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In the contemporary field of life sciences, researchers have gradually recognized

the critical role of microbes in maintaining human health. However, traditional

biological experimental methods for validating the association between

microbes and diseases are both time-consuming and costly. Therefore,

developing e�ective computational methods to predict potential associations

between microbes and diseases is an important and urgent task. In this study, we

propose a novel computational framework, called GCATCMDA, for forecasting

potential associations between microbes and diseases. Firstly, we construct

Gaussian kernel similarity networks for microbes and diseases using known

microbe-disease association data. Then, we design a feature encoder that

combines graph convolutional network and graph attention mechanism to learn

the node features of networks, and propose a feature dual-fusion module to

e�ectively integrate node features from each layer’s output. Next, we apply

the feature encoder separately to the microbe similarity network, disease

similarity network, and microbe-disease association network, and enhance the

consistency of features for the same nodes across di�erent association networks

through contrastive learning. Finally, we pass the microbe and disease features

into an inner product decoder to obtain the association scores between them.

Experimental results demonstrate that the GCATCMDA model achieves superior

predictive performance compared to previous methods. Furthermore, case

studies confirm that GCATCMDA is an e�ective tool for predicting microbe-

disease associations in real situations.

KEYWORDS

microbe-disease associations, graph convolutional network, graph attention

mechanism, contrastive learning, gut microbial metagenomics

1 Introduction

Microbes are primarily composed of bacteria, fungi, archaea, and viruses,

predominantly inhabit the gut within the human body (Sommer and Bäckhed, 2013;

Blum, 2017). The gut microbiota is closely associated with human health, playing a

crucial role in regulating host physiological processes, such as immunity and metabolism

(Lynch and Pedersen, 2016; Tooley, 2020). In recent years, biological experiments have
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demonstrated that dysbiosis or imbalance in the humanmicrobiota

could cause human diseases (Marchesi et al., 2016), such as liver

diseases (Henao-Mejia et al., 2013), diabetes (Paun et al., 2017),

obesity (Tseng and Wu, 2019), and even cancer (Schwabe and

Jobin, 2013). However, traditional biological experiments suffer

from drawbacks such as long experimental cycles and expensive

costs. Therefore, if we can utilize effective computational methods

to predict potential sets of associations between microbes and

diseases in advance, it would be possible to reduce unnecessary

experimental trials and costs in traditional biological experiments,

thereby accelerating the development of research in the field of

microbe-disease associations.

Current computational methods for predicting microbe-

disease associations can primarily be categorized into three

categories, namely network-based methods, random walk-based

methods, and deep learning-based methods. The network-based

methods infer the potential association between microbes and

diseases by utilizing the topological information within the

network. For example, Chen et al. (2017) proposed a KATZHMDA

model based on the KATZ measure, which scores potential disease

related microbes by calculating all paths of different lengths

between microbes and diseases. Bao et al. (2017) proposed the

Network Consistency Projection for Human Microbe-Disease

Association Prediction (NCPHMDA) model, evaluating the

association scores between microbes and diseases by computing

disease space projection scores and microbe space projection

scores. Long and Luo (2019) designed a meta-graph-based method

named WMGHMDA, which calculates the probability scores of

microbe-disease pairs by utilizing a weighted meta-graph search

algorithm on a heterogeneous network. Wang et al. (2023)

proposed a SAELGMDA model by combining sparse autoencoder

and Light Gradient boosting machine.

The success of random walk algorithms in graph data

processing has prompted researchers to propose various microbe-

disease association prediction algorithms based on this approach.

For instance, Zou et al. (2017) developed a novel computational

model of BiRWHMDA, which predicts potential microbe-disease

associations by bi-random walks on a heterogeneous network.

Luo and Long (2018) proposed a novel computational model of

NTSHMDA, which integrates network topology similarity into

the restarted random walk algorithm to distinguish the walking

probabilities of disease-microbe node pairs. Yan et al. (2019)

introduced a BRWMDA method, predicting potential microbe-

disease associations by executing bi-random walks with different

steps on microbe and disease networks.

With the significant achievements of deep learning algorithms

in various research fields, researchers have gradually begun

to explore the application of these algorithms in the task of

predicting the associations between microbes and diseases. For

example, Ma and Jiang (2020) developed an end-to-end graph

convolutional neural network-based mining model NinimHMDA

to predict different types of microbe-disease associations. Long

et al. (2021) proposed a novel deep learning framework of

GATMDA, which utilizes graph attention networks along with

inductive matrix completion for predicting human microbe-

disease associations. Hua et al. (2022) developed a multi-view

graph augmentation convolutional network (MVGCNMDA) to

predict potential disease-associated microbes. Jiang et al. (2022)

proposed the KGNMDA method, using a knowledge graph neural

network method for predicting microbe-disease associations. Peng

et al. (2023) developed a computational method for predicting

microbe-disease associations, namedGPUDMDA, which integrates

graph attention autoencoder, positive-unlabeled learning, and deep

neural network.

In addition to the three mainstream methods mentioned,

some computational approaches for microbe-disease prediction

have been developed based on regularization and matrix

factorization/completion techniques. For instance, Wang et al.

