic stress 
of the associated plants apart from improving other plant growth 
parameters. Abatement of arsenic uptake in the plants might be due 
to the biofilm-forming ability and arsenic resistance genes. The strain 
on its introduction into the rhizospheric soil was effectively established 
since its presence at a density of 1.4 × 105 CFU/mL was detected after 
8 days against an almost uniform microbial backdrop (control – 
3.5 × 106 CFU/mL; test – 5.5 × 106 CFU/mL).

Moreover, traces of the strain were not detected in the shoot and 
leaves, but on the contrary, the root showed 8.2 × 103 CFU/mL, which 
is 2 log less than the density found in the rhizospheric soil. These 
consolidate its potential in field applications and the strain’s useful 
properties. Thus, the soil bioaugmentation with ASBT-KP1 contributed 
to plant growth promotion while protecting the plant from the adverse 
effects of arsenic stress (Figure  6A). ASBT-KP1 could also find 
application in other plants as well. Recent research demonstrates that 
inoculating rice plants with rhizoinoculants possessing plant growth 
promotion (PGP) and heavy metal bioremediation capabilities can 
enhance plant growth and mitigate arsenic accumulation in plant 
tissues. Preliminary studies on O. sativa have proven to be promising 
with enhancement in PGP and arsenic tolerance potential 
(Supplementary Figure S4). ASBT-KP1 decreased the arsenic 
accumulation in O. sativa by 74%. These results align with the earlier 
O. sativa studies, demonstrating that heavy metal-tolerant bacteria can 
reduce metal uptake by host plants (Singh et al., 2016; Aw et al., 2020).

The described study demands an extensive assessment in the field 
conditions to analyze various drivers including environmental and 
biological factors that influence host–microbe interactions in the 
contaminated soil. The strain’s stability, composition and bioactivity 
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need to be fully explored for effective application aimed at improving 
plant growth and productivity. Further studies can be carried out as a 
follow-up to the described one, to factor in the role of rhizosphere 
microorganisms and the microorganisms symbiotically associated 
with the roots. Apart from its projected application in agriculture, it 
could potentially be used in microbial bioremediation in conjunction 
with the phytoremediation of wastewater, which might prove useful 
in fertigation (fertilization and irrigation). Moreover, ASBT-KP1 
could be potentially used in biofilters associated with vertical and 
hydroponic systems to remove heavy metal contaminants and improve 
productivity (in the case of vertical gardens).

5 Conclusion

The present study identifies ASBT-KP1 as a potential PGP bacteria 
efficient in arsenic (V) absorption, and promotion of the growth of 
V. radiata. The strain effectively absorbed arsenic and tolerated up to 
a concentration of 120 mM (Na2HAsO4. 7H2O). ASBT-KP1 was 
identified as a K. pneumoniae, and its sequence is deposited in 
NCBI. Biochemical profiling of the isolate showed that it could 
produce ammonia, IAA, ACC deaminase and HCN and could 
solubilize phosphate. Experiments with V. radiata in arsenic-
contaminated soil showed a concurrent plant growth promotion, a 
significant (p < 0.05) increase in plant biomass, length, and chlorophyll 
content, and reduced uptake of arsenic in V. radiata plants inoculated 
with ASBT-KP1. The study was replicated in O. sativa and concurrent 
results were observed, which demonstrates the potential of 
ASBT-KP1 in non-leguminous plant. The presence of arsCBR genes is 
attributed to the significant resistance toward arsenate and arsenite 
(120 mM and 70 mM, respectively). ASBT-KP1-treated V. radiata 
plants showed increased plant biomass and chlorophyll compared to 
the control. Plants grown in the presence of ASBT-KP1 also showed a 
91% reduced accumulation of arsenic compared to the control. The 
successful inoculation of ASBT-KP1 to the plant rhizosphere could 
help alleviate arsenic toxicity in V. radiata plants grown in arsenic-
contaminated soil and be used as a potential mitigation strategy for 
the remediation of arsenic from soil.
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