(2017) proposed a semi-supervised computational model of

Laplacian Regularized Least Squares for Human Microbe—

Disease Association (LRLSHMDA) to predict microbe-disease

associations. Shen et al. (2017) developed a computational method

of CMFHMDA, which utilizes collaborative matrix factorization to

reconstruct correlation matrices between diseases and microbes.

Liu et al. (2023) proposed a novel method called MNNMDA to

predict microbe-disease associations by applying a Matrix Nuclear

Norm method.

Among the methods mentioned above, network-based and

random walk-based methods may encounter constraints in

learning features of nodes representing microbes and diseases

with few known associations, due to the limited information

propagation caused by the sparsity of the microbe-disease

association network. Meanwhile, matrix factorization/completion

methods can only capture linear associations, thus failing to

accurately capture the nonlinear interactions between microbes

and diseases. Recent studies have suggested that graph neural

network algorithms in deep learning could offer a more effective

approach for learning node features in microbe-disease association

networks. Therefore, this study further attempts to design node

feature learning algorithms based on graph neural networks,

aiming to obtain more effective node features from the microbe-

disease association network, thereby predicting more accurate

candidate sets of microbe-disease associations.

In this work, we propose a deep learning framework named

GCATCMDA, which explores the application of graph neural

networks for the microbe-disease association prediction task.

First Gaussian kernel similarity is calculated based on known

microbe-disease association data to construct microbe similarity

networks and disease similarity networks. We then combine

graph convolutional networks and graph attention mechanisms

to learn feature representations of microbes and diseases in

different networks, and propose a feature dual-fusion module

to effectively integrate node features generated by each graph

attention layer. Next, we utilize contrastive learning to enhance the

feature consistency of the samemicrobe (or disease) across different

association networks. Finally, the obtained microbe and disease

features are inputted into an inner product decoder to compute

their corresponding association scores. Themodel can obtain better

node features through GCAT aggregation. In addition, contrastive

learning increases the distance between nodes, allowing the model

to better distinguish nodes andmake subsequent predictions better.

Experimental results demonstrate that the GCATCMDA model

achieves better predictive performance compared to previous

methods, and case studies of obesity and IBD (inflammatory
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FIGURE 1

The workflow of GCATCMDA for microbe–disease prediction.

bowel disease) confirm the high accuracy of the microbe-disease

association candidate set produced by our method.

2 Materials and methods

2.1 Datasets

The dataset in this study was sourced from the HMDAD

database (http://www.cuilab.cn/hmdad), which collects known

associations between microbes and diseases by searching past

research literature (Ma et al., 2017). HMDAD adapted a

systematic approach by only including associations that have been

experimentally validated and published in reputable journals. This

ensures a high level of reliability in the dataset. Past researchers

commonly employ metagenomic sequencing techniques to analyze

fluctuations in microbial community abundance within specific

diseases, contrasting them with the microbial compositions of

healthy individuals, thus exploring the associations between

microbes and diseases. In the HMDAD dataset, a microbe-

disease association pair may contain multiple entries from different

research literature sources. Therefore, here, we regard the same

microbe-disease association from different evidences as a pair,

further removing the redundant information present in the

HMDAD dataset. Finally, for this study, we employed a dataset

consisting of 450 microbe-disease associations, encompassing 39

human diseases and 292 microbes.

2.2 Problem definition

For the convenience of clarity in describing the subsequent

research methods, we provide a simple problem definition for the

task of predicting associations between microbes and diseases here.

We denote M = {m1,m2, . . . ,mnm} and D = {d1, d2, . . . , dnd } as

the sets representing nm microbes and nd diseases, respectively. The

matrix A ∈ R
nm×nd represents the known associations between

microbes and diseases, where Aij = 1 if microbe mi is associated

with disease dj, otherwise Aij = 0. However, Aij = 0 does not mean

that microbemi has no relation with disease dj. It may be the reason

that their association has not yet been discovered. Therefore, the

task of predicting associations between microbes and diseases aims

to find microbe mi for each disease dj where Aij = 0 in the known

association matrix, but microbemi is actually related to disease dj.

2.3 GCATCMDA

Figure 1 illustrates the workflow of GCATCMDA, a model

based on graph neural networks and contrastive learning for

predicting effective candidate sets of microbe-disease associations.

First microbe-microbe and disease-disease Gaussian kernel

similarity networks are constructed using known associations.

The model then integrates graph neural networks and contrastive

learning principles to extract meaningful feature representations

of microbes and diseases from the association networks. Last

the obtained microbe and disease features are fed into an inner

product decoder to compute their corresponding association

scores. A detailed description of the key components of this model

is elucidated below.

2.3.1 Microbe and disease similarity network
construction

Previous study (Chen et al., 2017) have hypothesized that

functionally similar microbes (or diseases) tend to exhibit similar

interaction or non-interaction patterns with similar diseases (or

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1483983
http://www.cuilab.cn/hmdad
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Jiang et al. 10.3389/fmicb.2024.1483983

FIGURE 2

The flowchart of GCAT node feature encoding in microbe-disease association network.

microbes). They utilize Gaussian kernel functions to measure the

similarity between two microbes (or diseases) in the same space.

Therefore, in this study, we consider constructing microbe and

disease similarity networks based on Gaussian kernel similarity

scores for microbes and diseases.

We have recorded the known associations between microbes

and diseases using the association matrix A ∈ R
nm×nd . The

calculation formulas for the Gaussian kernel similarity score

between microbe mi and mj, and between disease di and dj, are as

follows:

KM(mi,mj) = exp(−λm‖IP(mi)− IP(mj)‖
2) (1)

KD(di, dj) = exp(−λd‖IP(di)− IP(dj)‖
2) (2)

where KM(mi,mj) represents the Gaussian kernel similarity score

between microbes mi and mj, and KD(di, dj) represents the

Gaussian kernel similarity score between diseases di and dj. The

term IP(mi) represents the i-th row of the association matrix A

recording the associations between microbe mi and other diseases,

IP(di) represents the i-th column of the association matrix A

recording the associations between disease di and other microbes.

The parameters λm and λd represent the normalized kernel

bandwidths and are defined as follows:

λm =
λ′m

1
nm

∑nm
i=1 ‖IP(mi)‖

(3)

λd =
λ′
d

1
nd

∑nd
i=1 ‖IP(di)‖

(4)

where nm and nd represented the number of microbes and diseases.

And λ′m and λ′
d
are the original bandwidths, and generally both set

to 1.

We consider microbes (or diseases) to be strongly associated

with each other when the Gaussian kernel similarity score between

microbes (or diseases) exceeds a threshold of t. Therefore, the

association matrices MA for microbes and DA for diseases can be

expressed as follows:

MA(mi,mj) =

{

1, if KM(mi,mj) ≥ t

0, otherwise
(5)

DA(mi,mj) =

{

1, if KD(di, dj) ≥ t

0, otherwise
(6)

2.3.2 GCAT
Inspired by the work of Sun et al. (2022) on predicting

metabolite-disease associations, this study adopted the GCAT

feature encoder. The encoder initially combines graph convolution

algorithms and graph attention mechanisms to learn the nodal

features of the network, followed by the design of a feature

dual-fusion module to effectively integrate the node features

outputted by each graph attention layer. Since the GCAT feature

encoder learns embedding representations on different association

networks in a similar process, we take microbe-disease association

network as an example to introduce the process of learning node

features, as illustrated in Figure 2.

We represent the microbe-disease association network using

a symmetric adjacency matrix G ∈ R
(nm+nd)×(nm+nd), where nm

and nd denote the numbers of microbes and diseases, respectively.

The initial features of nodes in the network are represented by the

matrix H(0).

G =

[

0 A

AT 0

]

(7)

H(0) =

[

KM 0

0 KD

]

(8)

Considering the ability of graph convolutional networks in

capturing the global graph structural information, and the ability of

graph attentionmechanisms to assign attention weights to different
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nodes based on the local graph structure, the GCAT feature

encoder integrates these two algorithms to effectively learn the

node features of the microbe-disease association network. Firstly,

the GCAT feature encoder linearly projects the node features

of H(0) onto a feature space of dimensional size F, denoted as

H(0) = H(0)W, whereW ∈ R
(nm+nd)×F is the weight matrix. Next,

this module employs the graph convolutional networks (GCN)

proposed by Kipf and Welling (2016) to learn node features in the

network. GCN learns low-dimensional representations of nodes by

aggregating neighbor node information through graph convolution

operations while preserving the graph’s structural information. The

first-layer graph convolutional propagation formula for graph G

can be expressed as:

H(1) = σ

(

D̃−
1
2 G̃D̃−

1
2H(0)W(0)

)

(9)

Here, σ (.) denotes the activation function, G̃ = G + I

represents the adjacency matrix with self-loops added, D̃ is the

degree matrix of G̃, W(0) denotes the trainable weight matrix of

the first-layer graph convolution, and H(1) represents the feature

matrix outputted by the first-layer graph convolution.

Subsequently, the GCAT feature encoder enhances the learned

node feature representations from the graph convolutional layers

by incorporating a graph attention mechanism to aggregate

weighted sums of neighbor information. In this study, we adopt

the graph attention network (GAT) proposed by Veličković

et al. (2017), which introduces an attention mechanism to assign

different attention weights to the features of different neighbor

nodes, enabling to focus on important neighbor features during

aggregation for the target node. Thus, following the computation of

the first-layer graph convolution, the attention scores α
(1)
ij for node

j with respect to its neighbor node i in graph G can be calculated as:

α
(1)
ij =

exp(f ([W
(1)
att h

(1)
i ||W

(1)
att h

(1)
j ]))

∑

k∈Ni
exp(f ([W

(1)
att h

(1)
i ||W

(1)
att h

(1)
k
]))

(10)

where || denotes the concatenation operation, h
(1)
∗ represents the

node features obtained by the graph G through the first-layer

graph convolution, W
(1)
att represents the weight matrix for the

linear transformation of node features, Ni denotes the first-order

neighboring nodes of node i. The attention mechanism f (·) is a

single-layer feedforward neural network, parametrized by a weight

vector Ea ∈ R
2F , and applying the LeakyReLU nonlinearity. We

further employs a multi-head attention mechanism to stabilize the

process of learning node representations in attention networks. It

aggregates the features obtained from all attention heads by taking

their average. Thus, the updated feature z
(1)
i for node i via graph

attention mechanism can be expressed as follows:

z
(1)
i = σ





1

K

K
∑

k=1

∑

j∈Ni

αk
ij ·

(

Wk
att

)(1)
h
(1)
j



 (11)

Here, σ denotes the activation function, K represents the

number of attention heads, Ni signifies the neighborhood of node

i, αk
ij represents the attention coefficient for node j with respect to

node i in the k-th attention head, Wk
att is the weight matrix for

attention in the k-th head, and h
(1)
j denotes the feature vector of

node j after the first graph convolutional layer.

Finally, inspired by the work of Wang et al. (2019) on node

feature fusion, this study further designs a feature dual-fusion

module, which considers both concatenation and element-wise

product operations to integrate the node features outputted by each

graph attention layer. We posit that the concatenation operation

helps preserve more node feature information, while the element-

wise product operation emphasizes the correlation between node

features. We demonstrated the effectiveness of this fusion module

in ablation experiments. The node features outputted by each graph

attention layer in the GCAT feature encoder can be represented as

{Z(1),Z(2), · · · ,Z(N)}. Then, the feature dual-fusion module can be

represented by the following equation:

Z = (Z(1)||Z(2)|| · · · ||Z(N))Wa

+(Z(1) ⊙ Z(2) ⊙ · · · ⊙ Z(N))Wb

(12)

Here, || represents concatenation, and ⊙ represents element-

wise (Hadamard) product,Wa ∈ R
(N×F)×F andWb ∈ R

F×F denote

the trainable weight matrices, Z represents the final node feature.

In summary, this study represents the final microbe and disease

features obtained from the microbe-disease association network

as Zm
A ∈ R

nm×F and Zd
A ∈ R

nd×F , respectively. Similarly, the

microbe features obtained from the microbe similarity network are

represented as Zm
S ∈ R

nm×F , and the disease features obtained from

the disease similarity network are represented as Zd
S ∈ R

nd×F .

2.3.3 Contrastive learning
Inspired by the work of Jin et al. (2024) on miRNA-disease

association prediction, this study introduces contrastive learning

to enhance the consistency of features of the same nodes across

different association networks and the distinctiveness of features

between different pairs of nodes. This approach leverages the

complementary information among various association networks

to obtain more effective representations of microbe and disease

features. This module employs the contrastive loss function

proposed by Zhu et al. (2020) for graph nodes. It considers the

node features of the same disease di obtained from different

association networks (Z
di
A ,Z

di
S ) as positive samples, while all other

pairs of different nodes form negative sample pairs. Therefore, the

contrastive learning loss function Lossd for disease node features

across different association networks can be expressed as:

l(Z
di
A ,Z

di
S ) =

log





eθ(Z
di
A ,Z

di
S )/τ

eθ(Z
di
A ,Z

di
S )/τ +

∑

k6=i(e
θ(Z

di
A ,Z

dk
A )/τ + eθ(Z

di
A ,Z

dk
S )/τ )





(13)

Lossd = −
1

2nd

nd
∑

i=1

[

l(Z
di
A ,Z

di
S )+ l(Z

di
S ,Z

di
A )

]

(14)

where θ(·) is the cosine similarity, τ is a temperature parameter, nd
denotes the number of disease. Similarly, the contrastive learning
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loss function Lossm for microbe node features across different

association networks can be formulated as follows:

Lossm =
1

2nm

nm
∑

i=1

[

l(Z
mi
A ,Z

mi
S )+ l(Z

mi
S ,Z

mi
A )

]

(15)

where nm denotes the number of microbe. Therefore, the overall

loss function of the GCATCMDAmodel in the contrastive learning

module is formulated as follows:

Losscontrast = (Lossd + Lossm) (16)

2.3.4 Microbe—disease associations prediction
This study aggregates the node features of microbes and

diseases obtained from different association networks through

vector concatenation, resulting in the final microbial feature

representation Zm = [Zm
A ||Z

m
S ] ∈ R

nm×2F and disease feature

representation Zd = [Zd
A||Z

d
S ] ∈ R

nd×2F . Subsequently, these

aggregated feature representations are passed into an inner product

decoder to compute the association scores between microbes and

diseases. The calculation process is as follows:

A′ = sigmoid(ZmZ
T
d ) (17)

Where sigmoid is the activation function defined as

1/(1+ e−x), which maps output values to the interval (0, 1),

A′ij represents the association prediction score between microbemi

and disease dj.

Finally, the training of the GCATCMDAmodel employs Binary

Cross-Entropy as the loss function for microbe-disease association

prediction. The formula for this function is as follows:

Lossclassify = −
1

N

∑

(i,j)∈{N+∪N−}

[A(i,j) log(A
′
ij)

+(1− A(i,j)) log(1− A′ij)]

(18)

Where N denotes the total number of associations between

microbes and diseases, N+ represents the confirmed associations

between microbes and diseases, and N− represents the associations

yet to be confirmed. The tuple (i, j) represents the association

between microbe mi and disease dj. If (mi, dj) belongs to N+,

then A(i,j) = 1; otherwise, A(i,j) = 0. A′ij denotes the predicted

association score by the model for this association pair. Therefore,

the overall loss function of the GCATCMDA model can be

expressed as:

Losstotal = Lossclassify + λLosscontrast (19)

Where λ represents the weighting parameter for the contrastive

learning loss. The detailed steps of GCAT to predict novel

microbe—disease associations is described in Algorithm 1.

3 Results and discussion

In this section, we will provide an exposition of the

experimental setup and subsequently delve into an analysis and

discussion of the experimental results.

1: Input: Microbe-disease associations x, real

associations y

2: Output: Loss value

3: x_micro← Gaussion_kernel1(x)

4: x_disease← Gaussion_kernel2(x)

5: micro_f_association, disease_f_association ←

GCAT_association(x)

6: micro_f_similarity← GCAT_micro_similarity(x_micro)

7: disease_f_similarity← GCAT_disease_similarity(x_disease)

8: micro_feature← cat([micro_f_association,micro_f_similarity],

dim = −1)

9: disease_feature← cat([disease_f_association, disease_f_similarity],

dim = −1)

10: pred← Sigmoid(micro_feature ∗ disease_feature)

11: loss← Binary_Cross_Entropy(pred, y)

12: micro_contrastive_loss← Contrastive_Loss(micro_f_similarity,

micro_f_similarity)

13: disease_contrastive_loss← Contrastive_Loss(disease_f_similarity,

disease_f_association)

14: loss← loss+micro_contrastive_loss+ disease_contrastive_loss

15: return loss

Algorithm 1. GCAT framework for microbe-disease association.

3.1 Experimental setup

The GCATCMDA model proposed in this study is a microbe-

disease association prediction model based on graph neural

networks and contrastive learning. It aims to predict potential

associations betweenmicrobes and diseases from knownmicrobial-

disease association dataset. The hyperparameter settings required

for this model are described as follows. Firstly, the Gaussian kernel

similarity threshold t needs to be set for constructing microbe and

disease similarity networks. Secondly, parameters need to be set for

the GCAT feature encoder module, including the dimensionality

F of node features, the number of network layers L for graph

convolution, and the number of attention heads heads for the

graph attention mechanism. Then, in the contrastive learning

loss module, the temperature hyperparameter τ and the weight

parameter λ relative to the total loss are adjusted. Finally, the

GCATCMDA model is trained using the Adam (Kingma and Ba,

2014) optimizer, with parameters including the learning rate lr,

weight decay wd, and the number of training iterations epochs.

This study determines the optimal parameter settings of the

GCATCMDA model on the dataset by enumerating different

parameter combinations. Subsequently, there is an analysis of key

parameters t, F, L, and heads. After comparing experimental results,

the optimal hyperparameter settings for the GCATCMDA model

on the HMDAD dataset are determined as follows: t = 0.4, F =

128, L = 3, heads = 2, τ = 1, λ = 0.2, lr = 0.00001, wd = 0.001,

and epochs = 100.

In order to verify the effectiveness of the proposed

GCATCMDA model, we compares it with KATZHMDA (Chen

et al., 2017), LRLSHMDA (Wang et al., 2017), NTSHMDA (Luo

and Long, 2018), and KGNMDA (Jiang et al., 2022). These five

methods are recognized for their outstanding performance in

this task in past studies and provide research methods with
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TABLE 1 Classification performance comparison of GCATCMDA with

existing methods.

Cross-
validation

Methods AUC AUPR

Five-fold-CV KATZHMDA 0.877 (0.023) 0.890 (0.021)

LRLSHMDA 0.801 (0.032) 0.774 (0.039)

NTSHMDA 0.892 (0.028) 0.892 (0.036)

KGNMDA 0.895 (0.021) 0.903 (0.020)

GCATCMDA 0.908 (0.020) 0.913 (0.022)

10-fold-CV KATZHMDA 0.880 (0.031) 0.892 (0.027)

LRLSHMDA 0.805 (0.047) 0.788 (0.058)

NTSHMDA 0.897 (0.030) 0.897 (0.038)

KGNMDA 0.900 (0.029) 0.909 (0.029)

GCATCMDA 0.910 (0.026) 0.914 (0.033)

The values in bold represent the best ones.

open-source code. For negative samples required in model

training, this study randomly selects an equal number of negative

samples from all unknown microbe-disease association pairs.

The number of negative samples matched the number of positive

samples as to maintain a balanced dataset. In each cross-validation

experiment, the Gaussian kernel similarity scores for microbes and

diseases are recalculated based on the training set to ensure the

effectiveness of evaluating model performance through the test

set. In this experiment, we employ the same dataset and follow

the hyperparameter settings used in the original papers or provide

open source codes for other compared models. We adopted the

same evaluation metrics as the previous study (Jiang et al., 2022),

including the area under the ROC curve (AUC) and the area under

the precision-recall curve (AUPR) to assess the performance of the

models. To evaluate the performance of these models in predicting

potential associations between microbes and diseases, this study

conducted 10 repetitions of five-fold cross-validation experiments

and 10 repetitions of ten-fold cross-validation experiments by

setting different random seeds, and then computed the average to

ensure the accuracy of our results.

3.2 The classification performance of
models

The comparative results of the two cross-validation

experiments conducted on the HMDAD dataset for the five

aforementioned models are presented in Table 1. The optimal

performance is highlighted in bold, with standard deviations

indicated in parentheses. To provide readers with a clearer

visualization of the performance of the models, this study

further plotted the ROC curve and PR curve, as shown in

Figures 3, 4, respectively.

From the experimental data presented above, it can be

observed that the GCATCMDA model proposed in this study

has achieved excellent predictive performance in the task of

predicting associations between microbes and diseases, surpassing

methods proposed in previous studies. For instance, in the

five-fold cross-validation experiment, the model obtained an

approximate 1.3% improvement in AUC compared to the best

previous predictive performance. Similarly, in the ten-fold cross-

validation experiment, the model obtained an approximate 1.0%

enhancement in AUC compared to the best previous predictive

performance. The improvement in predictive performance was

slightly more pronounced in the fold-fold cross-validation

compared to the 10-fold cross-validation. This can be attributed

to the larger training sets used in the 10-fold validation, which

reduce variability across folds and provide more comprehensive

data for model training. However, the reduced variability can lead

to subtler improvements in performance metrics, as the model

benefits from a more stable but less varied dataset. In contrast,

the five-fold validation, with its larger test sets, introduces more

variability, making performance improvements more apparent.

Graph transformermodels offer strong capabilities in capturing

global node features through their self-attention mechanisms

(Li et al., 2024a,b). This allows them to handle complex

and non-local structures, which can be beneficial for highly

heterogeneous datasets. However, these models come with

significant computational complexity, scaling quadratically with

the number of nodes, making them less practical for large datasets

like microbe-disease networks.

While the GCATCMDA model combines GCN and GAT to

effectively capture both local features and selective attention on

relevant neighbors, Graph Transformer models are designed to

capture these relationships on a broader scale. The full attention

mechanism of Graph Transformers allows them to dynamically

weigh the importance of distant nodes, offering more flexibility

in feature extraction across large and complex networks. In

contrast, our GCATCMDA model, which combines GCNs and

GATs, is more computationally efficient and particularly suited to

smaller, sparser datasets like the HMDAD database. While graph

transformers excel in capturing global relationships, our approach

balances local feature aggregation and attention, offering a more

efficient solution. Future work could explore integrating graph

transformers to leverage their global feature-capturing capabilities

alongside our model’s efficiency in handling localized data.

3.3 Parameter analysis

The GCATCMDA model proposed in this study possesses

several crucial parameters, such as the Gaussian kernel

similarity threshold t for constructing microbe and disease

similarity networks, the dimensionality F of node features,

the number of network layers L for graph convolution, and

the number of attention heads heads for the graph attention

mechanism. Therefore, this study conducted training with

different parameter combinations on the HMDAD dataset and

utilized the experimental results from 10 repetitions of five-fold

cross-validation to analyze the impact of these parameters on the

model’s performance.

As shown in Figure 5, the model fails to achieve the best

predictive performance when the Gaussian kernel similarity

threshold t is either set too high or too low, the optimal predictive

performance of the model is attained when t = 0.4. Moreover,
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FIGURE 3

The AUROC curve and AUPR curve of five-fold CV on the HMDAD datasets between di�erent methods.

FIGURE 4

The AUROC curve and AUPR curve of 10-fold CV on the HMDAD datasets between di�erent methods.

as the dimensionality of node features increases, the predictive

performance of the model gradually improves, with the best

performance observed when F = 128. Additionally, the model

exhibits its best predictive performance when the number of

network layers for graph convolution L = 3. Furthermore, it is

observed that the evaluation metrics AUC and AUPR attain their

maximum values when the number of attention heads for the graph

attention mechanism heads = 2.

3.4 Ablation studies

To further validate the impact of each module in the

GCATCMDA model on the prediction performance of microbe-

disease associations, this study conducted ablation experiments

on the HMDAD dataset. The evaluation metrics included AUC,

AUPR, Precision, Recall, and F1 score. These metrics aimed to

comprehensively analyze the influence of different modules on
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FIGURE 5

The e�ect of parameters t, F, L, and heads on the GCATCMDA model.

the performance of the GCATCMDA model. The experimental

results represent the average scores of 10 repetitions of five-fold

cross-validation experiments. Initially, given that the GCATCMDA

model simultaneously utilizes microbe similarity networks, disease

similarity networks, and microbe-disease association networks

to learn the feature representations of microbes and diseases,

this study assessed the impact of node features from different

association networks on the model’s prediction performance.

The experimental results are illustrated in Figure 6, where

GCATCMDA_sim denotes learning the feature representations

of microbes and diseases only from microbe and disease

similarity networks, while GCATCMDA_asso denotes learning the

feature representations only from the microbe-disease association

network. It can be observed from Figure 6 that integrating feature

representations of microbes and diseases from different association

networks effectively enhances the model’s predictive performance.

Next, given that the GCATCMDA model mainly consists

of GCN, GAT, feature dual fusion module, and contrastive

learning module, this study attempted to remove each module

individually to investigate the impact of different modules on

the model’s prediction performance. The experimental results are

presented in Table 2, where “GCATCMDA_GCN” denotes the

removal of the graph convolutional network from the original

model, “GCATCMDA_GAT” denotes the removal of the graph

attention mechanism, “GCATCMDA_SUM” denotes replacing

FIGURE 6

E�ect of node embedding extracted from di�erent networks on

prediction.

the feature dual fusion module of the original model with a

simple summation operation, and “GCATCMDA_CL” denotes the

removal of the contrastive learning module from the original

model. From the results in Table 2, it can be observed that both

“GCATCMDA_GCN” and “GCATCMDA_GAT” exhibit lower

predictive performance compared to the original model, indicating
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TABLE 2 Classification performance comparison of GCATCMDA with existing methods.

Method AUC AUPR Precision Recall F1

GCATCMDA_GCN 0.893 (0.023) 0.903 (0.021) 0.858 (0.033) 0.771 (0.041) 0.812 (0.027)

GCATCMDA_GAT 0.884 (0.034) 0.900 (0.033) 0.865 (0.040) 0.737 (0.086) 0.793 (0.062)

GCATCMDA_SUM 0.894 (0.028) 0.887 (0.040) 0.866 (0.045) 0.749 (0.078) 0.801 (0.056)

GCATCMDA_CL 0.904 (0.021) 0.908 (0.025) 0.869 (0.034) 0.770 (0.039) 0.816 (0.028)

GCATCMDA 0.908 (0.020) 0.913 (0.022) 0.874 (0.034) 0.772 (0.045) 0.819 (0.032)

The values in bold represent the best ones.

FIGURE 7

The impact of di�erent feature fusion methods on model prediction

performance.

that the integration of graph convolutional networks and graph

attention mechanisms for node feature learning is effective in

obtaining more informative node feature representations from the

network. The predictive performance of “GCATCMDA_SUM” is

also lower than that of the original model, suggesting that the

designed feature dual fusion module effectively fuses node feature

information outputted by the graph attention layers. Similarly,

the predictive performance of “GCATCMDA_CL” is slightly lower

than that of the original model, indicating that the addition of the

contrastive learning module can improve the model’s predictive

performance to some extent.

Finally, to investigate the impact of different operations for

fusing node features outputted by the graph attention layers

on the GCATCMDA model prediction performance, this study

sophisticatedly combined three common feature vector operations:

concatenation, sum, and element-wise product. The combined

fusion feature formulas are similar to the feature dual fusion

formula described earlier. The experimental results are illustrated

in Figure 7. GCATCMDA_C represents the use of concatenation

only, GCATCMDA_S represents the use of sum only, and

GCATCMDA_H represents the use of element-wise product only.

GCATCMDA_CS represents the combination of concatenation

and sum, GCATCMDA_CH represents the combination of

concatenation and element-wise product, GCATCMDA_SH

represents the combination of sum and element-wise product, and

GCATCMDA_CSH represents the combination of concatenation,

sum, and element-wise product. From the experimental results

in Figure 7, it can be observed that selecting the combination

operations of concatenation and element-wise product in the

feature dual fusion module can most effectively fuse node features

outputted by the graph attention layers.

3.5 Case studies

To further validate whether the GCATCMDA model can

predict associations between microbes and diseases, this study

initially trained the model using all known microbial-disease

associations in the HMDAD dataset. Subsequently, obesity and

inflammatory bowel disease (IBD), two common diseases, were

selected as subjects for case analysis. Themodel predictedmicrobial

associations with obesity and IBD by sorting the predicted

association scores from high to low and retaining the top 20

unknown microbial associations with high scores for these two

diseases. Finally, employing a literature search approach, this study

validated whether these microbial associations with diseases existed

by examining relevant publications in the biomedical literature

database PubMed. This validation process aimed to assess the

accuracy of the microbial-disease associations predicted by the

GCATCMDAmodel.

From Table 3, it can be observed that among the top 20

associated microbes identified by the GCATCMDA model for

obesity, 16 of them have been previously documented in the

literature to be associated with obesity. For instance, Xu et al.

(2022), by reviewing literature on gut microbiota and obesity,

identified an association between Prevotella and obesity. Baradaran

et al. (2021) experimentally demonstrated that individuals positive

for Helicobacter pylori infection are more likely to suffer from

obesity, with an increased risk of Helicobacter pylori infection

among obese individuals. From Table 4, it can be observed that

in IBD, among the top 20 associated microbes identified by the

GCATCMDA model, 15 have been previously demonstrated to

be associated with IBD in the literature. For example, Quaglio

et al. (2022) demonstrated that the abundance of Bacteroidetes

and Firmicutes in patients with IBD undergoes significant

changes. Cardoneanu et al. (2021) experimental research showed

a significant decrease in the abundance of Clostridium coccoides in

patients with IBD compared to healthy individuals.

In summary, it can be observed from Tables 3, 4 that the

GCATCMDA model achieves an accuracy of over 75% in

predicting potential associated microbes for both obesity and

inflammatory bowel disease. Therefore, this study concludes

that the GCATCMDA model can provide effective and

accurate candidate sets of microbes associated with diseases,
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TABLE 3 Candidate microbes related to obesity predicted by GCATCMDA model.

Rank Microbe Evidence Rank Microbe Evidence

1 Prevotella PMID:35093025 11 Enterobacter aerogenes Unconfirmed

2 Proteobacteria PMID:31197613 12 Enterobacter hormaechei Unconfirmed

3 Helicobacter pylori PMID:34243821 13 Klebsiella pneumoniae PMID:31921729

4 Lachnospiraceae PMID:31397240 14 Shigella dysenteriae Unconfirmed

5 Actinobacteria PMID:19043404 15 Haemophilus PMID:31976177

6 Staphylococcus PMID:29667480 16 Clostridium coccoides PMID:29667480

7 Enterococcus PMID:35967777 17 Betaproteobacteria Unconfirmed

8 Clostridium PMID:29667480 18 Clostridium leptum PMID:36756620

9 Clostridium difficile PMID:25638400 19 Bacteroidales PMID:33407104

10 Faecalibacterium prausnitzii PMID:23985870 20 Enterococcus faecium PMID:36590404

TABLE 4 Candidate microbes related to IBD predicted by GCATCMDA model.

Rank Microbe Evidence Rank Microbe Evidence

1 Bacteroidetes PMID:36157114 11 Enterobacter hormaechei Unconfirmed

2 Firmicutes PMID:36157114 12 Klebsiella pneumoniae PMID:36436756

3 Clostridium coccoides PMID:33548121 13 Shigella dysenteriae Unconfirmed

4 Helicobacter pylori PMID:30237392 14 Clostridium leptum PMID:33548121

5 Prevotella PMID:38053528 15 Lysobacter Unconfirmed

6 Clostridium difficile PMID:31698044 16 Rickettsiales Unconfirmed

7 Staphylococcus PMID:31662859 17 Streptococcus mitis PMID:30796823

8 Staphylococcus aureus PMID:31698044 18 Xanthomonas PMID:35689701

9 Enterococcus PMID:32292819 19 Enterobacteriaceae PMID:24629344

10 Enterobacter aerogenes Unconfirmed 20 Lactobacillus PMID:37773196

thereby reducing the research costs and duration of traditional

biological experiments.

4 Conclusion

This article primarily introduces the GCATCMDA model

proposed in this study, aimed at predicting potential sets of

microbe-disease associations based on known microbe-disease

association data. Initially, the article outlines the construction of

Gaussian kernel similarity networks for microbes and diseases

using known association data and explains how the model

combines graph neural networks with contrastive learning

to obtain effective feature representations for microbes and

diseases. Subsequently, experimental evaluations are conducted

to compare the GCATCMDA model with existing methods,

demonstrating its superiority in microbe-disease association

prediction tasks. Additionally, parameter analysis experiments

validate the rationality of parameter settings in the GCATCMDA

model, while ablation experiments confirm the effectiveness of each

module in the model. Finally, obesity and inflammatory bowel

disease are selected as case studies to validate the high accuracy

of the microbe-disease association candidate sets predicted by the

GCATCMDAmodel.

The proposed model combines GCN and GAT to leverage

the strengths of both approaches. GCN effectively captures local

neighborhood information by performing convolution operations

over graph structures, allowing the model to aggregate features

across connected nodes. However, GCN applies equal weighting to

all neighboring nodes, which may limit its ability to differentiate

between more and less important neighbors. To address this

limitation, GAT introduces an attention mechanism that assigns

different importance to neighboring nodes by computing attention

coefficients. This allows the model to focus more on the relevant

nodes, improving its ability to capture complex interactions.

By combining GCN’s ability to aggregate global structural

information with GAT’s selective attention on important neighbors,

the proposed model effectively captures both local and global

patterns within the graph, leading to enhanced predictive

performance.

While our study has demonstrated the effectiveness of the

GCATCMDA model in predicting microbe-disease associations,
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there are several limitations that must be acknowledged. First, the

model has only been evaluated using the HMDAD database, and

its generalization ability requires further validation across other

public datasets, such as HMDA and Disbiome. The limited volume

of data in this study may also hinder the model’s ability to capture

complex patterns, suggesting the need for more extensive datasets

to enhance its predictive performance. Additionally, our current

approach does not differentiate between positive and negative

association information, a distinction that will be addressed in

future research to refine prediction accuracy. By overcoming these

limitations, we anticipate further improvements in the model’s

robustness and its potential application across a broader range of

microbial and disease studies.

In conclusion, this study asserts that the GCATCMDA model

can advance the development of deep learning algorithms in

the field of microbe-disease association prediction. Moreover,

it effectively aids biologists in exploring potential associations

between microbes and human diseases from a big data perspective,

thereby reducing the costs of traditional biological experiments

and accelerating research progress in the field of gut microbes and

disease association studies.
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